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Abstract

We study a situation with several service providers that are located geographically

close together. These service providers keep spare parts in stock to protect for

downtime of their high-tech machines and face different downtime costs per stock-

out. Service providers can cooperate by forming a joint spare parts pool, and we

study the allocation of the joint costs to the individual service providers by studying

an associated cooperative game. In the extant literature, the joint spare parts pool is

typically controlled by a suboptimal full-pooling policy. This may lead to an empty

core of the associated cooperative game. We show possible emptiness of the core

under a full-pooling policy in our setting as well.

The focus of the paper is then on situations in which we allow service providers to

apply an optimal policy: a kind of stratification that determines, depending on the

real-time on-hand inventory, which service providers may take parts from the pool.

We formulate the associated cooperative game, which we call a stratified pooling

game, by defining each coalitional value in terms of the minimal long-run average

costs of a Markov decision process. We show that the core of stratified pooling

games is always non-empty. Our five-step proof of this result is of interest in itself

because it may be more generally applicable for other cooperative games where

coalitional values correspond to the minimal long-run average costs of Markov

decision processes.

1 Introduction

In the last decades, spare parts pooling has shown its potential in several industries,

including the airline industry (Kilpi and Vepsäläinen [8]) and the electricity market
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(Kukreja et al. [11]). In these industries, one typically applies a full-pooling policy,

which means that a joint spare parts pool is formed (which may, e.g., consist of the

original stock points of the participating players or one (new) joint stock point) from

which every participating player can demand as long as the joint spare parts pool is

non-empty. Despite the fact that this form of pooling may reduce long-run average

costs significantly, it is not per se optimal. For instance, when the criticality of a specific

spare part may differ per party, full pooling may be far from optimal (see, e.g., Koçağa

and Şen [9], Kranenburg and van Houtum [10], and Wieczorek et al. [21]). As an

example, one can think of two service providers that each keep the same spare parts

in stock for the same type of machines, but face different downtime costs for their

machines (e.g., when the service providers have different contractual agreements with

their customers). When the service providers then decide to pool their spare parts,

it may be better to reserve some of the spare parts for the service provider with the

higher downtime costs. In this work, we will also consider such an environment, in

which service providers can pool their spare parts, face different downtime costs, and

apply a pooling policy that is better than full pooling. More specifically, we let the

service providers apply an optimal pooling policy, which is, in general, not full pooling.

Then, we address the main question of this work, namely: how should we allocate

the joint total costs of the optimal pooled system amongst the involved parties? So

far, such cost allocation problems have received attention in literature for situations in

which spare parts are pooled according to a possibly suboptimal pooling policy (see,

e.g., Karsten et al. [6] and Schlicher et al. [17]). However, it is unexposed in settings in

which spare parts are pooled according to an optimal pooling policy. To the best of our

knowledge, we are the first who deal with this issue explicitly.

In this paper, we will address this cost allocation problem as follows. First, we

describe the underlying spare parts situation, which consists of several service

providers that are located geographically close together. These service providers stock

the same repairable spare parts to protect for downtime of their high-tech machines

and send a failed part of a high-tech machine to their own repair shop, which repairs

such parts one-by-one. The frequency by which the high-tech machines fail may vary

per service provider. If no spare part is available upon demand, an external spare part

is leased from an external supplier with infinite supply for the duration of the repair

time of the failed component. The expected costs associated with such a situation (like

the extra downtime costs of the high-tech machine, the transhipment costs of the

leased spare part, and so on), are called downtime costs and may vary amongst the
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service providers as well.

As a second step, we formulate an associated cooperative game. For this game, we

assume that players (i.e., the service providers) cooperate by forming a joint spare

parts pool in which all failed parts of all high-tech machines are sent to the same

repair shop, which repairs these parts one-by-one. Operating the joint pool involves,

for each spare parts demand, the decision problem of satisfying or rejecting demand.

Whenever a demand is rejected (and so the spare part is not satisfied from the joint

spare parts pool), a similar emergency procedure is instigated as discussed before,

with downtime costs that depend on whose demand is rejected. We show that, under a

full-pooling policy that satisfies all demand while spare parts are available, the core of

the associated game can be empty. The focus of the paper is then on situations in which

an optimal pooling policy is applied, i.e., a pooling policy that minimizes the joint long-

run average downtime costs per time unit. It turns out, based on a classical result of

Ha [5], that such an optimal pooling policy has the form of a critical level policy. Such

critical level policies are characterised as follows. According to the different downtime

costs, demand for a spare part of a player is accepted if and only if the total inventory

level of the joint spare parts pool is above a certain critical level. In this way, some

spare parts are reserved for the players with relatively high downtime costs. So, there

is some kind of stratification that determines when players are allowed to make use of

the joint spare parts pool. For that reason, we refer to this form of pooling as stratified

pooling and to the associated cooperative game as a stratified pooling game.

We investigate stratified pooling games on core non-emptiness, i.e., we investigate

whether there always exists an allocation of the joint costs such that no group of

players has a reason to break up from the collaboration. For proving core

non-emptiness, we face the problem that the optimal pooling policy may differ per

coalition. To this end, we set up a 5-step proof, which uses that the underlying spare

parts situation can be described by a Markov decision process (MDP) and the optimal

pooling policy as a stationary policy in this MDP. With these new modelling and

proof techniques, we are able to show that the core of stratified pooling games is

always non-empty. We want to emphasize that these techniques may be more

generally applicable for operations research games where coalitional values

correspond to the minimal long-run average costs of MDPs as well.

Although stratified pooling games originate from spare parts situations, they are not

limited to this specific type of situations only. For instance, in line with the work of
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Ha [5], the service providers could represent single-server produce-to-stock production

facilities that each face different penalty costs for their lost sales. Then, these production

facilities can collaborate by pooling their inventories, customer streams, and production

rates into a joint system where new products are produced by a single server.

Stratified pooling games fit within the class of operations research games (see, e.g.,

Borm et al. [4]) and in more detail within the class of cooperative resource pooling

games. These games have in common that resources (e.g., spare parts, hospital beds,

repair men, or machines) are pooled amongst the players. In the last couple of years,

several of these games have been investigated and we will shortly discuss them below.

Here, we restrict ourselves to resource pooling games in which queueing models are

incorporated. We categorize these resource pooling games into two categories, namely

games in which solely queueing systems are pooled and games in which, in addition

to pooling of queueing systems, spare parts are pooled as well.

In the first category, in which solely queueing systems are pooled, we find the work of

Anily and Haviv [1], Karsten et al. [7], Timmer and Scheinhardt [20], and Anily and

Haviv [2]. Anily and Haviv [1] study a single-server queueing game, in which each

player has an own server with a fixed service rate. The players can pool these service

rates and their individual exogenous driven customer streams into a single M/M/1

queueing system, whose service rate is the sum of the service rates of the players that

collaborate. In doing so, the players can reduce waiting time of customers. Anily and

Haviv [1] show that the core of this game is always non-empty and give an explicit

expression for all nonnegative core allocations of this game. Karsten et al. [7] study

a variant of this game, by assuming that the collaboration is modelled as an M/M/s

queueing system instead of an M/M/1 queueing system. For this specific game, in

which players face a fixed cost rate per server and homogeneous costs for waiting

customers, Karsten et al. [7] provide a sufficient condition for core non-emptiness as the

core can be empty in general. Timmer and Scheinhardt [20] study cooperative games

associated with general Jackson networks. Each player owns a single-server station,

which is modelled as an M/M/1 queue. The players can cooperate by redistributing

their combined service capacities amongst the stations to reduce total waiting time.

They show that the core is non-empty in general. Anily and Haviv [2] study parallel

M/M/1 queues. They consider both waiting and no waiting in the queue. In doing

so, they consider cooperation via capacity sharing as in Timmer and Scheinhardt [20]

as well as cooperation under unobservable routing. The latter form of cooperation
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boils down to an optimal division of arrival rates over the stations. In all cases, core

non-emptiness is proven.

In the second category, in which, in addition to pooling of queueing systems, spare

parts are pooled as well, we find the work of Karsten et al. [6] and Schlicher et al. [17].

Karsten et al. [6] study a setting with several players who stock expensive,

low-demand, repairable spare parts for their high-tech machines. These players can

collaborate by full pooling of their spare parts via free transshipments. The authors

model this pooled spare parts situation as an M/M/s/s queueing system (better

known as an Erlang loss system), in which (in terms of standard queueing

terminology) a customer can be seen as a demand for a spare part and a server as a

spare part in repair. In contrast to the queueing systems of Anily and Haviv [1] and

Karsten et al. [7], in the M/M/s/s queueing system, customers are not allowed to

wait. Karsten et al. [6] show that the core of the associated game can be empty and

subsequently provide a sufficient condition for core non-emptiness. Schlicher et al.

[17] study a variant of the model of Karsten et al. [6] for a restricted domain: they

assume that each player keeps exactly one spare part in stock and assume that each

player has the same demand rate. For this setting, Schlicher et al. [17] let the players

pool their spare parts via a fixed suboptimal critical level policy instead of a

full-pooling policy. This pooled spare parts situation is also modelled as a queueing

system, in which the demand rate of the customers is state dependent. Schlicher et al.

[17] show that, for the restricted domain, the core is always non-empty.

Our paper can be categorized in the second category as well: we allow the players to

pool their repairable spare parts and model the pooled repair process as an M/M/1

queueing system. With respect to the type of spare parts pooling, we deviate from

Karsten et al. [6] and Schlicher et al. [17] by applying an optimal spare parts pooling

form. With respect to the form of queuing system under pooling, we follow Anily

and Haviv [1] and so, it is possible that a failed part has to wait before repair can

actually start. Our main result is that, under these modelling assumptions, the core is

always non-empty. This result is of particular interest, because the forms of pooling

that have been investigated in literature (e.g., full pooling) cannot in general guarantee

a non-empty core.

In Table 1 an overview of the most relevant resource pooling games is represented,

according to the various modelling assumptions and whether the core (of the related

resource pooling game) is non-empty in general or not.
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Table 1: Classification of the most relevant cooperative resource pooling games

according to various modelling assumptions as well as the result on core non-emptiness
Queuing system form under pooling

Single Multiple

Full pooling
This paper (waiting in queue,

core can be empty)

Karsten et al. [6] (no waiting in queue,

core can be empty)

Sp
ar

e
pa

rt
s

po
ol

in
g

po
lic

y
ra

llo Critical level pooling —
Schlicher et al. [17] (no waiting in queue,

core is non-empty?)

Optimal pooling
This paper (waiting in queue,

core is non-empty)
—

Anily and Haviv [1] (waiting in queue,

core is non-empty)

Karsten et al. [7] ( waiting in queue,

core can be empty)

Timmer and Scheinhardt [20] (waiting in queue,

core is non-empty)

Anily and Haviv [2] ( waiting and no waiting

in queue, core is non-empty)

Not applicable

(no spare parts)

? This result holds for a restricted domain only.

Now, we summarize the main contributions of this paper:

• We are the first who analyze a resource pooling game in which spare parts are

pooled in an optimal way (instead of in a possibly suboptimal way, like, e.g., full

pooling).

• We prove that the core of stratified pooling games is always non-empty. This

result is of particular interest as for several other spare parts pooling games (in

which a suboptimal pooling form is assumed) the core may be empty. In

particular, if players would naively apply a full-pooling policy in our stratified

pooling game, core non-emptiness is also not guaranteed.

• We present a 5-step proof for core non-emptiness of stratified pooling games,

which is of interest in itself. To the best of our knowledge, we are the first who

relate a cooperative game to an MDP and so succeed to prove that the core is

always non-empty. These modelling and proof techniques may be more generally

applicable for operations research games where coalitional values correspond to

the minimal long-run average costs of MDPs as well.

The remainder of this paper is organised as follows. We start in Section 2 with

preliminaries on cooperative game theory as well as on MDPs. Subsequently, we
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introduce spare parts situations and the associated stratified pooling games in Section

3. In Section 4, we will show our main result that stratified pooling games have a

non-empty core. In Section 5 conclusions are drawn. Proofs of lemmas are relegated

to the appendix.

2 Preliminaries

In this section, we provide some basic elements of cooperative game theory as well as

of (discrete time) Markov decision processes.

2.1 Cooperative Game Theory

Consider a finite set of players N = {1, 2, . . . , n} and a function c : 2N → R called a

characteristic function, with c(∅) = 0. The pair (N, c) is called a cooperative cost game with

transferable utility, shortly called game. A subset S ⊆ N is a coalition and c(S) represents

the costs incurred by the players in S. The costs can be transferred freely among the

players. The set N is called the grand coalition. A cost vector for a game (N, c) is a

vector x ∈ RN describing how to allocate the costs, where player i ∈ N is allocated xi.

A cost vector x ∈ RN is called efficient if ∑i∈N xi = c(N). This implies that all costs

are distributed amongst the players of the grand coalition N. A cost vector x ∈ RN is

called stable if no group of players has an incentive to leave the grand coalition N, i.e.,

∑i∈S xi ≤ c(S) for all S ⊆ N. The set of efficient and stable cost vectors of (N, c), called

the core of (N, c), is denoted by C (N, c).

2.2 Discrete Time Markov Decision Processes

In this section we present some basic concepts of discrete time Markov decision

processes (MDPs). An MDP is a mathematical framework for modelling sequential

decision problems under uncertainty. Consider a set T = N ∪ {0} of time epochs, a

countable set Y of states, a finite set A (y) of actions for each y ∈ Y , non-negative

costs C(y, a) for each y ∈ Y and all a ∈ A (y), and transition probabilities p(y′|y, a) for

all y′ ∈ Y , all y ∈ Y , and all a ∈ A (y) with ∑y′∈Y p(y′|y, a) = 1 for all y ∈ Y and all

a ∈ A (y). Tuple (T, Y , A , C, p) with A = (A (y))y∈Y , C = (C(y, a))y∈Y ,a∈A (y) and

p = (p(y′|y, a))y′,y∈Y ,a∈A (y) is called a discrete time Markov decision process.

Let t ∈ T be a time epoch. A decision rule ωt = (ωt(y))y∈Y indicates for all states y ∈ Y

which action to choose at time epoch t. In addition, a policy ω = (ωt)t∈T is a sequence
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of decision rules for all time epochs. Let Xt with t ∈N∪ {0} be a random variable that

indicates the state at time t. Note that Xt depends on ω and X0. If initially X0 = y ∈ Y ,

the long-run average costs per time epoch under policy ω are

Jω(y) = lim sup
n→∞

1
n

Eω

[
n−1

∑
t=0

C(Xt, ωt(Xt))|X0 = y

]
.

Let Ω be the set of all policies and J∗(y) = infω∈Ω Jω(y) for all y ∈ Y . There exists a

class of MDPs for which there exists a constant J∗ such that J∗ = J∗(y) for all y ∈ Y .

In that case, J∗ is defined as the minimal long-run average costs per time epoch and policy

ω ∈ Ω is optimal if Jω(y) = J∗ for all y ∈ Y . A policy is stationary if there exists an f

such that ωt = f for all t ∈ T. We denote such (stationary) policy by f = ( f (y))y∈Y .

For an MDP, the value function Vt(y) for all y ∈ Y and all t ∈ T is defined by

Vt+1(y) = min
a∈A (y)

{
C(y, a) + ∑

y′∈Y

p(y′|y, a) ·Vt(y′)

}
, (1)

with V0(y) = 0 for all y ∈ Y .

There exists an important result which states that, under two conditions, the minimal

long-run average costs per time epoch exist, are attained under a stationary policy and

moreover, coincide with the limit of the value function divided by the number of time

epochs, when time goes to infinity. In these conditions, one refers to irreducible Markov

chains and positive recurrent Markov chains. A Markov chain, which is attained under a

given policy, is said to be irreducible if for all states y ∈ Y it holds that it can be reached

from each other state y′ ∈ Y \{y}. A Markov chain is said to be positive recurrent if for

all states y ∈ Y it holds that the expected return time (to state y) is finite. Now, we

present this important result, which is derived in Sennott [18, proposition 4.3].

Theorem 1. Let (T, Y , A , C, p) be an MDP. If (i) there exists a stationary policy f inducing

an irreducible and positive recurrent Markov chain on Y , and satisfying J f (y) < ∞ for all

y ∈ Y , and (ii) there exists an ε > 0 such that {y ∈ Y |∃a ∈ A (y) : C(y, a) < J f + ε} is

finite, then

J∗ = lim
t→∞

Vt(y)
t

for all y ∈ Y , (2)

and moreover, there exists an optimal stationary policy.

In this work, we restrict our attention to MDPs with finite state spaces. This implies

that it becomes superfluous to check whether an irreducible Markov chain is positive

recurrent as every irreducible Markov chain is positive recurrent in a finite state space

(see, e.g., Modica and Poggiolini [13, Theorem 5.71 (ii)]). Moreover, the second

condition of Theorem 1 is always satisfied when Y is finite.
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3 Model description

In this section, we introduce spare parts situations and define the associated games,

called stratified pooling games. In addition, we discuss that the underlying spare parts

situation can be described by a Markov decision process and the optimal pooling policy

as a stationary policy in this Markov decision process.

3.1 Spare parts situations

We consider an environment with a finite set N ⊆ N of service providers that are

located geographically close together and each keeps spare parts in stock to prevent

costly downtime of their high-tech machines. We limit ourselves to one critical

component, i.e., one stock-keeping unit, which is subject to failures. For each service

provider i ∈ N, it holds that a failure of a high-tech machine immediately leads to a

demand for a spare part. This occurs according to a Poisson process with rate

λi ∈ R+. We assume that each service provider i ∈ N starts with Ii ∈ N ∪ {0} spare

part(s) in stock initially. If a spare part is on hand when demand occurs, this demand

is always satisfied and the failed part is sent to the repair shop of service provider i,

which repairs such parts one-by-one (like in Anily and Haviv [1]). Repair times of

these parts are assumed to be independent and identically distributed according to an

exponential distribution with mean µ−1
i ∈ R+. If no spare part is available when

demand occurs, an emergency procedure is instigated, which means that a spare part

is leased (from an external supplier with infinite supply) for the duration of the repair

time of the failed component, which is sent to the repair shop (of service provider i).

The expected costs associated with the extra idleness of the machine (due to the

delivery time of a leased spare part), shipment of an emergency spare part, and so on,

shortly called downtime costs, are di ∈ R+ for service provider i. Finally, we assume

that each service provider i ∈ N is interested in its long-run average costs per time

unit. To analyse this setting, we define a spare parts situation as a tuple (N, I, d, λ, µ)

with N, I = (Ii)i∈N, d = (di)i∈N, λ = (λi)i∈N and µ = (µi)i∈N as defined above. For

short, we use θ to refer to a spare parts situation and Θ for the set of spare parts

situations.

3.2 Stratified pooling games

Consider spare parts situation θ = (N, I, d, λ, µ) and coalition S ⊆ N with S 6= ∅. The

players in coalition S can collaborate by pooling their inventories, demand streams,
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and repair rates (of which the last two are in line with Anily and Haviv [1]) into a

joint system with initial inventory level IS = ∑i∈S Ii, (heterogeneous) demand rate

λS = ∑i∈S λi, and a single repair shop, in which components are repaired one-by-one

with as repair rate µS = ∑i∈S µi. In this joint system, each failed component is sent to

the repair shop immediately. Moreover, for each incoming demand, the players face an

accept or reject decision problem, which determines whether demand is satisfied from

the joint spare parts pool or not. Whenever a demand is rejected (and so the spare part

is not satisfied from the joint spare parts pool), an emergency procedure is instigated

(as discussed before), with downtime costs that depend on whose demand is rejected.

We assume that the policy of accepting or rejecting demand is such that the long-run

average (downtime) costs per time unit are minimized. It follows, based on a classical

result of Ha [5], that this policy can be described in terms of a critical level policy.1 A

critical level policy is characterised as follows. According to the different downtime

costs, demand of a certain player is accepted if and only if the (total) inventory level

(of the joint spare parts pool) is above a certain critical level only. In this way, some

spare parts are reserved for the more critical players, e.g., for players with relatively

high downtime costs. So, in fact, there is some kind of stratification that determines

when players are allowed to make use of the joint spare parts pool. For that reason,

we refer to this optimal form of pooling by stratified pooling. We denote the minimal

long-run average (downtime) costs per time unit for coalition S ⊆ N by cθ(S) and set

cθ(∅) = 0. The associated game (N, cθ) will be called a stratified pooling game.

Example 1. Let θ ∈ Θ be a spare parts situation with N = {1, 2, 3}, I = (1, 1, 1), d =

(3, 2, 1), λ = (1, 1, 1) and µ = (1
2 , 1

2 , 1
2). For the grand coalition, the optimal critical level

policy is of the form where player 1 can satisfy demand as long as IN ≥ 1, player 2 can satisfy

demand as long as IN ≥ 2, and player 3 can satisfy demand as long as IN ≥ 3. According to

this optimal policy, one can construct a corresponding Markov chain (see Figure 1).

0123

µ{1,2,3}

λ{1}

µ{1,2,3}

λ{1,2}λ{1,2,3}

µ{1,2,3}

Figure 1: Underlying Markov chain for grand coalition

Based on this Markov chain it is easy to determine the steady state probabilities of state 0
(

16
67

)
,

state 1
(

24
67

)
, state 2

(
18
67

)
and state 3

( 9
67

)
. According to these steady state probabilities, one

1See Theorem 1 of Ha [5] with h(x) = 0 for x ≤ IS and h(x) = ∞ otherwise.
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can determine the minimal long-run average costs per time unit as follows

c(N) =
16
67
· (λ1 · d1 + λ2 · d2 + λ3 · d3) +

24
67
· (λ2 · d2 + λ3 · d3) +

18
67
· (λ3 · d3) = 2

52
67

.

Similarly, one can determine the costs of the other coalitions (see Table 1 for these values). Note

that x =
(
152

67 , 1, 0
)
∈ C (N, cθ), i.e., the core of game (N, cθ) is non-empty. �

Table 2: Corresponding costs per coalition

M ∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

cθ(M) 0 2 11
3

2
3 24

5 2 13
5 252

67

Remark 1. Recall that our aim is to show core non-emptiness for stratified pooling games.

This result is not longer guaranteed whenever coalitions would (naively) apply a (non-optimal)

full-pooling policy. For instance, consider θ ∈ Θ with N = {1, 2}, I = (1, 1), d = (1, 4),

λ = (5, 1), and µ = (1, 1). Under full pooling we would have cθ({1}+ cθ({2}) = 41
6 + 2 <

6 3
13 = cθ({1, 2}), i.e., the core is empty. However, if an optimal policy is applied, which dictates

that player 1 can satisfy demand as long as IN = 2 and player 2 can satisfy demand as long as

IN = 1, we have cθ({1, 2}) = 5 2
11 and so the core is non-empty again.

3.3 MDP formulation

In line with Ha [5] the (accept or reject demand) decision problem per coalition can be

considered as a (discrete time) Markov decision process (MDP) as well. This is allowed

since the decision problem per coalition can be recognized as a semi-Markov decision

problem, which can be converted to an equivalent MDP by applying uniformization

(see, e.g., Lippman [12]). For that, we add fictitious transitions of a state to itself to

ensure that the total rate out of a state is equal for all states, the so-called uniformization

rate. Then, we consider the embedded discrete-time MDP by looking at the system

only at transition instants, which occur according to a Poisson process, with as rate the

uniformization rate. This modelling technique turns out to be very useful. Let θ ∈ Θ

and S ⊆ N with S 6= ∅. In what follows, we present this corresponding MDP.

3.3.1 State and Action Spaces

We define the state space to be Y S = {0, 1, . . . , IS} with i ∈ Y S representing the

number of spare parts in stock of coalition S and the action space to be A S(y) ={
A S

i (y)
}

i∈S with A S
i (y) = {0, 1} for all i ∈ N and all y > 0 and A S

i (y) = {0}
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otherwise. In state y ∈ Y S, action 1 corresponds with the acceptance of a demand at a

player, while action 0 corresponds with the rejection of such a demand.

3.3.2 Costs and transition probabilities

Let γ = ∑i∈N [λi + µi]. We will use γ as the uniformization rate, which is independent

of S. In addition, let λ∗i = λi/γ and µ∗i = µi/γ for all i ∈ N. Now, CS(y, a) denotes the

expected costs collected over a single (uniformized) time epoch, given that the system

begins the period in state y ∈ Y S and action a = (ai)i∈S ∈ A S(y) is taken. For our

situation, we have

CS(y, a) = ∑
i∈S

λ∗i · (1− ai) · di for all y ∈ Y S and all a ∈ A S(y).

In addition, let pS(y′|y, a) denote the one-stage transition probability from state y ∈ Y S

to y′ ∈ Y S under action a = (ai)i∈S ∈ A S(y). We have

pS(y′|y, a) =



∑
i∈S

λ∗i · ai if y′ = y− 1, y > 0

∑
i∈S

µ∗i if y′ = y + 1, y < IS

1−∑
i∈S

[
λ∗i · ai + µ∗i

]
if y′ = y < IS

1−∑
i∈S

[
λ∗i · ai

]
if y′ = y = IS

0 otherwise,

for all y ∈ Y S and all a ∈ A S(y).

3.3.3 Value function and equivalence

Now, we present the value function in a form suitable for this article. Recall that the

proofs of the lemmas are relegated to the appendix.

Lemma 1. Let θ ∈ Θ and S ⊆ N. Then, for all y ∈ Y S and all t ∈N∪ {0} it holds that

VS
t+1(y) = ∑

i∈S

[
λ∗i min

l∈{0,min{y,1}}

{
VS

t (y− l) + (1− l)di

}
+ µ∗i VS

t (min{y + 1, IS})
]

+

(
1−∑

i∈S
[λ∗i + µ∗i ]

)
·VS

t (y)

with VS
0 (y) = 0 for all y ∈ Y S.
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Note that the result of Lemma 1 follows by some rewriting of the value function (as

represented in (1)) and using that decision a ∈ A S(y) can be decomposed into decisions

per player. The formulation of the value function in Lemma 1 can be interpreted in the

following way. With probability λ∗i there is a demand arrival and, except for the state

with no spare parts in stock, there is a possibility to (i) accept demand (l = 1) or (ii)

reject demand (l = 0) and incur related costs di. Based on the first decision (l = 1)

there will be a transition to the state with one spare part less in stock and based on

the second decision (l = 0) there will be a transition back to the same state. With

probability µ∗i there is, except for the state with no outstanding repair orders, a repair

completion, which leads to a transition to the state with one spare part more in stock.

With probability 1−∑i∈S(λ
∗
i + µ∗i )(≥ 0) there is a dummy transition back to the same

state, ensuring that the probabilities sum to one.

Example 2. Consider the situation of Example 1. Observe that γ = 41
2 , λ∗i = 2

9 for all i ∈ N,

and µ∗i = 1
9 for all i ∈ N. For instance, for coalition M = {1, 2} with I{1,2} = 2, the value

function for all t ∈N∪ {0} is given by

V{1,2}
t+1 (0) =

2

∑
i=1

(
2
9

(
V{1,2}

t (0) + di

)
+

1
9

V{1,2}
t (1)

)
+

1
3

V{1,2}
t (0)

V{1,2}
t+1 (1) =

2

∑
i=1

(
2
9

min
l∈{0,1}

{
V{1,2}

t (1− l) + (1− l)di

}
+

1
9

V{1,2}
t (2)

)
+

1
3

V{1,2}
t (1)

V{1,2}
t+1 (2) =

2

∑
i=1

(
2
9

min
l∈{0,1}

{
V{1,2}

t (2− l) + (1− l)di

}
+

1
9

V{1,2}
t (2)

)
+

1
3

V{1,2}
t (2).

Note that for zero spare parts in stock, it is not possible to accept demand and for two spare

parts in stock, a possible replenishment has no effect on the inventory level. �

Finally, we define gS as the minimal long-run average costs per time epoch of the MDP.

Now, we show that there is a direct relation between gS and the original minimal long-

run average costs per time unit of coalition S.

Lemma 2. Let θ ∈ Θ and S ⊆ N with S 6= ∅. Then

cθ(S) = γ · gS = γ · lim
t→∞

VS
t (y)

t
for all y ∈ Y S.

Example 3. Consider the situation of Example 2. For coalition M = {1, 2} it holds that

limt→∞ V{1,2}
t (0)/t = 28

45 . This value can be interpreted as the minimal long-run average costs

per time epoch of the corresponding MDP. Multiplying this value with the uniformization rate

γ(= 41
2) yields 126

45 (= 24
5 = cθ({1, 2})), which can be recognised as the minimal long-run

average costs per time unit of coalition M. �
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4 Core non-emptiness of stratified pooling games

In the remainder of this article, we focus on core non-emptiness for stratified pooling

games. In the literature, there exists a well-known sufficient and necessary condition

for core non-emptiness due to Bondareva [3] and Shapley [19]. They formulate this

(sufficient and necessary) condition in terms of balanced maps. In order to describe

this condition, we need to introduce some definitions. Let N ⊆N be a finite player set.

We call a map κ : 2N\{∅} → [0, 1] a balanced map for N if

∑
S∈2N : i∈S

κS = 1 for all i ∈ N.

A collection B ⊆ 2N\{∅} is called balanced if there exists a balanced map κ for which

κS > 0 for all S ∈ B and κS = 0 otherwise. Moreover, a collection B ⊆ 2N\{∅} is

called minimal balanced if there exists no proper subcollection of B that is balanced as

well. An advantage of minimal balanced collections is that for every minimal balanced

collection B ⊆ 2N\{∅} there exists exactly one associated balanced map κ (Peleg and

Sudhölter [15]). For this balanced map it holds that κS ∈ Q for all S ∈ B (Norde

and Reijnierse [14]). A game (N, c) is called balanced if for every minimal balanced

collection B ⊆ 2N\{∅} with associated balanced map κ it holds that

∑
S∈B

κS · c(S) ≥ c(N).

Now, we are able to present a sufficient and necessary condition for core non-emptiness

due to Bondareva [3] and Shapley [19].

Theorem 2. A game (N, c) is balanced if and only if C (N, c) 6= ∅.

Let θ ∈ Θ and B ⊆ 2N\{∅} be a minimal balanced collection. We define α ∈ N as the

smallest integer for which κS · α ∈N for all S ∈ B and use bS = κS · α for all S ∈ B as a

shorthand notation. Note that for these new definitions, we suppress the dependency

on B of α, bS, and κS. So, in order to show balancedness for our stratified pooling game

(N, cθ), it suffices to check if for each B ⊆ 2N\{∅} it holds that

∑
S∈B

bS · cθ(S) ≥ α · cθ(N). (3)

In the remainder of this section, we prove balancedness for our game by showing that

(3) holds for each minimal balanced collection. This proof consists of several steps, and

to facilitate understanding of the steps we first informally summarize them:
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0. Definition of an MDP for each coalition S such that cθ(S) = γ · limt→∞ VS
t (y)/t,

where VS is the value function corresponding to the MDP (see Section 3.3).

1. Copy of each coalition S to obtain labeled coalitions (S, k) for k ∈ {1, . . . , bS} and

associated value function VS,k. Express the left-hand size of (3) in terms of VS,k.

2. Combination of the value functions VS,k for all labeled coalitions (S, k) into a

single value function VB. The combination of this new value function is semi-

cartesian: each individual value function VS,k is retained in VB along with all its

dynamics, while the transitions (due to demand arrivals or repair completions)

are coupled across the individual value functions.

3. Relaxation of the possible transition actions in VB to obtain V̂B. This latter value

function corresponds to a situation where demand of a labeled coalition can be

satisfied using inventory of any labeled coalition and where a repair completion of

a labeled coalition can be used to increase the inventory of any labeled coalition.

4. Anonimization of the state space belonging to V̂B to obtain an MDP that only

keeps track of the total inventory of all labeled coalitions together, with associated

value function Vα. In this MDP demands arrive in batches of size α, and each

repair completion simultaneously returns (at most) α parts to inventory.

5. Uncopy of value function Vα into α-times the value function VN, which is the

value function of the grand coalition.

We next discuss steps 1-5 in detail and present a conclusion which proves (3).

1. Copy. For each minimal balanced collection B ⊆ 2N\{∅}, we introduce another set

L that contains for each S ∈ B exactly bs labeled copies of coalition S.

Definition 1. Let θ ∈ Θ and B ⊆ 2N\{∅} be a minimal balanced collection. Then, we define

L =

{
(S, k) | S ∈ B, k ∈ {1, 2, . . . , bS}

}
.

Example 4. Let θ ∈ Θ with |N| = 4 and B = {{1}, {2, 3}, {2, 4}, {3, 4}} be a minimal

balanced collection with unique weights κ{1} = 1, κ{2,3} = κ{2,4} = κ{3,4} =
1
2 . Hence, α = 2,

and so L = {({1}, 1), ({1}, 2), ({2, 3}, 1), ({2, 4}, 1), ({3, 4}, 1)}.

The labeled copies will be called labeled coalitions. For each labeled coalition (S, k) ∈ L

we denote the value function by VS,k and the initial inventory level by IS,k. In

addition, we rewrite the labeled coalitional values (corresponding to a minimal

balanced collection) as stated in Lemma 2, i.e., as limits of value functions.
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Lemma 3. For every θ ∈ Θ it holds for any minimal balanced collection B ⊆ 2N\{∅} that

∑
S∈B

bS · cθ(S) = γ · lim
t→∞

1
t
· ∑

S∈B

bS

∑
k=1

VS,k
t (IS,k).

2. Combination. We show that for any minimal balanced collection B ⊆ 2N\{∅} we

can construct a combined value function (of some unspecified MDP) with a state space

that keeps track of the inventory level of every labeled coalition (S, k) ∈ L , an action

space that consists of all possible actions per labeled coalition (S, k) ∈ L given its

inventory level, and for which the related costs coincide with ∑S∈B ∑bS
k=1 VS,k

t (IS,k) for

all t ∈N∪ {0}. In order to do so, we first introduce a new state space.

Definition 2. Let θ ∈ Θ and B ⊆ 2N\{∅} be a minimal balanced collection. Then, we define

Y B =

{
(rz)z∈L

∣∣∣∣ rz ∈ {0, 1, . . . , Iz} ∀z ∈ L

}
.

Secondly, we will introduce a new action space.

Definition 3. Let θ ∈ Θ and B ⊆ 2N\{∅} be a minimal balanced collection. Then, for all

r ∈ Y B and all i ∈ N we define

A B
i,−(r) =

{
(lz)z∈L

∣∣∣∣ lz ∈ {0, min{1, rz}} ∀z ∈ L : i ∈ S

lz = 0 ∀z ∈ L : i 6∈ S

}

A B
i,+(r) =

{
(lz)z∈L

∣∣∣∣ lz = min{1, Iz − rz} ∀z ∈ L : i ∈ S

lz = 0 ∀z ∈ L : i 6∈ S

}
.

Subsequently, we introduce the new value function. We use that || · ||1 is the L1 norm.

Definition 4. Let θ ∈ Θ and B ⊆ 2N\{∅} be a minimal balanced collection. Then, for all

r ∈ Y B and all t ∈N∪ {0}, we define the value function as

VB
t+1(r) = ∑

i∈N

[
λ∗i min

l∈A B
i,−(r)

{
(α− ||l||1)di + VB

t (r− l)
}
+ µ∗i min

l∈A B
i,+(r)

{
VB

t (r + l)
}]

.

with VB
0 (r) = 0 for all r ∈ Y B.

The new value function VB can be interpreted in the following way. With probability

λ∗i there is a demand for all labeled coalitions (S, k) ∈ L for which i ∈ S. Each such

labeled coalition (S, k) has, except for the case with rS,k = 0, the possibility to accept

the single demand (lS,k = 1), and always the possibility to reject the single demand

(lS,k = 0). For all (other) labeled coalitions (S, k) ∈ L for which i 6∈ S it holds that

there is no demand arrival and so lS,k = 0. Based on these decisions, total costs equal
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(α− ||l||1)di and one transits to r− l. With probability µ∗i there is a repair completion

for each labeled coalition (S, k) ∈ L for which i ∈ S. For each labeled coalition

(S, k) ∈ L with i ∈ S and rS,k < IS,k one accepts the spare part (lz = 1). However, for

each labeled coalition (S, k) ∈ L with i ∈ S and rS,k = IS,k the spare part is rejected

(lS,k = 0) as inventory level IS,k has been reached2. For all (other) labeled coalitions

(S, k) ∈ L for which i 6∈ S it holds that there is no repair completion and so lS,k = 0.

Based on the decisions made, one transits to state r + l.

Example 5. Consider the situation of Example 3 and B = {{1, 2}, {1, 3}, {2, 3}}. Observe

that B is a minimal balanced collection with κ({1, 2}) = κ({1, 3}) = κ({2, 3}) = 1
2 . So,

α = 2 and L = {({1, 2}, 1), ({1, 3}, 1), ({2, 3}, 1)}. Then, we have a state space

Y B = {0, 1, 2}L .

Moreover, for r = (r({1,2},1), r({1,3},1), r({2,3},1)) = (1, 2, 0) ∈ Y B, we have an action space

A B
1,−((1, 2, 0)) = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0)}.

Note that the elements in this action space represent the possible actions that can be taken by all

possible labeled coalitions ({1, 2}, 1), ({1, 3}, 1), and ({2, 3}, 1) whenever there is a demand

for labeled coalition ({1, 2}, 1) and ({1, 3}, 1). As both labeled coalitions have at least one spare

part in stock, they can both accept this demand, one of them can except, or both can reject.

Similarly, for action space (0, 1, 1) ∈ Y B, we have

A B
1,−((0, 1, 1)) = {(0, 0, 0), (0, 1, 0)}.

The action space illustrates that the spare part of labeled coalition ({2, 3}, 1) cannot be used by

the labeled coalitions ({1, 2}, 1) and ({1, 3}, 1). �

Now, we are able to show for all time moments the equivalence between the costs of

the new value function and ∑S∈B ∑bS
k=1 VS,k

t (IS,k).

Lemma 4. Let θ ∈ Θ and B ⊆ 2N\{∅} be a minimal balanced collection. Then, for all

r ∈ Y B and all t ∈N+ ∪ {0} it holds that

∑
S∈B

bS

∑
k=1

VS,k
t (rS,k) = VB

t (r).

2A possible interpretation could be to see this repair completion in fact as a possible repair completion

where it is a repair completion if rS,k < IS,k and not if rS,k = IS,k.
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3. Relaxation. Note that the action space of VB is restricted. For instance, upon a

demand arrival of player i ∈ S, it is not possible to accept a single demand for labeled

coalition (S, k) ∈ L for which i ∈ S and rS,k = 0, while other labeled coalitions

(S, k) ∈ L for which i 6∈ S may still be able to accept them. A similar reasoning holds

for repair completion. It is not possible to accept a spare part for any labeled coalition

(S, k) ∈ L with i ∈ S for which rS,k = IS,k, while other not fully replenished labeled

coalitions may be able to accept. We introduce a value function that incorporates these

extended possibilities. So, we introduce a value function (related to some unspecified

MDP), that coincides with the value function of Definition 4, except for a relaxed action

space. In order to do so, we first need to introduce this relaxed action space.

Definition 5. Let θ ∈ Θ and B ⊆ 2N\{∅} be a minimal balanced collection. Then, for all

r ∈ Y B and all i ∈ N we define

Â B
i,− (r) =

{
(lz)z∈L

∣∣∣∣ lz ∈N∪ {0} ∀z ∈ L , ∑
z∈L

lz ≤ α, r− l ∈ Y B

}

Â B
i,+ (r) =

{
(lz)z∈L

∣∣∣∣ lz ∈N∪ {0} ∀z ∈ L , ∑
z∈L

lz ≤ α, r + l ∈ Y B

}

The following result is a direct consequence of relaxing the action space. The proof is

straightforward and for this reason omitted (rather than relegated to the appendix).

Lemma 5. Let θ ∈ Θ and B ⊆ 2N\{∅} be a minimal balanced collection. Then, for all

r ∈ Y B and all i ∈ N it holds that A B
i,−(r) ⊆ Â B

i,− (r) and A B
i,+(r) ⊆ Â B

i,+ (r).

Example 6. Consider the situation and minimal balanced collection of Example 5. Then

Â B
1,− ((1, 2, 0)) = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 2, 0)}.

Note that in comparison to action space Â B
1,− ((1, 2, 0)), we now have one additional action,

namely (0, 2, 0), which represents that demand for labeled coalitions ({1, 2}, 1) and ({1, 3}, 1)

is taken from the stock of labeled coalition ({1, 3}, 1) only. Similarly, we have

Â B
1,− ((0, 1, 1)) = {(0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1)}.

Note that in comparison to action space Â B
1,− ((0, 1, 1)), we now have two additional actions. �

Now, we present the value function with this relaxed action space.
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Definition 6. Let θ ∈ Θ and B ⊆ 2N\{∅} be a minimal balanced collection. For all r ∈ Y B

and all t ∈N∪ {0}, we define

V̂B
t+1(r) = ∑

i∈N

[
λ∗i min

l∈Â B
i,− (r)

{
(α− ||l||1)di + V̂B

t (r− l)
}
+ µ∗i min

l∈Â B
i,+ (r)

{
V̂B

t (r + l)
}]

.

with V̂B
0 (r) = 0 for all r ∈ Y B.

Incorporating a relaxed action space in the new value function leads to related costs

that are smaller than or equal to the original costs of the value function. The proof is

straightforward (by induction on t) and therefore omitted (in the appendix).

Lemma 6. Let θ ∈ Θ and B ⊆ 2N\{∅} be a minimal balanced collection. For all r ∈ Y B

and all t ∈N∪ {0} it holds that

VB
t (r) ≥ V̂B

t (r).

4. Anonimization. Note that the costs of V̂B
t are the same for all states r, r′ ∈ Y B for

which ||r||1 = ||r′||1 . As a consequence, the decisions made in these states exhibit a

similar equivalence. This implies that for every minimal balanced collection, one can

construct another value function with equal costs, in which the state space depends on

the total inventory of all labeled coalitions together only and the action space depends

on the total number of accepted (or rejected) demand for spare parts upon demand

arrival or repair completion only. Now, we introduce this value function (which is

related to some unspecified MDP for which the belongings and decisions of the labeled

coalitions are anonimized) and show cost-equivalence with the one of Definition 6.

Definition 7. Let θ ∈ Θ and B ⊆ 2N\{∅} be a minimal balanced collection. Then, for all

j ∈ {0, 1, . . . , α · IN} and all t ∈N∪ {0} we define

Vα
t+1(j) = ∑

i∈N

[
λ∗i min

l∈{0,..,min{α,j}}

{
(α− l)di + Vα

t (j− l)
}
+ µ∗i min

l∈{0,..,min{α,α·IN−j}}
Vα

t (j + l)
]

with Vα
0 (j) = 0 for all j ∈ {0, 1, . . . , α · IN}.

Lemma 7. Let θ ∈ Θ and B ⊆ 2N\{∅} be a minimal balanced collection. For all r ∈ Y B it

holds that

V̂B
t (r) = Vα

t (||r||1) for all t ∈N∪ {0}.

5. Uncopy. Now, we identify some interesting properties of Vα.
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Lemma 8. Let θ ∈ Θ and B ⊆ 2N\{∅} be a minimal balanced collection. For all t ∈N∪{0}
it holds that

(i) Vα
t (j) ≥ Vα

t (j + 1) for all j ∈ {0, 1, . . . , α · IN − 1};

(ii) Vα
t (j) + Vα

t (j + 2) ≥ 2 ·Vα
t (j + 1) for all j ∈ {0, 1, . . . , α · IN − 2};

(iii) Vα
t (k + j) + Vα

t (k + j + 2) = 2 ·Vα
t (k + j + 1) for all j ∈ {0, 1, . . . , α− 2}

and all k ∈ {0, α, 2α, . . . , (IN − 1)α}.

The first property states that the costs decrease in the total number of spare parts in

stock. As a direct consequence, it is optimal for the repair completion part of the value

function to choose an action that increases the state most. The second property states

that the marginal change in costs is increasing in the total number of spare parts in

stock, i.e., Vα is convex. By exploiting the first two properties, one can show that the

third property holds true. The third property implies that it is optimal for all states

that are multiples of α to choose the action that accepts all demand, i.e., α spare parts,

or nothing upon demand arrival. From this, we can conclude that the states of Vα that

are multiples of α depend on the states of Vα that are multiples of α only. This allows

us to uncopy value function Vα into α− times value function VN.

Lemma 9. Let θ ∈ Θ and B ⊆ 2N\{∅} be a minimal balanced collection. For all j ∈
{0, α, . . . , IN · α} and all t ∈N∪ {0} it holds that

Vα
t (j) = α ·VN

t

(
j
α

)
Conclusion. Now, we integrate the previous steps to demonstrate validity of (3).

Theorem 3. Stratified pooling games are balanced.

Proof : Let θ ∈ Θ and (N, cθ) be the associated stratified pooling game and B ⊆
2N\{∅} be a minimal balanced collection. In addition, let r̂ = (IS,k)(S,k)∈L . Then,

observe that

∑
S∈B

bS · cθ(S) = γ · lim
t→∞

1
t ∑

S∈B

bS

∑
k=1

VS,k
t (IS,k) ≥ γ · lim

t→∞

V̂B
t (r̂)

t
= γ · lim

t→∞

Vα
t (α · IN)

t

= γ · lim
t→∞

α · VN
t (IN)

t

= α · cθ(N).

The first equality holds by Lemma 3. The inequality holds by Lemma 4 and Lemma

6. The second equality holds by Lemma 7 and the fact that ∑(S,k)∈L IS,k = α · IN. The
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third equality holds by Lemma 9. The last equality holds by taking α ∈ N+ outside

the limit (which is allowed as it is a constant) and subsequently applying Lemma 2.

Finally, inequality (3) is satisfied and so stratified pooling games are balanced. �

Based on Theorem 2, which states that a game has a non-empty core if and only if it is

balanced, the next result follows immediately.

Corollary 1. Stratified pooling games have a non-empty core.

5 Conclusions

We studied an environment with several service providers that are located

geographically close together. These service providers keep spare parts in stock to

protect for downtime of their high-tech machines and face different downtime costs

per stock-out. Service providers can cooperate by forming a joint spare parts pool and

we studied the allocation of the joint costs to the individual service providers by

studying an associated cooperative game. In the extant literature, the joint spare parts

inventory is typically controlled by a suboptimal full-pooling policy. This may lead to

an empty core of the associated cooperative game. We showed possible emptiness of

the core under a full-pooling policy in our setting as well. The focus of the paper was

then on situations in which we allow service providers to apply an optimal policy. We

formulated the associated game, which we call a stratified pooling game, by defining

each coalitional value in terms of the minimal long-run average costs of an MDP. We

showed, via a 5-step proof, that the core of stratified pooling games is always

non-empty. These modelling and proof techniques may be more generically

applicable for operations research games where coalitional values correspond to the

minimal long-run average costs of MDPs as well.

For further research, we believe the following extensions are of interest. First, one can

extend the model, in line with Karsten et al. [6] and Schlicher et al. [17], by assuming

that the joint supplier has multiple parallel servers (instead of one single server in

which production rates are combined). Another possible extension is the one in which

coalitions optimize the number of spare parts to stock, rather than assuming that the

inventory per coalition is given. Under this extension, players face a trade off between

holding costs and downtime costs under an optimal pooling strategy. Finally, one

can extend the model by assuming that players are not located geographically close

together, but still want to collaborate (e.g., via lateral transshipments of spare parts).
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Appendix

Proof of Lemma 1

We distinguish between the case IS = 0 and IS > 0.

Case 1. IS = 0.

Let j = 0 ∈ Y S and t ∈N∪ {0}. Then

VS
t+1(j) = min

a∈A S(j)

CS(j, a) + ∑
y′∈Y S

p(y′|j, a) ·VS
t (y

′)


= CS(j, 0N) + ∑

y′∈Y S

p(y′|j, 0N) ·VS
t (y

′)

= ∑
i∈S

λ∗i · di + 1 ·VS
t (j)

= ∑
i∈S

λ∗i · di +

(
∑
i∈S

[λ∗i + µ∗i ] + 1−∑
i∈S

[λ∗i + µ∗i ]

)
·VS

t (j)

= ∑
i∈S

[
λ∗i · (di + VS

t (j)) + µ∗i VS
t (j)

]
+

(
1−∑

i∈S
[λ∗i + µ∗i ]

)
·VS

t (j)

= ∑
i∈S

[
λ∗i min

l∈{0,min{j,1}}

{
VS

t (j− l) + (1− l)di

}
+ µ∗i VS

t (min{j + 1, IS})
]

+

(
1−∑

i∈S
[λ∗i + µ∗i ]

)
·VS

t (j).

The first equality holds by definition. The second equality holds as action a = 0N is the

only allowed action. The third equality holds by the definition of CS(j, a) and the fact

that one can transit to the current state (j = 0) only. In the fourth equality, we add zero.

The fifth equality holds by some rewriting. The last equality holds as min{j, 1} = j = 0

and min{j + 1, IS} = IS = j = 0 as well.

Case 2. IS > 0.

We distinguish between the subcases j = 0, 0 < j < IS, and j = IS.

Case 2.a j = 0.

Let t ∈N∪ {0}. Then

VS
t+1(j) = min

a∈A S(j)

CS(j, a) + ∑
y′∈Y S

p(y′|j, a) ·VS
t (y

′)


= CS(j, 0N) + ∑

y′∈Y S

p(y′|j, 0N) ·VS
t (y

′)
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= ∑
i∈S

λ∗i · di +

(
1−∑

i∈S
µ∗i

)
·VS

t (j) + ∑
i∈S

µ∗i ·VS
t (j + 1)

= ∑
i∈S

λ∗i · di +

∑
i∈S

λ∗i + ∑
i∈N\S

λ∗i + ∑
i∈N\S

µ∗i

 ·VS
t (j) + ∑

i∈S
µ∗i ·VS

t (j + 1)

= ∑
i∈S

λ∗i · (di + VS
t (j)) + ∑

i∈S
µ∗i ·VS

t (j + 1) + ∑
i∈N\S

[λ∗i + µ∗i ] ·VS
t (j)

= ∑
i∈S

[
λ∗i min

l∈{0,min{j,1}}

{
VS

t (j− l) + (1− l)di

}
+ µ∗i VS

t (min{j + 1, IS})
]

+

(
1−∑

i∈S
[λ∗i + µ∗i ]

)
·VS

t (j).

The first equality holds by definition. The second equality holds as action a = 0N is

the only allowed action. In the third equality, we use the definition of CS(j, a) and the

fact that with probability 1−∑i∈S µ∗i we remain in the same state and with probability

∑i∈S µ∗i we transit to state j + 1. In the fourth equality, we use that

1 = ∑i∈N
[
λ∗i + µ∗i

]
= ∑i∈S λ∗i + ∑i∈N\S λ∗i + ∑i∈N µ∗i . The fifth equality holds by some

rewriting. The last equality holds as min{j, 1} = j = 0 and min{j + 1, IS} = j + 1 = 1.

Case 2.b 0 < j < IS.

Let j ∈ Y S\{0, IS} and t ∈N∪ {0}. Then

VS
t+1(j) = min

a∈A S(j)

CS(j, a) + ∑
y′∈Y S

p(y′|j, a) ·VS
t (y

′)


= min

a∈A S(j)

{
∑
i∈S

λ∗i (1− ai)di + ∑
i∈M

λ∗i aiVS
t (j− 1) +

(
1−∑

i∈S
[λ∗i ai + µ∗i ]

)
VS

t (j)

+ ∑
i∈M

µ∗i VS
t (j + 1)

}

= min
a∈A S(j)

{
∑
i∈S

[
λ∗i

(
(1− ai)(di + VS

t (j)) + aiVS
t (j− 1)

)
+ µ∗i VS

t (j + 1)
]

+

(
1−∑

i∈S
[λ∗i + µ∗i ]

)
VS

t (j)

}

= ∑
i∈S

[
λ∗i min

l∈{0,min{j,1}}

{
VS

t (j− l) + (1− l)di

}
+ µ∗i VS

t (min{j + 1, IS})
]

+

(
1−∑

i∈S
[λ∗i + µ∗i ]

)
·VS

t (j).

The first equality holds by definition. In the second equality, we use the definition of

CS(j, a), the fact that with probability ∑i∈S λ∗i ai we transit to state j− 1, with probability
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1 − ∑i∈S
[
λ∗i ai + µ∗i

]
we remain in the same state, and with probability ∑i∈S µ∗i we

transit to state j + 1. In the third equality, we did some rewriting and used ai =

ai − 1 + 1. The last equality holds as min{j, 1} = 1, min{j + 1, IS} = j + 1, and the fact

that a minimum of a sum of independent terms equals the sum of all these individual

terms evaluated at their minimum.

Case 2.c j = IS.

Let j = IS ∈ Y S and t ∈N∪ {0}. Then

VS
t+1(j) = min

a∈A S(j)

CS(j, a) + ∑
y′∈Y S

p(y′|j, a) ·VS
t (y

′)


= min

a∈A S(j)

{
∑
i∈S

λ∗i (1− ai)di + ∑
i∈S

λ∗i aiVM
t (j− 1) +

(
1−∑

i∈S
λ∗i ai

)
VS

t (j)

}

= min
a∈A S(j)

{
∑
i∈S

λ∗i (1− ai)di + ∑
i∈S

λ∗i aiVS
t (j− 1) +

(
∑
i∈S

[λ∗i (1− ai) + µ∗i ]

+ ∑
i∈N\S

[λ∗i + µ∗i ]

VS
t (j)


= min

a∈A S(j)

{
∑
i∈S

λ∗i

[
(1− ai)(di + VS

t (j)) + aiVS
t (j− 1) + µ∗i VS

t (j)
]
+

∑
i∈N\S

[λ∗i + µ∗i ]VS
t (j)


= ∑

i∈S

[
λ∗i min

l∈{0,min{j,1}}

{
VS

t (j− l) + (1− l)di

}
+ µ∗i VS

t (min{j + 1, IS})
]

+

(
1−∑

i∈S
[λ∗i + µ∗i ]

)
·VS

t (j).

The first equality holds by definition. In the second equality, we use the definition

of CS(j, a), the fact that with probability ∑i∈S λ∗i ai we transit to state j − 1, and with

probability 1−∑i∈S λ∗i ai we remain in the same state. In the third equality, we use that

1 = ∑i∈N
[
λ∗i + µ∗i

]
. The fourth equality holds by some rewriting. The last equality

holds as min{j, 1} = 1, min{j + 1, IS} = IS and the fact that a minimum of a sum

of independent terms equals the sum of all these individual terms evaluated at their

minimum. This concludes the proof. �

Proof of Lemma 2

The first equality holds by uniformization, which is allowed if transition rates are

bounded and the MDP is unichain (see Puterman [16, p.568]). Notice that interarrival
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times of demands as well as repair times are exponentially distributed with rates that

are bounded from above. In addition, for every stationary policy, the state where the

inventory level equals the base stock level is accessible from every state and so, the

transition probability matrix consists of a single recurrent class. Hence, the MDP is

unichain. With respect to the second equality, observe that state space Y S and action

space A S of the MDP are finite. In addition, under stationary policy

f = ( fi(y))y∈Y S,i∈S with fi(y) = 1 for all i ∈ S and all y > 0 and fi(0) = 0 for all i ∈ S,

every state y ∈ Y S is accessible from any state y′ ∈ Y S after (possibly) some arrivals

and some (one-by-one) repair completions. Hence, the related Markov chain is

irreducible. An irreducible Markov chain with finite state space is positive recurrent

(see e.g., Modica and Poggiolini [13]). Finally, observe that the long-run average costs

per time epoch under policy f are bounded (naturally) by ∑i∈S λ∗i · di and as a result

of Theorem 1, the second equality follows. This concludes the proof. �

Proof of Lemma 3

Let θ ∈ Θ and B ⊆ 2N\{∅} be a minimal balanced collection. It holds that

∑
S∈B

bS · cθ(S) = γ · ∑
S∈B

bS

∑
k=1

lim
t→∞

VS,k
t (IS,k)

t
= γ · lim

t→∞

1
t
· ∑

S∈B

bS

∑
k=1

VS,k
t (IS,k).

The first equality holds by exploiting all labeled coalitions, Lemma 2, and the fact that

IS,k ∈ Y S,k for all (S, k) ∈ L . The last equality holds as all limits are well-defined and

all sums are finite. This concludes the proof. �

Proof of Lemma 4

Proof : This proof is by induction. By definition of the value functions VS,k
0 (y) = 0

for all y ∈ Y S,k, and all S ∈ B and all k ∈ {1, 2, . . . , bS}. Similarly, VB
0 (r) = 0 for all

r ∈ R as well. Hence, ∑S∈B ∑bS
k=1 VS,k

0 (rS,k) = VB
0 (r) for all r ∈ R. Let t ∈N∪ {0} and

assume that ∑S∈B ∑bS
k=1 VS,k

t (rS,k) = VB
t (r) for all r ∈ R. Let r ∈ R. Now, observe that

∑
S∈B

bS

∑
k=1

VS,k
t+1(rS,k)

= ∑
S∈B

bS

∑
k=1

(
∑
i∈S

[
λ∗i min

l∈{0,min{1,rS,k}}

{
VS,k

t (rS,k − l) + (1− l)di

}
+µ∗i VS,k

t (min{rS,k + 1, IS,k})
]
+

(
1−∑

i∈S
[λ∗i + µ∗i ]

)
VS,k

t (y)

)
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= ∑
S∈B

bS

∑
k=1

(
∑
i∈S

[
λ∗i min

l∈{0,min{1,rS,k}}

{
VS,k

t (rS,k − l) + (1− l)di

}

+µ∗i VS,k
t (min{rS,k + 1, IS,k})

]
+ ∑

i∈N\S

[
λ∗i VS,k

t (rS,k) + µ∗i VS,k
t (rS,k)

]
= ∑

i∈N

[
λ∗i

(
∑

S∈B:i∈S

bS

∑
k=1

min
l∈{0,min{rS,k,1}}

{
VS,k

t (rS,k − l) + (1− l)di

}
+ ∑

S∈B:i 6∈S

bS

∑
k=1

VS,k
t (rS,k)

)

+ µ∗i

(
∑

S∈B:i∈S

bS

∑
k=1

VS,k
t (min{rS,k + 1, IS,k}) + ∑

S∈B:i 6∈S

bS

∑
k=1

VS,k
t (rS,k)

)]

= ∑
i∈N

[
λ∗i ·

(
min

l∈A B
i,−(r)

{
∑

S∈B:i∈S

bS

∑
k=1

VS,k
t (rS,k − lS,k) + ∑

S∈B:i 6∈S

bS

∑
k=1

VS,k
t (rS,k)

+(α− ||l||1)di

})
+ µ∗i ·

(
min

l∈A B
i,+(r)

{
VB

t (r + l)
})]

= ∑
i∈N

[
λ∗i ·

(
min

l∈A B
i,−(r)

{
VB

t (r− l) + (α− ||l||1)di

})
+ µ∗i ·

(
min

l∈A B
i,+(r)

{
VB

t (r + l)
})]

= VB
t+1(r).

The first equality holds by Lemma 1. The second equality holds as 1 − ∑i∈S[λ
∗
i +

µ∗i ] = ∑i∈N[λ
∗
i + µ∗i ]− ∑i∈S[λ

∗
i + µ∗i ] = ∑i∈N\S[λ

∗
i + µ∗i ]. The third equality holds by

conditioning on λ∗i and µ∗i for all i ∈ N. The fourth equality holds as the sum of

minima can be rewritten as one minimum and A B
i,+ and A B

i,−are defined such that the

decisions made for all minima fit. Note that lS,k = 0 if i 6∈ S. The fifth equality holds

by the induction hypothesis. The last equality holds by Definition 4. �

Proof of Lemma 7

Proof : This proof is by induction. By definition of the value functions V̂B
0 (r) = 0 for

all r ∈ R and Vα
0 (||r||1) = 0 for all r ∈ R. Hence, V̂B

0 (r) = Vα
0 (||r||1) for all r ∈ R.

Let t ∈ N ∪ {0} and assume that V̂B
t (r) = Vα

t (||r||1) for all r ∈ R. Let r ∈ R. Now,

observe that

V̂B
t+1(r) = ∑

i∈N
λ∗i min

l∈Â B
i,− (r)

{
(α− ||l||1)di + V̂B

t (r− l)
}
+ ∑

i∈N
µ∗i min

l∈Â B
i,+ (r)

V̂B
t (r + l)

= ∑
i∈N

λ∗i min
z∈{0,1,...,min{α,||r||1}}

{
min

l∈Â B
i,− (r):||l||1=z

{
(α− z)di + V̂B

t (r− l)
}}

+ ∑
i∈N

µ∗i min
z∈{0,1,...,min{α,α·IN−||r||1}}

{
min

l∈Â B
i,+ (r):||l||1=z

V̂B
t (r + l)

}
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= ∑
i∈N

λ∗i min
z∈{0,1,...,min{α,||r||1}}

{(α− z)di + Vα
t (||r||1 − z)}

+ ∑
i∈N

µ∗i min
z∈{0,1,...,min{α,α·IN−||r||1}}

{
Vα

t (||r||1 + z)
}

=Vα
t+1(||r||1).

The first equality holds by Definition 6. The second equality holds by rewriting the

minimum as a two-step minimization. The third equality holds by the induction

hypothesis. The last equality holds by Definition 7. This concludes the proof. �

Proof of Lemma 8

Proof : This proof is by induction. (i) By definition of the value functions Vα
0 (j) = 0

for all j ∈ {0, 1, . . . , α · IN}. Hence, Vα
0 (j) ≥ Vα

0 (j + 1) for all j ∈ {0, 1, . . . , α · IN − 1}.
Let t ∈N∪ {0} and assume that Vα

t (j) ≥ Vα
t (j + 1) for all j ∈ {0, 1, . . . , α · IN − 1}. Let

j ∈ {0, 1, . . . , α · IN − 1}. Now, observe that

Vα
t+1(j) = ∑

i∈N
λ∗i min

l∈{0,1,...,min{α,j}}

{
(α− l)di + Vα

t (j− l)
}

+ ∑
i∈N

µ∗i min
l∈{0,1,...,min{α,α·IN−j}}

{
Vα

t (j + l)
}

≥ ∑
i∈N

λ∗i min
l∈{0,1,...,min{α,j+1}}

{
(α− l)di + Vα

t (j + 1− l)
}

+ ∑
i∈N

µ∗i min
l∈{0,1,...,min{α,α·IN−j}}

{
Vα

t (j + l)
}

≥ ∑
i∈N

λ∗i min
l∈{0,1,...,min{α,j+1}}

{
(α− l)di + Vα

t (j + 1− l)
}

+ ∑
i∈N

µ∗i Vα
t (min{j + α + 1, α · IN})

≥ ∑
i∈N

λ∗i min
l∈{0,1,...,min{α,j+1}}

{
(α− l)di + Vα

t (j + 1− l)
}

+ ∑
i∈N

µ∗i min
l∈{0,1,...,min{α,α·IN−(j+1)}}

{
Vα

t (j + 1 + l)
}

.

=Vα
t+1(j + 1).

The first inequality holds as Vα
t (j− l) ≥ Vα

t (j+ 1− l) for all l ∈ {0, 1, . . . , min{α, j}} (by

the induction hypothesis) and the fact that adding a (possible) term to a set from which

its minimum is selected will not increase the minimum. The second inequality holds

as minl∈{0,1,...,min{α,α·IN−j}}
{

Vα
t (j+ l)

}
≥ Vα

t (min{j+ α, α · IN}) ≥ Vα
t (min{j+ 1+ α, α ·

IN}). Note that the inequalities are a direct consequence of the induction hypothesis,
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namely Vα
t (j) ≥ Vα

t (j + 1) for all j ∈ {0, 1, . . . , α · IN − 1}. The third inequality holds as

adding (possible) terms to a set from which its minimum is selected will not increase

the minimum.

(ii) First, the value function will be rewritten. From (i) of Lemma 8 it follows for all

j ∈ {0, 1, . . . , α · IN} and all t ∈N∪ {0} that

Vα
t+1(j) = ∑

i∈N
λ∗i min

l∈{0,1,...,min{α,j}}

{
(α− l)di + Vα

t (j− l)
}
+ ∑

i∈N
µ∗i Vα

t (min{j + α, α · IN})

= ∑
i∈N

λ∗i

[
min

l∈{0,1,...,min{α,j}}

{
(j− l)di + Vα

t (j− l)
}
+ (α− j)di

]
+ ∑

i∈N
µ∗i Vα

t (min{j + α, α · IN})

= ∑
i∈N

λ∗i

[
min

l∈{max{0,j−α},...,j}

{
ldi + Vα

t (l)
}
+ (α− j)di

]
+ ∑

i∈N
µ∗i Vα

t (min{j + α, α · IN}),

where the second equality holds as (a− l)di = (α− j)di + (j− l)di. The third equality

holds by substituting j− l into a single variable.

In addition, we define for all j ∈ {0, 1, . . . , α · IN} and all t ∈N∪ {0}

V
α1
t (j) = ∑

i∈N
λ∗i

[
min

l∈{max{0,j−α},...,j}

{
ldi + Vα

t (l)
}
+ (α− j)di

]
V

α2
t (j) = ∑

i∈N
µ∗i Vα

t (min{j + α, α · IN})

Note that Vα
t (j) = V

α1
t (j) + V

α2
t (j) for all j ∈ {0, 1, . . . , α · IN} and all t ∈N∪ {0}.

Now, we will prove by induction that Vα
t (j) + Vα

t (j + 2) ≥ 2 · Vα
t (j + 1) for all j ∈

{0, 1, . . . , α · IN − 2} and all t ∈ N ∪ {0}. By definition of the value functions Vα
0 (j) =

0 for all j ∈ {0, 1, . . . , α · IN}. Hence, Vα
0 (j) + Vα

0 (j + 2) ≥ 2 · Vα
0 (j + 1) for all j ∈

{0, 1, . . . , α · IN − 2}. Let t ∈N∪ {0} and assume that Vα
t (j) + Vα

t (j + 2) ≥ 2 ·Vα
t (j + 1)

for all j ∈ {0, 1, . . . , α · IN − 2}.

We first focus on Vα2
t (j) and thereafter focus on Vα1

t (j).

Let j ∈ {0, 1, . . . , α · (IN − 1)− 2}. Now, observe that
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V
α2
t+1(j) + V

α2
t+1(j + 2) = ∑

i∈N
µ∗i Vα

t (min{j + α, α · IN})

+ ∑
i∈N

µ∗i Vα
t (min{j + 2 + α, α · IN})

= ∑
i∈N

µ∗i Vα
t (j + α) + ∑

i∈N
µ∗i Vα

t (j + 2 + α)

= ∑
i∈N

µ∗i (V
α
t (j + α) + Vα

t (j + 2 + α))

≥ 2 ∑
i∈N

µ∗i Vα
t (j + 1 + α)

= 2 ∑
i∈N

µ∗i Vα
t (min{j + 1 + α, α · IN})

= 2V
α2
t+1(j + 1),

where the inequality holds by the induction hypothesis.

Let j ∈ {α · (IN − 1)− 1, α · (IN − 1), . . . , α · IN − 2}. Now, observe that

V
α2
t+1(j) + V

α2
t+1(j + 2) = ∑

i∈N
µ∗i Vα

t (min{j + α, α · IN})

+ ∑
i∈N

µ∗i Vα
t (min{j + 2 + α, α · IN})

≥ ∑
i∈N

µ∗i Vα
t (α · IN) + ∑

i∈N
µ∗i Vα

t (α · IN)

= 2 ∑
i∈N

µ∗i Vα
t (α · IN)

= 2 ∑
i∈N

µ∗i Vα
t (min{j + 1 + α, α · IN})

= 2V
α2
t+1(j + 1),

where the inequality holds by (i). Hence, for all j ∈ {0, 1, . . . , α · IN − 2} it holds that

V
α2
t+1(j) + V

α2
t+1(j + 2) ≥ 2V

α2
t+1(j + 1).

Let j ∈ {α, α + 1, . . . , α · IN − 2}. Now, observe that

V
α1
t+1(j) + V

α1
t+1(j + 2)

= ∑
i∈N

λ∗i min
l∈{max{0,j−α},...,j}

{
ldi + Vα

t (l)
}
+ ∑

i∈N
λ∗i min

l∈{max{0,j+2−α},...,j+2}

{
ldi + Vα

t (l)
}

= ∑
i∈N

λ∗i min
l1∈{j−α,...,j}

l2∈{j+2−α,...,j+2}

{
(l1 + l2)di + Vα

t (l1) + Vα
t (l2)

}
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≥ ∑
i∈N

λ∗i min
[
{(2l3 + 1)di + Vα

t (l3) + Vα
t (l3 + 1)|l3 = j + 1− α, . . . , j}

∪ {2 (Vα
t (l3) + l3di) |l3 = j + 1− α, . . . , j + 1}

]
= 2 ∑

i∈N
λ∗i min

l3∈{j+1−α,j+2−α,...,j+1}
{Vα

t (l3) + l3di}
}

= 2 ∑
i∈N

λ∗i min
l3∈{max{0,j+1−α},...,j+1}

{Vα
t (l3) + l3di}

}
.

= 2V
α1
t+1(j + 1).

The inequality holds as for any l1, l2 ∈ {0, 1, . . . , α · IN − 2} with l1 ≤ l2 it holds that

Vα
t (l1) + Vα

t (l2) ≥ Vα
t (b(l1 + l2)/2c) + Vα

t (d(l1 + l2)/2e) based on the induction

hypothesis. This implies that for any l1, l2 ∈ {0, 1, . . . , α · IN − 2} with l1 + l2 odd, it

follows that (l1 + l2)di + Vα
t (l1) + Vα

t (l2) ≥ (2l3 + 1)di + Vα
t (l3) + Vα

t (l3 + 1) where

l3 = b(l1 + l2)/2c. For any l1, l2 ∈ {0, 1, . . . , α · IN − 2} with l1 + l2 even, it follows that

(l1 + l2)di + Vα
t (l1) + Vα

t (l2) ≥ 2l3di + 2Vα
t (l3) with l3 = (l1 + l2)/2. The third equality

holds as min{2a, a + b, 2b} = min{2a, 2b} for any a, b ∈ R. The last but one equality

holds as j ≥ α.

Let j ∈ {0, 1, . . . , α− 1}. Now, observe that

V
α1
t+1(j) + V

α1
t+1(j + 2)

= ∑
i∈N

λ∗i min
l∈{max{0,j−α},...,j}

{
ldi + Vα

t (l)
}
+ ∑

i∈N
λ∗i min

l∈{max{0,j+2−α},...,j+2}

{
ldi + Vα

t (l)
}

≥ ∑
i∈N

λ∗i min
l1∈{0,...,j}

l2∈{0,...,j+2}

{
(l1 + l2)di + Vα

t (l1) + Vα
t (l2)

}

≥ ∑
i∈N

λ∗i min
[
{(2l3 + 1)di + Vα

t (l3) + Vα
t (l3 + 1)|l3 = 0, . . . , j}

∪ {2 (Vα
t (l3) + l3di) |l3 = 0, . . . , j + 1}

]

= 2 ∑
i∈N

λ∗i min
l3∈{0,1,...,j+1}

{Vα
t (l3) + l3di}

}
= 2 ∑

i∈N
λ∗i min

l3∈{max{0,j+1−α},...,j+1}
{Vα

t (l3) + l3di}
}

= 2V
α1
t+1(j + 1).

The first inequality holds as adding a (possible) term to a set from which its minimum

is selected will not increase the minimum. The arguments of the other (in)equalities are
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similar to the ones of case j ∈ {α, α+ 1, . . . , α · IN− 2}. So, for all j ∈ {0, 1, . . . , α · IN− 2}
it holds that V

α1
t+1(j) + V

α1
t+1(j + 2) ≥ 2V

α1
t+1(j + 1).

We conclude, for all j ∈ {0, 1, . . . , α · IN − 2}, it holds that

Vα
t+1(j) + Vα

t+1(j + 2) = V
α1
t+1(j) + V

α2
t+1(j) + V

α1
t+1(j + 2) + V

α2
t+1(j + 2)

≥ 2V
α1
t+1(j + 1) + 2V

α2
t+1(j + 1)

= 2Vα
t+1(j + 1).

(iii) By definition of the value functions Vα
0 (j) = 0 for all j ∈ {0, 1, . . . , α · IN}. Hence,

Vα
0 (k + j) + Vα

0 (k + j + 2) = 2 · Vα
0 (k + j + 1) for all j ∈ {0, 1, . . . , α − 2} and all k ∈

{0, α, 2α, . . . , (IN − 1)α}. Let t ∈ N ∪ {0} and assume that Vα
t (k + j) + Vα

t (k + j + 2) =

2 ·Vα
t (k + j + 1) for all j ∈ {0, 1, . . . , α− 2} and all k ∈ {0, α, 2α, . . . , (IN − 1)α}.

First, observe that function Vα
t (j) + j · di is convex in j for all i ∈ N as Vα

t (·) is convex by

(ii) and j · di is linear. By our induction hypothesis, it holds that Vα
t (k + j) +Vα

t (k + j +

2) = 2 ·Vα
t (k+ j+ 1) for all j ∈ {0, 1, . . . , α− 2} and all k ∈ {0, α, 2α . . . , (IN− 1)α}. As a

consequence, it holds as well that Vα
t (k + j) + (k + j)di +Vα

t (k + j + 2) + (k + j + 2)di =

2 ·Vα
t (k + j + 1) + 2 · (k + j + 1)di for all j ∈ {0, 1, . . . , α− 2}, all k ∈ {0, α, 2α . . . , α(IN −

1)} and all i ∈ N. So, there exists an h ∈ {0, α, 2α, . . . , . . . , INα} for which it holds

that Vα
t (h) + h · di ≤ Vα

t (j) + j · di for all j ∈ {0, 1, . . . , α · IN} and all i ∈ N. Let

h ∈ {0, α, . . . , IN · α}. Then, for all k ∈ {0, α, . . . , h− α} and all j ∈ {0, 1, . . . , α} it holds

that

∑
i∈N

λ∗i

[
min

l∈{min{0,k+j−α},...,k+j}

{
ldi + Vα

t (l)
}
+ (α− (k + j))di

]
= ∑

i∈N
λ∗i

[
(k + j)di + Vα

t (k + j) + (α− (k + j))di

]
= ∑

i∈N
λ∗i

[
Vα

t (k + j) + α · di

]
.

(4)

For k = h and all j ∈ {0, 1, . . . , α} it holds that

∑
i∈N

λ∗i

[
min

l∈{min{0,k+j−α},...,k+j}

{
ldi + Vα

t (l)
}
+ (α− (k + j))di

]
= ∑

i∈N
λ∗i

[
k · di + Vα

t (k) + (α− (k + j))di

]
= ∑

i∈N
λ∗i

[
Vα

t (k) + (α− j) · di

]
.

(5)
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For all k ∈ {h + α, h + 2 · α, . . . , (IN − 1) · α} and all j ∈ {0, 1, . . . , α} it holds that

∑
i∈N

λ∗i

[
min

l∈{min{0,k+j−α},...,k+j}

{
ldi + Vα

t (l)
}
+ (α− (k + j))di

]
= ∑

i∈N
λ∗i

[
(k + j− α)di + Vα

t (k + j− α) + (α− (k + j))di

]
= ∑

i∈N
λ∗i

[
Vα

t (k + j− α)

]
.

(6)

In addition, for all k ∈ {0, α, . . . (IN − 2) · α} and all j ∈ {0, 1, . . . , α− 2} it holds that

∑
i∈N

µ∗i Vα
t (min{k + j + α, α · IN}) + ∑

i∈N
µ∗i Vα

t (min{k + j + 2 + α, α · IN})

= ∑
i∈N

µ∗i Vα
t (k + j + α) + ∑

i∈N
µ∗i Vα

t (k + j + 2 + α)

= 2 ∑
i∈N

µ∗i Vα
t (k + j + 1 + α)

= 2 ∑
i∈N

µ∗i Vα
t (min{k + j + 1 + α, α · IN})

Moreover, for k = (IN − 1) · α and all j ∈ {0, 1, . . . , α− 2} it holds that

∑
i∈N

µ∗i Vα
t (min{k + j + α, α · IN}) + ∑

i∈N
µ∗i Vα

t (min{k + j + 2 + α, α · IN})

= ∑
i∈N

µ∗i Vα
t (α · IN) + ∑

i∈N
µ∗i Vα

t (α · IN)

= 2 ∑
i∈N

µ∗i Vα
t (α · IN)

= 2 ∑
i∈N

µ∗i Vα
t (min{k + j + 1, α · IN})

Hence, for all k ∈ {0, α, . . . , (IN − 1) · α} and all j ∈ {0, 1, . . . , α− 2} it holds that

∑
i∈N

µ∗i Vα
t (min{k + j + α, α · IN}) + ∑

i∈N
µ∗i Vα

t (min{k + j + 2 + α, α · IN})

= 2 ∑
i∈N

µ∗i Vα
t (min{k + j + 1, α · IN}).

(7)

For all k ∈ {0, 1, . . . , h− α} and all j ∈ {0, 1, . . . , α− 2} it holds that

Vα
t+1(k + j) + Vα

t+1(k + j + 2)

= ∑
i∈N

λ∗i

[
Vα

t (k + j) + α · di

]
+ ∑

i∈N
µ∗i Vα

t (min{k + j + α, α · IN})

+ ∑
i∈N

λ∗i

[
Vα

t (k + j + 2) + α · di

]
+ ∑

i∈N
µ∗i Vα

t (min{k + j + 2 + α, α · IN})
)

=2 ∑
i∈N

λ∗i

[
Vα

t (k + j + 1) + α · di

]
+ ∑

i∈N
2µ∗i Vα

t (min{k + j + 1 + α, α · IN})

=2Vα
t+1(k + j + 1).
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The first equality holds by (4). The second equality holds by the induction hypothesis

and (7).

For k = h and all j ∈ {0, 1, . . . , α− 2} it holds that

Vα
t+1(k + j) + Vα

t+1(k + j + 2)

= ∑
i∈N

λ∗i

[
Vα

t (k) + (α− j) · di

]
+ ∑

i∈N
µ∗i Vα

t (min{k + j + α, α · IN})

+ ∑
i∈N

λ∗i

[
Vα

t (k) + (α− (j + 2)) · di

]
+ ∑

i∈N
µ∗i Vα

t (min{k + j + 2 + α, α · IN})

=2 ∑
i∈N

λ∗i

[
Vα

t (k) + (α− (j + 1)) · di

]
+ ∑

i∈N
2µ∗i Vα

t (min{k + j + 1 + α, α · IN})

=2Vα
t+1(k + j + 1).

The first equality holds by (5). The second equality holds by the induction hypothesis

and (7).

For all k ∈ {h + α, h + 2 · α, . . . , (IN − 1) · α} and all j ∈ {0, 1, . . . , α− 2} it holds that

Vα
t+1(k + j) + Vα

t+1(k + j + 2)

= ∑
i∈N

λ∗i

[
Vα

t (k + j− α)

]
+ ∑

i∈N
µ∗i Vα

t (min{k + j + α, α · IN})

+ ∑
i∈N

λ∗i

[
Vα

t (k + j + 2− α)

]
+ ∑

i∈N
µ∗i Vα

t (min{k + j + 2 + α, α · IN})

=2 ∑
i∈N

λ∗i

[
Vα

t (k + j + 1− α)

]
+ ∑

i∈N
2µ∗i Vα

t (min{k + j + 1 + α, α · IN})

=2Vα
t+1(k + j + 1).

The first equality holds by (6). The second equality holds by the induction hypothesis

and (7). This concludes the proof. �

Proof of Lemma 9

Proof : Based on (i) and (iii) of Lemma 8, it follows directly that for all j ∈ {0, α, . . . , α ·
IN} and all t ∈N∪ {0} it holds that

Vα
t+1(j) = ∑

i∈N

[
λ∗i min

l∈{0,min{j,α}}
{Vα

t (j− l) + (α− l)di}
]
+ ∑

i∈N
µ∗i Vα

t (min{j + α, α · IN})

By definition of the value functions Vα
0 (j) = 0 for all j ∈ {0, α, . . . , IN · α} and VN

0 (j) = 0

for all j ∈ {0, 1, . . . , IN}. Hence, Vα
0 (j) = α · VN

0

(
j
α

)
for all j ∈ {0, α, . . . , IN · α}. Let

t ∈N∪ {0} and assume that Vα
t (j) = α ·VN

t

(
j
α

)
for all j ∈ {0, α, . . . , IN · α}.
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Let j ∈ {0, α, . . . , IN · α}. Then, observe that

Vα
t+1(j) =

(
∑
i∈N

[
λ∗i min

l∈{0,min{j,α}}
{Vα

t (j− l) + (α− l)di}
]
+ ∑

i∈N
µ∗i Vα

t (min{j + α, α · IN}
)

=

(
∑
i∈N

[
λ∗i min

l∈{0,min{j,α}}

{
α ·VN

t

(
j− l

α

)
+ (α− l)di

}]

+ ∑
i∈N

µ∗i Vα
t (min{j + α, α · IN})

)

=

(
∑
i∈N

[
λ∗i min

z∈{0,min{ j
α ,1}}

{
α ·VN

t

(
j
α
− z
)
+ α · (1− z)di

}]

+ ∑
i∈N

µ∗i Vα
t (min{j + α, α · IN}

)

=

(
∑
i∈N

[
λ∗i min

z∈{0,min{ j
α ,1}}

{
α ·VN

t

(
j
α
− z
)
+ α · (1− z)di

}]

+ ∑
i∈N

α · µ∗i VN
t (min{ j

α
+ 1, IN}

)

= α ·
(

∑
i∈N

[
λ∗i min

z∈{0,min{ j
α ,1}}

{
VN

t

(
j
α
− z
)
+ (1− z)di

}]

+ ∑
i∈N

µ∗i VN
t (min{ j

α
+ 1, IN}

)

= α ·VN
t+1

(
j
α

)
.

The first equality holds by definition. The second equality holds by the induction

hypothesis. The third equality holds by introducing a new variable z = l/α. The

fourth equality holds by the induction hypothesis (again). The fifth equality holds as α

can be taken outside the summations. The last equality holds by Lemma 1. �
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