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Chapter 1

Introduction

“A little neglect may breed great mischief...

for want of a nail the shoe was lost

for want of a shoe the horse was lost

for want of a horse the rider was lost.”

Benjamin Franklin

The availability of capital goods is crucial to keep the primary processes of their owners/users

up and running. Consider, aircraft, trains, wafer-steppers, and MRI scanners as examples. The

inconvenience of trains and/or aircraft not running when needed (and planned) is a great in-

convenience to travellers, but also a significant loss of revenue for airlines and railway operators.

Wafer-steppers are used in the bottleneck production step of semi-conductor manufacturing. When

a wafer-stepper is down, it causes the standstill of an entire semi-conductor factory. For the case

of ASML wafer-steppers, these costs are in the order of magnitude of 100000 Euro per hour. The

unavailibility of MRI-scanners is perhaps the most costly as it can lead to the loss of human

life under some circumstances. All these examples illustrate that keeping capital assets up and

running is of critical importance. Unfortunately, keeping capital assets up and running is also a

costly business.

The costs of maintenance and unavailability of a capital asset over its lifetime (typically one to

several decades) is a multiple of the acquisition price. Öner et al. (2007) estimate that these costs

are 3 to 4 times the acquisition price for a specific engineer to order system. Van Dongen (2011)

give several other examples where the maintenance costs alone are a multiple of the acquisition

price as shown in Figure 1.1. Maintenance (including spare parts) and (unplanned) down-time of

capital goods is one of the main culprits in these cost figures. In fact, in 2003 spare part sales

5
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Figure 1.1: Acquisition costs versus maintenance costs over the lifetime for several assets

and services (mostly maintenance) accounted for 8% of the gross domestic product in the United

States (AberdeenGroup, 2003). More recently, US bancorp estimated that the yearly expenditure

in the US on spare parts amounts to 700 billion dollars which is 8% of the US gross domestic

product (Jasper, 2006).

In these lecture notes, we describe several models to optimize maintenance operations, so let

us first briefly consider maintenance operations. Different from regular production operations,

maintenance operations are not instigated by demand from an outside customer, but by the need

for maintenance of equipment. To perform maintenance, typically several resources are needed,

the most important of which are:

• a specialist, mechanic, engineer or other trained professional

• tools and equipment

• spare parts.

In §1.1, we discuss different maintenance strategies and how they instigate the need for mainte-

nance operations (and therefore also the resources mentioned above). The planning difficulties

that arise in maintenance operations are discussed in §1.2.
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Figure 1.2: Maintenance strategies for components

1.1. Maintenance strategies

For the purpose of describing maintenance operations, it is convenient to think of equipment as

a collection of interrelated components. Maintenance operations consist largely in replacing parts

of equipment. Maintenance strategies determine when parts or equipment need to be replaced or

maintained. Throughout this subsection, we focus on the decision to maintain/replace a compo-

nent, but our discussion also applies to the decision to maintain/replace equipment. Figure 1.21

gives an overview of maintenance strategies. In this subsection, we follow Figure 1.2 in discussing

different maintenance strategies.

Modificative maintenance concerns interchanging a part with a technically more advanced

part in order to make the equipment perform better2. This form of maintenance is usually project

1Figure 1.2 was inspired by Figure 4.1 of Coetzee (1997), but has been significantly altered by the author.
2Sometimes maintenance is defined as any action that restores equipment to some previous state. Under this

definition, modificative maintenance is an oxymoron.
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based and non-recurring. The maintenance strategies that occur most often are preventive and

breakdown corrective maintenance. Under a breakdown corrective maintenance strategy, a part

is not replaced until it has failed, while under a preventive maintenance strategy, the aim is to

replace parts before failure occurs. (Off course, this aim may not always be achieved: A part can

break down before its planned preventive replacement occurs.) Breakdown corrective maintenance

is an attractive option for components that do not wear, such as electronics. For parts that do

wear, it can be beneficial to follow a preventive maintenance strategy.

Preventive maintenance strategies can be further divided into usage and condition based main-

tenance. Under usage based maintenance, the total usage of a part is measured and maintenance

is conducted when a certain threshold level has been reached. The usage of parts can be mea-

sured in many ways depending on the nature of the equipment. Time in the field is perhaps the

most common mean to measure usage. In these cases, usage based maintenance is also called age

based maintenance. For vehicles (e.g., rolling stock), mileage is a common measure of usage. The

number of on-off cycles is a measure of usage for equipment that is mainly loaded at the end or

beginning of on-off cycles. For example, the number of landings is a measure of usage for the

landing gear of an aircraft. Since the usage of equipment is usually scheduled, the moment that

maintenance is performed can also be scheduled. If there is a large set-up cost associated with

maintenance, it can be beneficial to interchange several parts simultaneously (Block replacement

and/or overhaul). Otherwise, maintenance can be performed on a single component (Component

replacement and/or overhaul).

In condition based maintenance, the actual condition of a part is gauged and maintenance

is conducted based on this. The condition of a part can be measured either periodically during

inspections (Periodic inspections) or continuously through a sensor (Condition monitoring). How

the condition of equipment is measured depends on the nature of equipment. Below are some

examples of how the condition of equipment can be measured:

• The condition of ball-bearings can be measured via the amplitude of vibrations around the

bearing (Elwany and Gebraeel, 2008).

• The condition of a metal part can be determined by visually inspecting the number and

length of cracks.

• For metal systems with moving parts, the concentration of ferrous parts in the lubrication

fluid is measured as an indication of the wear and need for lubrication.

• The condition of a car engine is monitored continuously while driving by the engine-oil

temperature gauge.
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The need for maintenance can be ascertained periodically during an inspection or at any time in

case of condition monitoring.

Which types of maintenance are prevalent for a given component depend very much on the

technical nature of the equipment involved. Breakdown corrective maintenance is prevalent for

electronic components that can be found in most high-tech assets. For aircraft, rolling stock and

other heavy machinery with moving parts, the prevalent maintenance strategies are preventive

(both usage and condition based).

1.2. Uncertainty in maintenance operations

Maintenance operations are subject to considerable uncertainty. For a particular maintenance

action there can be uncertainty both with respect to its timing (When will we perform a mainte-

nance action?) and content (What maintenance will we do during a maintenance action?). The

different maintenance strategies discussed in the previous subsection are organized according to

these two uncertainty dimensions in Table 1.13

Table 1.1: Maintenance strategies organized by timing and content uncertainty.

Timing of maintenance action

known unknown

C
on

ten
t

known
Usage based or Condition based maintenance

modificative maintenance (Condition monitoring)

unknown
Condition based maintenance Breakdown corrective

(Periodic inspections) maintenance

Usage based and modificative maintenance can be planned for ahead of time, whereas break-

down corrective maintenance cannot be planned for at all. As a consequence of this, the resources

needed for usage based and modificative maintenance can be utilized more fully than resources

needed for breakdown corrective maintenance.

Condition based maintenance is a hybrid form, in which some but not all uncertainty is taken

away relative to breakdown corrective maintenance. Periodic inspections can be planned, and if

they lead to maintenance, you know when the maintenance needs to be conducted (right after the

3Table 1.1 has been inspired by the maintenance box of Stoneham (1998) but has been altered significantly by

the author.
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inspection). However, the content of the maintenance depends on what is found during the inspec-

tion. Under condition monitoring, sensors provide realtime information about the degradation of

equipment. The parts that need replacement can then be inferred from the sensor signal. How-

ever, degradation usually remains an uncertain process, so that the exact time that maintenance

is needed remains unknown. Furthermore, there may be a time lapse between the observation

of a signal and the opportunity to do maintenance. For vehicles (rolling stock, aircraft) we may

need to wait until the vehicle is close to a maintenance depot. On the other hand, for production

equipment or a windfarm at sea, we may need to wait until their operation can be stopped.

Remark 1.1. Sometimes the distinction between preventive and corrective maintenance is in-

terpreted as being synonymous to planned and unplanned maintenance. This oversimplification

only captures the upper left and lower right boxes of Table 1.1. Condition based maintenance is

a hybrid form between planned and unplanned maintenance that deserves separate attention. �

1.3. Structure of these lecture notes

The lecture notes are organized as follows. In §2, we introduce/review some elementary results

from probability theory, reliability theory, and renewal processes. Readers familiar with this

background can easily skip this chapter. Chapter 3 tackles several usage based maintenance

optimization problems. All materials in this chapter are classical results except for the periodic

age based policy with minimal repair in §3.2.5; these results are new and obtained especially for

these lecture notes. Chapter 5 covers models for the condition and degradation of assets and/or

components. These models are used in Chapter 5 to optimize decisions concerning maintenance

based on the condition/degradation level. In the final chapter (6), we show how all the models

in these lecture notes can be combined to design a complete maintenance concept/program for

equipment.



Chapter 2

Short introduction/refresher in reliability

theory, and renewal processes

“All knowledge degenerates into

probability”

David Hume

In these lecture notes, we will mainly deal with non-negative random variables. Let the random

variable T denote the time to failure of some component, T ≥ 0. If T is a continuous random

variable, we denote its distribution by FT (t) = P(T ≤ t) and assume it has a density fT (t) =
d
dt
FT (t). The reliability of the component at time t is the probability the component survives

beyond time t and is denoted by R(t).

R(t) = P(T ≥ t)

= 1− FT (t)

= 1−
∫ t

0

fT (t′)dt′

=

∫ ∞
t

fT (t′)dt′. (2.1)

11
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The mean time to failure (MTTF ) is just the expectation of T :

E[T ] =

∫
tdFT (t)

=

∫ ∞
0

tfT (t)dt

= −
∫ ∞

0

t
dR(t)

dt
dt

= [−tR(t)]∞0 +

∫ ∞
0

R(t)dt

=

∫ ∞
0

R(t)dt. (2.2)

The third equality in (2.2) holds because fT (t) = dFT (t)
dt

= −dR(t)
dt

, the fourth equality follows from

integration by parts and the final equality holds because limt→∞R(t) = 0. The variance of T is

given by:

Var[T ] = E
[
(T − E[T ])2

]
= E[T 2 − 2TE[T ] + (E[T ])2]

= E[T 2]− 2E[T ]E[T ]− (E[T ])2

= E[T 2]− (E[T ])2, (2.3)

where E[T 2] =
∫
t2dFT (t) =

∫∞
0
t2fT (t)dt. The standard deviation of T is denoted by σT =√

Var[T ]. Another measure of variation commonly used is referred to as the coefficient of variation,

cT , that satisfies:

cT =
σT
E[T ]

. (2.4)

Discrete random variables occur naturally in reliability engineering when a system degrades not

with time but with the number of on-off cycles. An example of this was given in the introduction:

Landing gear of aircraft degrade with the number of landings, not with time or mileage. For

all the results in this section, there are straightforward equivalents for discrete random variables.

Integrals are replaced by summations in these results.

2.1. Failure rates

The distribution function and the density function of the time to failure provide only limited

understanding of the physical failure mechanisms that cause failures. To gain some understanding,

let us consider a time t at which the component has not failed yet. We ask ourselves the following
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question: How likely is this component to fail in the next (small) time interval of length ε relative

to the length of this interval? More formally we would like to know:

h(t) = lim
ε↓0

P(T ≤ t+ ε|T ≥ t)

ε
. (2.5)

for t such that fT (t) > 0. This function can be loosely interpreted as the instantaneous expected

number of failures per time unit at time t, and is known as the failure rate, hazard rate (hence

the notation h(t)) or mortality rate1. We will refer to it as the failure rate. Now using basic

probability we can write for the probability in (2.5)

P(T ≤ t+ ε|T ≥ t) =
P(T ≤ t+ ε ∩ T ≥ t)

P(T ≥ t)

=
P(t ≤ T ≤ t+ ε)

P(T ≥ t)

=
FT (t+ ε)− FT (t)

R(t)
. (2.6)

Reinserting (2.6) into (2.5) we find

h(t) = lim
ε↓0

FT (t+ ε)− FT (t)

ε

1

R(t)
=
fT (t)

R(t)
, (2.7)

where we used the definition of a derivative and the fact that fT (t) is the derivative of FT (t). The

identity in (2.7) is the definition of the failure rate most often used in textbooks.

The failure rate reveals some essential features about the degradation process of components.

If the failure rate is an increasing function of time
(
dh(t)
dt

> 0
)

, the component degrades over time.

If this is the case, we say that the time to failure is IFR. (IFR is the abbreviation for increasing

failure rate.) Mechanical devices typically have an increasing failure rate.

If the failure rate is a decreasing function of time
(
dh(t)
dt

< 0
)

, the component becomes more

reliable over time (conditional on not having failed already). If this is the case, we say that

the time to failure is DFR. (DFR, as you might have guessed, is the abbreviation for decreasing

failure rate.) Electronic components often have DFR. The reason for this is that electronics are

not usually subject to wear (in clean conditions at least) unless there is a manufacturing defect.

However, the longer an electronic components has been functioning without problems, the more

likely it is that there is no manufacturing defect.

A special case that we will consider separately in §2.2 is where the failure rate is constant

(CFR),
(
dh(t)
dt

= 0
)

. (An even more peculiar case occurs when the failure rate alternates from

1The statistical development of reliability engineering closely follows the statistical development of studies in

the medical and life sciences. Some of their terminology is still used in our field, even though equipment does not

die, patients or lab-rats do.
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being decreasing and increasing over time like a sine function, say. In this course, we will not use

such “exotic” distributions.)

There is also a discrete equivalent to the failure rate. If T is a discrete random variable on the

(non-negative) integers, let pk = P(T = k) and Rk = P(T ≥ k). The discrete equivalent of the

failure rate, hk, is then the probability of the component failing after k cycles conditional on it

surviving at least k cycles:

hk = P(T = k|T ≥ k) =
P(T = k ∩ T ≥ k)

P(T ≥ k)
=
pk
Rk

. (2.8)

Note that 0 ≤ hk ≤ 1. The discrete hazard rate is perhaps slightly more intuitive because its

definition does not involve limits and other devices from calculus.

We close this section by showing how the density and reliability function can be obtained from

the failure rate. First observe that fT (t) = d
dt
FT (t) = d

dt
(1− R(t)) = − d

dt
R(t). Inserting this into

(2.7) yields:

h(t) = − 1

R(t)

dR(t)

dt
. (2.9)

Now taking (2.9), multiplying both sides by dt and integrating between 0 and t yields∫ t

0

h(u)du = −
∫ t

0

1

R(t)
dR(t) = − ln(R(t)). (2.10)

Finally, solving (2.10) for R(t) we find:

R(t) = exp

(
−
∫ t

0

h(u)du

)
. (2.11)

2.2. Commonly used distributions

In this subsection, we give some results on distributions used in maintenance and reliability en-

gineering. Before doing this, we cover some groundwork. The factorial is defined for all positive

integer numbers, e.g., 6! = 6 · 5 · 4 · 3 · 2 · 1 = 720. Sometimes it is convenient to work with an

extension of the factorial so that it also applies to real numbers. The Gamma-function achieves

this and is defined as follows:

Γ(x) =

∫ ∞
0

exp(−u)ux−1du, x > 0 (2.12)

The Gamma-function has the following properties:

• Γ(x+ 1) = xΓ(x), x > 0
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• Γ(1) = 1

• Γ(x) = (x− 1)!, x = 1, 2, · · ·

For values between 1 and 3, the Gamma-function is evaluated in Table 2.1. Using the first property

of the Gamma-function, this table can be used to evaluate the Gamma-function for larger real

numbers. For example:

Γ(5.6) = 4.6Γ(4.6) = 4.6 · 3.6 · Γ(3.6) = 4.6 · 3.6 · 2.6 · Γ(2.6) = 4.6 · 3.6 · 2.6 · 1.4296 = 61.55.

Table 2.1: The Gamma-function for arguments between 1 and 3.

Γ(x+ y)

x\y 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 1.0000 0.9514 0.9182 0.8975 0.8873 0.8862 0.8935 0.9086 0.9314 0.9618

2 1.0000 1.0465 1.1018 1.1667 1.2422 1.3293 1.4296 1.5447 1.6765 1.8274

In §2.2.1-§2.2.5, we discuss continuous distribution functions and in §2.2.6-§2.2.9, we discuss

discrete distribution functions.

2.2.1 Exponential distribution

An exponential random variable X has the following density and distribution function:

f(x) = λ exp(−λx), F (x) = 1− exp(−λx), x ≥ 0

which is supported on [0,∞). The parameter λ > 0 is called the scale parameter. The mean,

variance and coefficient of variation of X are given by:

E[X] =
1

λ
, Var[X] =

1

λ2
, cX =

√
Var[X]

E2[X]
= 1.

The exponential distribution is important in operations management and reliability engineering

because it has the lack of memory property. This property means that the remaining lifetime of
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a part has the same distribution as the original lifetime:

P(X > s+ t|X > s) = P(X > s+ t ∩X > s)/P(X > s)

=
P(X > s+ t)

P(X > s)

=
exp(−λ(s+ t))

exp(−λs)

= exp(−λt)

= P(X > t).

Another special property of the exponential distribution, which is actually equivalent to the lack

of memory property, is that it has a constant failure rate

h(t) = λ.

This means that the exponential distribution is the unique distribution that is both IFR and DFR.

2.2.2 Uniform distribution

The uniform distribution is supported on (a, b) and has density and distribution

f(x) =

{
1/(b− a), a ≤ x ≤ b;

0, otherwise.
F (x) =


(x− a)/(b− a), a ≤ x ≤ b;

0, x ≤ a;

1, b ≤ x.

The reason for the name uniform should be obvious from Figure 2.1.

If X has a uniform distribution on (a, b), then the mean, variance, and coefficient of variation

are given by:

E[X] =
a+ b

2
, Var[X] =

(b− a)2

12
, cX =

b− a√
3(a+ b)

(2.13)

The uniform distribution has an increasing failure rate:

h(x) =

{
0, x < a;

1
b−x , a ≤ x ≤ b.

(2.14)

2.2.3 Erlang distribution

If E1, E2, · · ·Ek are i.i.d. exponential random variables with mean λ−1, then X =
∑k

i=1Ei has an

Erlang2 distribution with shape parameter k ∈ N and scale parameter λ > 0. Like the exponential

2The Erlang distribution has been named after the Danish engineer Agner Krarup Erlang (1878-1929). Erlang

is considered one of the founders of queueing theory. The Erlang distribution is often used in this field.
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Figure 2.1: The probability density function of the Uniform distribution for several parameter values.

distribution, the Erlang distribution has support on [0,∞) and its density and distribution function

are given by:

f(x) =
λkxk−1

(k − 1)!
exp(−λx), F (x) = 1−

k−1∑
n=0

(λx)n

n!
exp(−λx), x ≥ 0. (2.15)

The mean, variance and coefficient of variation of X are given by:

E[X] =
k

λ
, Var[X] =

k

λ2
, cX =

1√
k
. (2.16)

The failure rate of an Erlang random variable is given by:

h(x) = λ

[
k−1∑
n=0

(k − 1)!

n!(λx)k−1−n

]−1

. (2.17)

The failure rate of the Erlang distribution is constant for k = 1. (In fact, it reduces to the

exponential distribution when k = 1.) For k > 1, the Erlang distribution has an increasing failure

rate. Figure 2.2 shows the Erlang density function for several shape and scale parameters.

Finally, we note from the construction of the Erlang distribution that if Y1 has an Erlang

distribution with shape k1 and scale λ and Y2 has en Erlang distribution with shape k2 and scale

λ, then Z = Y1 + Y2 has an Erlang distribution with shape k1 + k2 and scale λ.
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Figure 2.2: The Erlang (and Gamma) probability density function for several shape and scale parameters.

2.2.4 Gamma distribution

The Erlang distribution can be generalized by allowing k to take non-integer values. In this case,

all the factorials in (2.15) and (2.17) have to be replaced by their equivalents in terms of the

Gamma-function. This distribution is called the Gamma distribution and is parameterized by

the shape parameter α > 0 (which is equivalent to k in the Erlang distribution), and the scale

parameter β > 0 (which is equivalent to λ in the Erlang distribution). Its density and distribution

are given by:

f(x) =
βαxα−1

Γ(α)
exp(−βx), F (x) =

∫ x

0

f(u)du, x ≥ 0. (2.18)

The mean, variance and coefficient of variation of a Gamma distributed random variable X are

given by:

E[X] =
α

β
, Var[X] =

α

β2
, cX =

1√
α

(2.19)
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The failure rate of a Gamma distribution is given by:

h(x) =

[∫ ∞
x

(u
x

)α−1

exp(−β(u− x))du

]−1

=

[∫ ∞
0

(1 + v/x)α−1 exp(−βv)dv

]−1

, x ≥ 0.

(2.20)

For 0 < α < 1, this failure rate is decreasing; for α > 1 this failure rate is increasing and for α = 1,

we obtain the constant failure rate.

Gamma random variables also inherit the following property from the Erlang distribution: If

Y1 has a Gamma distribution with shape α1 and scale β, and Y2 has a Gamma distribution with

shape α2 and scale β, then Z = Y1 + Y2 has a Gamma distribution with shape α1 + α2 and scale

β.

2.2.5 Weibul distribution

The Weibul3 distribution is used much in reliability engineering because it provides a good fit

with data in many applications and arises naturally in theory. Many components are composed

of even smaller subcomponents. The time until failure of the component is therefore the shortest

time until failure of any of the subcomponents. If we let Y1, · · · , Yn denote the times until failure

of the subcomponents, the time until failure of the component itself is X = min{Y1, Y2, · · · , Yn}.
If the random variables Y1 to Yn have finite support, then the distribution of X will approach

the Weibul distribution as n approaches infinity4. This is the reason why the Weibul distribution

arises theoretically and often provides good empirical fit with data.

The Weibul distribution has shape parameter β and scale parameter η. Its density and distri-

bution are:

f(x) =
βxβ−1

ηβ
exp

(
−(x/η)β

)
, F (x) = 1− exp

(
−(x/η)β

)
, x ≥ 0. (2.21)

Note that for β = 1, the Weibul distribution reduces to the exponential distribution. The mean

and variance are given by:

E[X] = Γ(1 + 1/β)η, Var[X] =
[
Γ(1 + 2/β)− (Γ(1 + 1/β))2

]
η2. (2.22)

3The Weibul distribution has been named after Ernst Hjalmar Waloddi Weibull (1887-1979) who was a Swedish

engineer. He did not invent the Weibul distribution, but he made it popular among (reliability) engineers, because

he showed that it arises naturally in the study of strength of materials, fatigue, rupture in solids and bearings.
4Compare this result to the central limit theorem. The central limit theorem plays an important role in statistics

and says that X = Y1 +Y2 + · · ·Yn approaches a normal random variables as n→∞ (if the Yi are independent and

have finite first two moments). In reliability engineering, we are more often interested in X = min{Y1, Y2, · · · , Yn}
which converges to a Weibul random variable as n→∞ (if the Yi are non-negative and have finite support.) This

result is known as the type III extreme value law.



20 Arts: Maintenance Modeling and Optimization

The failure rate of the Weibul distribution has an exponential form:

h(x) =
β

ηβ
xβ−1. (2.23)

From this form, we immediately observe that X is IFR for β > 1, DFR for 0 < β < 1, and CFR

for β = 1. Figure 2.3 shows the Weibul probability density function for several different shape

parameters.

We finish this section by highlighting an important property of Weibul random variables.

Suppose that X1, X2, . . . , Xn are independently identically Weibul distributed random variables

with shape parameter β and scale parameter η. Think of X1 to Xn as the lifetimes of n components

in a serial configuration. Let us call the time to failure of this system Y ; it obviously satisfies

Y = min(X1, X2, . . . , Xn). Now let us consider the reliability of the entire system:

P(Y > y) = P(X1 > y ∩X2 ≥ y ∩ . . . ∩Xn ≥ y)

= P(X1 > y)P(X2 > Y ) · · ·P(Xn > y)

=

[
exp

(
−
(
y

η

)β)]n

= exp

(
−n
(
y

η

)β)

= exp

(
−
(

y

η/n1/β

)β)
. (2.24)

We have thus shown that Y also has a Weibul distribution with shape parameter β′ = β and scale

parameter η′ = ηn−1/β. This result gives some intuition on why the Weibul distribution is such a

prevalent model in reliability engineering.

2.2.6 Poisson distribution

The Poisson5 distribution is a discrete distribution on the non-negative integers characterized by

its mean µ only. If the random variable X has Poisson distribution with mean µ then

px = P(X = x) = exp(−µ)
µx

x!
, x ∈ N0 = N ∩ {0} (2.25)

and

E[X] = µ, Var[X] = µ, cX =
1
√
µ
. (2.26)

Poisson probabilities satisfy the following recursive relation that is convenient in computations:

px =
µ

x
px−1, x ∈ N. (2.27)

5The Poisson distribution is called after the French mathematician Siméon Poisson (1781-1840).
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Figure 2.3: The Weibul probability density function for several shape parameters

2.2.7 Geometric distribution

The geometric distribution is a discrete distribution characterized by a single parameter p ∈ (0, 1)

that represents the failure probability. Suppose that we periodically load a system and there is

probability p that a system fails during any loading. If we let X denote the number of times the

system can be loaded without failure, then X is said to have a geometric distribution with failure

probability p6. The geometric distribution is memoryless and can be interpreted as the discrete

analogue of the exponential distribution. Its probability mass and distribution functions are given

by

px = P(X = x) = p(1− p)x, P(X ≤ x) = 1− (1− p)x, x ∈ N0. (2.28)

The mean and variance are given by

E[X] =
1− p
p

, Var[X] =
1− p
p2

. (2.29)

6The geometric distribution is also used to model the number events until a successful event occurs; think for

example of the number of coin tosses until heads comes up. The convention to call p the failure probability is

context dependent. In other contexts it can be referred to as the success-probability.
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The failure rate of the geometric distribution is constant and equal to p. (This follows immediately

from the interpretation of the geometric distribution.)

2.2.8 Negative binomial distribution

IfG1, G2, . . . , Gr are i.i.d. geometric random variables with failure probability p, thenX =
∑r

i=1Gi

has a negative binomial distribution with shape parameter r and scale parameter p. We have:

px = P(X = x) =

(
r + x− 1

x

)
pr(1− p)x, P (X ≤ x) =

x∑
k=0

pk, x ∈ N0. (2.30)

By its definition it is easy to find that

E[X] = rE[G1] = r
1− p
p

, Var[X] = rVar[G1] = r
1− p
p2

. (2.31)

Also note (again from definition) that if Y1 has a negative binomial distribution with shape r1 and

scale p, and Y2 has a negative binomial distribution with shape r2 and scale p, then Z = Y1 + Y2

has a negative binomial distribution with shape r1 + r2 and scale p.

Just like the Gamma distribution generalizes the Erlang distribution by allowing the shape

parameter to be non-integer, the negative binomial distribution can also be generalized by allowing

non-integer r, but its name remains the same. Everything described above still holds in this case,

but same care needs to be taken in interpreting the binomial coefficient
(
r+x−1
x

)
= (r+x−1)!

x!(r−1)!
so that

it also works for non-integer r. This can be done as follows:(
r + x− 1

x

)
=

(r + x− 1)!

x!(r − 1)!

=
(r + x− 1)(r + x− 2)(r + x− 3) · · · (r − 1)(r − 2)(r − 3) · · · 1

x(x− 1)(x− 2)(x− 3) · · · 1 · (r − 1)(r − 2)(r − 3) · · · 1

=
(r + x− 1)(r + x− 2)(r + x− 3) · · · r

x(x− 1)(x− 2) · · · 1

=
x∏
k=1

r + x− k
k

. (2.32)

The last expression can also be computed for non-integer r and should be used also for integer r

because it is numerically more stable. The most convenient way to compute the pmf is by using

the recursive relation

P(X = x) =
r + x− 1

x
(1− p)P(X = x− 1), P (X = 0) = pr, x ∈ N. (2.33)



Arts: Maintenance Modeling and Optimization 23

2.2.9 Logarithmic distribution

If X has a logarithmic distribution with parameter q ∈ (0, 1), then

px = P(X = x) =
−1

ln(1− q)
qx

x
, P(X ≤ x) =

x∑
i=0

pi, x ∈ N, (2.34)

and

E[X] =
−1

ln(1− q)
q

1− q
, Var[X] = −q q + ln(1− q)

(1− q)2(ln(1− q))2
. (2.35)

Figure 2.4 shows the logarithmic probability mass function for several q. For computational

purposes it is convenient that the probability mass function can be computed recursively as

px+1 =
q

x+ 1
px. (2.36)
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Figure 2.4: The Logarithmic probability mass function for several q

2.3. Renewal theory

A renewal process is a counting process in which the time between events (also called renewals) are

independently and identically distributed (i.i.d.). Let X1, X2, · · · be a sequence of non-negative

i.i.d. random variables with common distribution F (x), density f(x) = dF (x)
dx

, and mean 0 <
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N(t)=3

Figure 2.5: This Figure shows a sample path of a renewal process with the corresponding notation. Each renewal is

marked by an x on the time line.

E[Xi] < ∞. Xi is the time between the (i − 1)-th and i-th renewal; for example Xi might

represent the time to failure of a component. Now define the time the i-th renewal occurs as Si:

Si =
i∑

k=1

Xk, S0 = 0. (2.37)

If the Xi represent the time to failure of some component, then Si represents the time until the

failure of the i-th component. We may ask ourselves how many renewals have occurred up until

time t. Such a process is called a renewal process and denoted by N(t):

N(t) = max{i ∈ N0|Si ≤ t}, t ≥ 0. (2.38)

Figure 2.5 shows an example of a renewal process with the notation that we introduced. The

expected number of renewals up until time t, E[N(t)], is called the renewal function and denoted

by M(t). The renewal function obeys the following integral equation.

Theorem 2.1. (Renewal equation) The renewal function M(t) = E[N(t)] satisfies:

M(t) = F (t) +

∫ t

0

M(t− x)f(x)dx, t ≥ 0 (2.39)
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Proof. The proof follows from conditioning on X1:

M(t) = E[N(t)]

=

∫ ∞
0

E[N(t)|X1 = x]f(x)dx

=

∫ t

0

E[N(t)|X1 = x]f(x)dx

=

∫ t

0

(1 +M(t− x))f(x)dx

= F (t) +

∫ t

0

M(t− x)f(x)dx

The third equality follows because N(t) = 0 if X1 ≥ t. The fourth equality follows because if

X1 = x ≤ t, then at least one renewal already occurred, and the expected number of renewals

from x to t is just M(t− x).

Equation (2.39) is not immediately helpful for computing M(t) because solving an integral

equation (such as (2.39)) is, in general, more difficult than solving a differential equation. If you

can guess the right form for M(t) under some f(x) and F (x), you can plug it into (2.39) to check

if this guess is correct. Coming up with such a guess is difficult and usually requires detailed

understanding of the context.

There is also a discrete equivalent to Theorem 2.1, which is more immediately helpful in

computations. Exercise 1.5 explores this further.

Example 2.1. The Poisson process is a special case of a renewal process for which X1, X2, · · ·
are exponentially distributed with mean λ−1, Sk has an Erlang distribution with shape parameter

k and scale parameter λ and N(t) has a Poisson distribution with mean λt. From these results

we immediately have that the renewal function satisfies M(t) = λt. �

2.4. Renewal reward theory

Now suppose that there is a reward (cost), Wi, associated with each renewal i. Furthermore,

assume that W1,W2, · · · is an iid sequence of random variables with |E[Wi]| < ∞. (Note that

we do not assume that Wi and Xi are independent.) The total reward (cost) up until time t is

denoted by Y (t) and satisfies:

Y (t) =

N(t)∑
i=1

Wi. (2.40)
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Y (t) is called a renewal reward process. A natural question that arises is: “What is the average

reward (costs) per time unit for a renewal reward process?”. The following theorem addresses

this. The proof of this theorem is rather technical so we omit it. The interested reader is referred

to Ross (1996) Section 3.6 for a formal proof.

Theorem 2.2. (Renewal reward theorem) The average reward (cost) per time unit of a renewal

process, g, satisfies

g = lim
t→∞

Y (t)

t
= lim

t→∞

E[Y (t)]

t
=

E[Wi]

E[Xi]

The expected length of a renewal is sometimes called the expected cycle length, ECL. The

average costs per renewal is sometimes referred to as the expected cycle cost, ECC. Theorem 2.2,

also known as the renewal reward theorem, says that that he expected cost per time unit is simply

ECC/ECL.



Chapter 3

Usage Based Maintenance Models

“An ounce of prevention is worth a pound

of cure”

Benjamin Franklin

In this chapter, we are primarily concerned with the questions: “When should we conduct

maintenance and what are the maintenance costs per time unit?”. The answers to these questions

depend very much on the setting you consider. Section 3.1 considers setting in which degradation

is deterministic and Section 3.2 considers several setting where the time until failure is stochastic.

3.1. Deterministic maintenance models

The time to failure was presented as clear cut moment in time (that may be random) in the

preceding discussion. Many components do not have such a clear failure moment, but their

performance degrades over time. Consider for example the rubber belt of a conveyor; see Figure

3.1. The rubber belt loses elasticity as a result of usage in a predictable manner. This elasticity

loss causes slippage of the conveyor, which causes the production to slow down. In this situation,

the production loss is a reason to replace the belt before it has actually failed. Other examples of

components for which this holds are fuel filters, the felt of a paper mill, and molds in glass and

plastic production. The usage based maintenance policy that is explained in the introduction (see

also Figure 1.2) is an appropriate maintenance policy in this situation. We consider the policy

in which a component is replaced after τ usage. (We will assume that usage is measured in time

units, but this can be changed to mileage, number of produced products etc.) The question under

27
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Figure 3.1: The actual rubber belt on a conveyor loses elasticity over time which causes slippage.

this policy is: “After what amount of usage should the component (belt) be replaced, i.e., what

is the optimal τ?”. This section provides a mathematical model to answer that question.

Suppose that the costs for replacing the belt are Cp > 0 euros. (The subscript p indicates the

replacement is planned and the same notation will be used later.) Over usage time t, the belt

slows down which causes the production rate (measured in euros per time unit) to decrease by

a > 0 euros per time unit per time unit. (So if a = 5 euro/hr2, and the production rate of a

new belt/component is 200 euro/hr, then after 3 hours of usage, the remaining production rate is

200 − 3 · 5 = 185 euro/hr.) This means that after t time units, the total production loss relative

to a brand new belt/component are
∫ t

0
axdx = at2/2. The relevant costs per time unit g(τ) of

replacing the the belt every τ time units are therefore:

g(τ) =
aτ 2/2 + Cp

τ
=
aτ

2
+
Cp
τ
. (3.1)

It is best to replace the belt after the amount of usage that minimizes g(τ). We find that

dg(τ)

dτ
=
a

2
− Cp
τ 2
,

d2g(τ)

dτ 2
=

2Cp
τ 3

> 0.

g(τ) is convex (because its second derivative is positive for all τ > 0) so the optimal amount of

usage (time) after which the belt should be replaced can be found by setting dg(τ)/dτ = 0 and

solving for τ . Doing this yields the optimal replacement usage/time τ ∗:

τ ∗ =

√
2Cp
a
. (3.2)

Example 3.1. Consider a conveyor belt that is used 24 hours per day, 7 days per week in a

factory. The speed of this belt, when it is as good as new, is 5 km/hr and products on the

belt are spaced 1 meter apart. The profit for each sold product is 0.5 Euro. Unfortunately, the
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conveyor belt speed decreases over time by 0.05 km/hr/day, and replacing the belt (Cp) costs 9600

Euro. The production rate is 5 · 1000 · 0.5 Euro/hr = 24 · 0.5 · 5000 = 60, 000 Euro/day, and

so a = 0.05 · 1000 · 0.5 · 24 = 600 Euro/day/day. Therefore, it is best to replace the belt every

τ ∗ =
√

2 · 9600/600 =
√

32 ≈ 5.66 days. �

3.2. Stochastic maintenance models

In traditional stochastic maintenance models, we consider the question when maintenance should

be performed when the only information we have is the lifetime distribution of a component.

Thoughout this section, we will use the notation in Table 3.1.

Table 3.1: Notation used in traditional stochastic maintenance models

Notation Interpretation

Cu : Cost of performing unplanned corrective maintenance/replacement, Cu > 0

Cp : Cost of performing planned preventive maintenance/replacement, 0 < Cp < Cu

Cmr : Cost of performing an unplanned minimal repair. 0 < Cmr < Cu

T : Random variable denoting the lifetime of a component.

FX(·) : Distribution function of a random variable X, FX(t) = P(X ≤ t)
fX(·) : Density function of a random variable X, we assume fX = dFX(t)/dt

hX(·) : Failure rate of the random variable X

MX(·) : Renewal function for a renewal process with inter-renewal

times that have the distribution of X.

The models in this section are usually applied to construct maintenance programs for compo-

nents. In practice, maintenance programs for components will be linked to a complete maintenance

program for the equipment as a whole. This integration step is not treated here, but treated later

in the course. Maintenance in this case can also be replacement. We will use these terms inter-

changeably.

3.2.1 Failure based policy

The failure based policy is to replace/maintain a component every time it fails. This is the same

as the breakdown corrective maintenance policy described in the introduction; see Table 1.1. The

costs up to time t for this policy constitute a renewal reward process. The expected cycle length

in this case is just the mean time to failure, E[T ] and the expected cycle costs under this policy are
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Cu. Therefore the expected costs per time unit, g, can be found by a straightforward application

of the renewal reward theorem:

g = Cu/E[T ]. (3.3)

The failure based policy is optimal when T is DFR (or CFR) because performing preventive

maintenance does not actually improve the reliability of a component. Components with DFR

are usually electronics. However, even if T is IFR, the failure based policy can be attractive if the

failure rate does not grow without bound (limx→∞ hT (x) <∞) and Cu − Cp is sufficiently small.

Example 3.2. Suppose that the lifetime of a components is uniformly distributed from 10 to 20

time units and that unplanned corrective maintenance costs 1000 Euro. If we choose to apply a

failure based policy for this component, then the costs per time unit are Cu/E[T ] = 1000/((20 +

10)/2) = 66.67 Euro per time unit. (Note that the uniform distribution is IFR with limx→b hT (x) =

∞ so it is probably a bad idea to apply failure based maintenance for this component. We consider

applying preventive maintenance for this component in the next example.) �

3.2.2 Age replacement policy

Under the age replacement policy, a component is replaced whenever it has been used for a fixed

amount of time τ or if it fails before this time. This policy fits in the upper left box of Table

1.1 from the introduction. We let the random variable X = min(τ, T ) denote the time until a

component is replaced. When a components is replaced after τ amount of time, the cost of a

planned replacement Cp is incurred. The unplanned maintenance cost Cu > Cp is incurred if the

component is replaced due to failure before τ amount of usage. We assume the time to replace

is negligible. When τ → ∞, this policy is equivalent to the failure based policy. An important

observation for this policy is that replacement times are also renewal points. Therefore, we can

define the time until replacement as a cycle, and then the average cost under this policy can

be studied as a renewal reward process. The inter-renewal time of this renewal reward process

is distributed as X and the cost per cycle, W , is Cp with probability 1 − FT (τ) and Cu with

probability FT (τ). (Note that X and W are correlated random variables.) The ECC and ECL

for the age replacement policy are:

ECC = FT (τ)Cu + (1− FT (τ))Cp (3.4)

ECL = E[X] = E[min(T, τ)] (3.5)

=

∫ ∞
0

min(x, τ)fT (x)dx =

∫ τ

0

xfT (x)dx+ τR(τ), (3.6)
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and the costs, which depend on τ , are g(τ) = ECC/ECL. The optimal replacement time τ ∗ can

be found by settig dg(τ)/dτ = 0 and solving for τ . If T is DFR, then dg(τ)/dτ > 0 for all τ

and limτ→∞ dg(τ)/dτ = 0. That is, the optimal age replacement policy reduces to a failure based

policy.

Example 3.3. Reconsider the component from Example 3.2 with Cu = 1000, and a lifetime

that is uniformly distributed between 10 and 20 time units. Suppose that planned preventive

maintenance for this component costs 600 Euro. Note that under an age replacement policy only

makes sense for τ ∈ (10, 20). For τ ∈ (10, 20) we have

ECC = FT (τ)Cu + (1− FT (τ))Cp =
τ − 10

10
1000 +

20− τ
10

600 = 40τ + 200 (3.7)

and

ECL =
1

10

∫ τ

10

xdx+ τ
20− τ

10

=
1

10

[
x2/2

]x=τ

x=10
+ τ

20− τ
10

=
1

10

1

2
τ 2 − 1

10

1

2
102 + 2τ − 1

10
τ 2

= − 1

20
τ 2 + 2τ − 5. (3.8)

Combining (3.7) and (3.8) yields for the expected cost per time unit (after some algebra):

g(τ) = ECC/ECL =
−800(τ + 5)

τ 2 − 40τ + 100
,

dg(τ)

dτ
=

800(τ 2 + 10τ − 300)

(τ 2 − 40τ + 100)2
. (3.9)

Now dg(τ)/dτ = 0 only if its numerator is 0 so the the optimal replacement time τ ∗ can be found

by solving the quadratic equation τ 2 + 10τ − 300 = 0. Thus the optimal replacement time is after

τ ∗ = 13.0278 time units and the average cost per time unit under this policy is g(τ ∗) = 57.37 Euro

per time unit. (In Example 3.2, we already noted that preventive maintenance should be useful in

this case because the failure rate grows without bound. The saving compared to the failure based

policy is (66.67− 57.37)/66.67 ≈ 14%.) �

Example 3.4. A machine has an Erlang distributed lifetime with shape parameter k = 2 and

scale parameter λ = 1 (per year). So, the failure distribution is given by

FT (x) = 1− (1 + x) e−x , x ≥ 0 (x in years).

The costs of a preventive maintenance action are equal to 500 Euro. For a corrective maintenance

action, the costs are 7000 Euro because unplanned maintenance interrupts the production process
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in which the machine functions. The maintenance manager would like to be able to evaluate the

costs of different age based policies for this machine. Using the theory we built so far we find

g(τ) =
7000(1− (1 + τ)e−τ ) + 500(1 + τ)e−τ∫ τ

0
x2e−xdx+ (τ 2 + τ)e−τ

. (3.10)

Working out the integral in the denominator using integration by parts twice, we have∫ τ

0

x2e−xdx =
[
−x2e−x

]τ
0

+ 2

∫ τ

0

xe−xdx

= −τ 2e−τ + 2

(
[−xe−x]τ0 +

∫ τ

0

e−xdx

)
= −τ 2e−τ + 2

(
−τe−τ + [−e−x]τ0

)
= −τ 2e−τ − 2τe−τ − 2e−τ + 2

= −e−τ (τ 2 + 2τ + 2) + 2 (3.11)

Now substituting (3.21) back into (3.20), we find:

g(t) =
7000(1− (1 + τ)e−τ ) + 500(1 + τ)e−τ

−e−τ (τ 2 + 2τ + 2) + 2 + (τ 2 + τ)e−τ
=

7000− 6500(1 + τ)e−τ

−e−τ (τ + 2) + 2
. (3.12)

�

3.2.3 Block replacement policy

Under a block replacement policy, a component is replaced at fixed times τ, 2τ, 3τ, · · · and an

unplanned corrective maintenance is done if the component fails between these times. This policy

can be attractive when the preventive maintenance of multiple components of the same system

can be coordinated. Consider for example a wind-turbine park at sea. It is beneficial to maintain

all wind-turbines together at fixed times τ, 2τ, 3τ, · · · because the cost of transporting goods and

maintenance engineers out to sea only need to be incurred once for all wind-turbines together. The

block replacement policy is a usage based policy; see the upper left of Table 1.1 in the introduction.

In the previous sections, we always defined a cycle by the time between replacements because

this led to a renewal (reward) process. Under a block policy, the time at which replacements are

done, are not renewal points. To see why, consider a component that has just been preventively

replaced at time 0. The time until the next replacement is distributed as min(τ, T ). The time until

the next replacement (after the first) is not distributed as min(τ, T ) unless the first replacement was

a planned preventive replacement. Since the first replacement could also have been an unplanned

corrective replacement, the sequence of times between replacement is not iid. Fortunately, renewal
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reward theory also applies to the block replacement policy by defining a cycle as the time between

planned preventive replacement. Thus:

ECL = τ.

The costs during such a cycle are Cp for the planned preventive replacement during each cycle

and the costs of corrective maintenance during such a cycle. Recall that MT (t) is the expected

number of renewals (failures) during an interval of length t. Therefore we have

ECC = Cp + CuMT (τ).

The average costs per time unit depend on τ and are given by g(τ) = ECC/ECL. Most of the time

(but not always), the optimal block-replacement interval τ ∗ can be found by setting dg(τ)/dτ = 0

and solving for τ .

Example 3.5. Reconsider the component from Examples 3.2 and 3.3 with Cp = 600, Cu = 1000

and T has a uniform distribution from 10 to 20. Observe first that since 10 ≤ T ≤ 20, τ ∗ ∈ (10, 20).

(Why?) To determine the ECC, we need to find MT (t) for t ∈ [10, 20]. The number of failures

in an interval of length less than 20 can be at most 1. (Why?) Therefore, MT (t) = FT (t) for

t ∈ (0, 20); this can be verified directly using Theorem 2.1. Now it is straightforward that for

τ ∈ [10, 20]

ECC = Cp+CuMT (τ) = 600+1000FT (τ) = 600+1000
τ − 10

10
= 100τ−400, ECL = τ, (3.13)

so that the average costs per time unit are

g(τ) = ECC/ECL =
100τ − 400

τ
= 100− 400

τ
,

dg(τ)

dτ
=

400

τ 2
. (3.14)

Note that g(τ) is increasing because dg(τ)/dτ > 0 for τ ∈ (10, 20). Therefore the optimal block-

replacement interval τ ∗ = 10 time units and g(τ ∗) = 60.00 Euro per time unit. �

3.2.4 Block replacement policy with minimal repair

A block replacement policy with minimal repair is identical to a regular block replacement policy

with one exception: When a component fails between block replacements, it is repaired to a state

that is not as good as new, but statistically identical to the state just before the failure. Such a

repair is called a minimal repair and its costs are denoted Cmr. In practice, minimal repairs are

performed by using duct-tape, tie-wraps and other ad-hoc solutions to get a component functioning

again, without actually replacing it or performing thorough maintenance. A “full” repair brings
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the failure rate just after replacement back to hT (0). By contrast, after minimal repair, the failure

rate does not change at all. Because of this, the expected number of failures between block-

replacements is no longer given by MT (τ). Recall that the failure rate can be interpreted as the

expected number of failures per time unit in a very small time interval. Therefore,
∫ τ

0
hT (x)dx is

the expected number of failures during a block-replacement interval. Thus we have

ECC = Cp + Cmr

∫ τ

0

hT (x)dx, ECL = τ, (3.15)

and the expected costs per time unit are g(τ) = ECC/ECL.

Example 3.6. Reconsider Examples 3.2, 3.3, and 3.5. Suppose that the costs of a minimal repair

are given by Cmr = 400 Euro. As in Example 3.5, an optimal block replacement interval must be

between 10 and 20 time units long. We have for t ∈ (10, 20):

ECC = Cp + Cmr

∫ τ

0

hT (x)dx

= 600 + 400

∫ τ

10

1

20− x
dx

= 600− 400

∫ 20−τ

20−10

1

u
du

= 600− 400 [ln(u)]20−τ
10

= 600− 400 (ln(20− τ)− ln(10)) ,

where the third equality follows from using the substitution u = 20− x. The costs per time unit

and its first derivative for τ ∈ [10, 20) are given by

g(τ) =
600− 400 (ln(20− τ)− ln(10))

τ
,

dg(τ)

dτ
=

400τ
20−τ − 600 + 400(ln(20− τ)− ln(10))

τ 2
.

Setting the numerator of dg(τ)/dτ to 0 and using some algebra, we find that the optimal block

replacement interval τ ∗ satisfies the first order condition

τ ∗

20− τ ∗
+ ln(20− τ ∗)− ln(10)− 3

2
= 0 (3.16)

Unfortunately (3.16) cannot be solved in closed form, but a bisection search (or any other numerical

root finding procedure) yields τ ∗ = 13.00 time units so that g(τ ∗) = 57.1 Euro per time unit. �

3.2.5 Periodic usage based replacement policy with minimal repair

For the regular age replacement policy, we assumed that we can perform preventive maintenance

at any time. In practice, not all times are equally convenient. For example, in a production line,
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it may be preferable to only perform maintenance during the last weekend of the month, when

there is no planned production. Similarly, it might be common practice to shut down a plant or

production line every three months and perform all preventive maintenance during these planned

down-times. (We will come back to this issue in Chapter 6.) For aircraft, it is common to visit

the maintenance hangar only during certain planned down-times that are roughly equidistant. We

shall refer to these planned down-times, that can be used for planned preventive maintenance, as

scheduled downs. We assume that scheduled downs are τ units apart, i.e., there is an opportunity

to perform planned preventive maintenance at times τ, 2τ, 3τ, 4τ, . . .; see Figure 3.2. (Note that τ

is not a decision variable at this point, but a known problem parameter.) We propose the following

policy for the settings that we described above: After the preventive replacement of a component,

we replace it preventively again at the n-th maintenance opportunity. (Note that n ∈ N.) If it

fails before the n-th scheduled down since the last replacement, we apply a minimal repair and

replace preventively at the next scheduled down. (Note that n is a decision variable with which we

can optimize the performance of a periodic age based policy with minimal repair.) A schematic

representation of a sample path under such a policy is given in Figure 3.2. Planned preventive

Initial 
replacement

Time

Second 
replacement

X

Unexpected failure; 
perform minimal repair

0

Third 
replacement

Fifth 
replacement

Fourth 
replacement

n=2

τ 2τ 3τ 4τ 5τ 6τ 7τ

Figure 3.2: Acquisition costs versus maintenance costs over the lifetime for several assets

maintenance incurs a cost of Cp and minimal repair incur a cost of Cmr. If a component fails

between scheduled downs, then the replacement at the next scheduled down incurs a cost Cu. The

cost incurred by a periodic usage based policy with minimal repair can be described by a renewal

reward process. The renewal points are the moments where a component is replaced during a

scheduled down. The expected cycle length for a periodic age replacement policy is found by
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conditioning on the interval in which a component fails for the first time:

ECL =
n∑
k=1

kτP ((k − 1)τ ≤ T ≤ kτ) + nτP(T ≥ nτ)

=
n∑
k=1

kτ [FT (kτ)− FT ((k − 1)τ)] + nτ(1− FT (nτ)). (3.17)

It is more involved to determine the cost during a renewal cycle. The crux is finding the expected

number of minimal repairs that will be conducted during a renewal cycle. For the exposition, it

is useful to introduce the random variable Y (t1, t2) that denotes the number of minimal repairs

in the interval [t1, t2) that belong to a renewal cycle that started at time 0 (t1 < t2 < nτ). The

expected number of minimal repairs in the interval [0, τ) is given by E[Y (0, τ)] under this new

definition. We already know that E[Y (0, τ)] =
∫ τ
x=0

hT (x)dx. However, such an expression does

not hold for the interval [τ, 2τ)., i.e., E[Y (τ, 2τ)] 6=
∫ 2τ

x=τ
hT (x)dx. Therefore we now show a way

to compute E[Y ((k − 1)τ, kτ)] for k ∈ N. We condition on whether a failure has or has not yet

occurred at the scheduled down occurring at time (k − 1)τ .

E[Y ((k − 1)τ, kτ)] = E[Y ((k − 1)τ, kτ)|T > (k − 1)τ ]P(T > (k − 1)τ)

+ E[Y ((k − 1)τ, kτ)|T ≤ (k − 1)τ ]P(T ≤ (k − 1)τ)

= E[Y ((k − 1)τ, kτ)|T > (k − 1)τ ](1− FT ((k − 1)τ))

= (1− FT ((k − 1)τ))

∫ kτ

x=(k−1)τ

hT (x)dx. (3.18)

The second equality above holds because E[Y ((k − 1)τ, kτ)|T ≤ (k − 1)τ ] = 0 under the periodic

age replacement policy. To see this, observe that if the first failure occurs before time (k − 1)τ ,

then a full replacement will occur at of before the scheduled down at time (k − 1)τ so that the

renewal cycle has already ended at of before time (k − 1)τ .

We can now determine the expected cost in a renewal cycle:

ECC = CpP(T ≥ nτ) + CuP(T < nτ) + Cmr

n∑
k=1

E[Y ((k − 1)τ, kτ)], (3.19)

so that the expected costs per time unit are g(n) = ECC/ECL with ECC given in (3.19) and

ECL given in (3.17).

The most common approach to optimize the periodic usage based policy with minimal repair

(minimize g(n)) is to compute g(n) starting from n = 1 and continuing until you found the optimal

n. Note that this approach can be streamlined computationally because for a unit increase in n,

the ECC and ECL change mostly because of one additional term in the summations. g(n) is not
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in general convex in n, but it is uni-modal in many cases of practical interest. A good approach

therefore is to compute g(n) until g(n) > g(n− 1) and declare n∗ = n− 1.

Remark 3.1. The periodic age based policy with minimal repair reduces to the block policy with

minimal repair for n = 1. (This holds because, as observed before, E[Y (0, τ)] =
∫ τ
x=0

hT (x)dx.)

Furthermore, if τ is small and the n is large, then this policy will almost behave like an age based

policy with age replacement threshold nτ , and that model may be used.

Remark 3.2. If failed units receive full unplanned corrective maintenance, then the periodic age

based policy is no longer a renewal process and exact expressions for its performance cannot be

obtained. It is possible to approximate such policies using ideas similar to those in Chapter 4 of

Zhu (2015).

Example 3.7. Reconsider examples 3.2, 3.3, and 3.5, i.e. Cp = 600, Cu = 1000, Cmr = 400, and

T is uniformly distributed between 10 and 20. Let τ = 2 (and recall that this is a parameter in

the present context). The first thing to note is that n∗ ≥ 5 because the component cannot fail

before its 10 = 5 · 2 time units old. Clearly for n = 5 we have g(5) = 600/10 = 60 EURO per time

unit.

For n = 6 we have:

ECC(6) = 1000
2

10
+ 600

8

10
+ 400

∫ 12

x=10

1

20− x
dx

= 680− 400

∫ u=20−12

u=20−10

1

u
du

= 680− 400(ln(8)− ln(10)) = 769.26,

and ECL(6) = 12 so that g(6) = 769.26/12 = 64.11 EURO per time unit.

For n = 7 we have:

ECC(7) = 1000
4

10
+ 600

6

10
+ 400

(∫ 12

x=10

1

20− x
dx+

8

10

∫ 14

x=12

1

20− x
dx

)
= 760 + 400

(
ln(10)− ln(8) +

8

10
(ln(8)− ln(6))

)
= 941.32

and ECL(7) = 12 · 2
10

+ 14 · 8
10

= 13.6 so that g(7) = 69.21 EURO per time unit. Clearly n = 5 is

optimal in this case and the policy is equivalent to a block policy. �

Example 3.8. Consider a component subject to a periodic usage based replacement policy with

cost parameters Cp = 1000, Cu = 1500 and Cmr = 600 and a Weibul lifetime distribution given

by FT (t) = 1− exp(−(t/50)5). The expected cost per time unit for this system can be evaluated
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exactly in closed form (try this yourself). If we plot the expected cost per time unit for n ∈
{1, 2, 3, 4, 5} and τ ∈ (0, 90) we obtain Figure 3.3. (Verify your own expressions with Figure 3.3.)
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Figure 3.3: The cost of a periodic usage based maintenance policy for different values of n and optimized over

n ∈ {1, 2, 3, 4, 5} for a Weibul distribution with shape β = 5 and scale η = 50 with Cp = 1000, Cu = 1500, and

Cmr = 600

3.3. Exercises

Exercise 3.1. (On the age policy; level: (below) standard)

A machine has a homogeneous (= uniform) failure distribution on the interval [0, 10] (in

months). So, the failure distribution is given by:

F (x) =
x

10
, 0 ≤ x ≤ 10 (x in months).

For this machine the following maintenance policy is used. The machine is replaced by a new one

as soon as it reaches the age of τ months, or upon failure in case the machine fails before time τ .

The costs of a replacement are equal to Euro 3000. For a corrective maintenance action additional

costs equal to Euro 1000 are incurred because of the disturbance of the production process that

depends on the availability of the machine.
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Determine the average costs of the age-based maintenance policy as a function of τ and deter-

mine the optimal policy and the corresponding average costs.

Exercise 3.2. (On the age policy; old exam exercise; level: standard)

A machine has an Erlang distributed lifetime with shape parameter k = 2 and scale parameter

λ = 2 (per year). So, the failure distribution is given by:

F (t) = 1− (1 + 2t)e−2t , t ≥ 0 (t in years).

(a) Determine the failure rate function. Is it useful to apply age-based preventive maintenance

for this machine?

(b) The management decides that the machine has to be replaced by a new one as soon as the

failure rate exceeds the value of α = 1 per year, or as soon as the machine fails if this happens

before the failure rate exceeds this level. Determine the time τ at which the machine has to

be replaced preventively if the machine did not fail before.

(c) The costs of a preventive maintenance action are equal to Euro 500. For a corrective mainte-

nance action the costs are Euro 200 higher. A maintenance engineer conjectures that the rule

of the management concerning preventive replacements leads to too early replacements, and

hence to higher costs than needed. He suggests that preventive replacement as soon as the

failure rate exceeds the value α = 4/3 leads to lower expected costs per year. Is he right? Is

there a large difference?

Exercise 3.3. (similar to an old exam exercise; level: above standard)

A machine has one critical component that is subject to failures. This component has a

lifetime consisting of two parts: a deterministic part with length d ≥ 0 (in months) and a Weibull

distributed part with shape parameter β > 0 and scale parameter η > 0 (in months−1). The

failure distribution is given by:

F (t) =

{
0 if 0 ≤ t < d;

1− e−((t−d)/η)β if t ≥ d,
(t in months).

(a) Determine the failure rate function. In which case is the function constant, increasing, and

decreasing, respectively?

(b) Is it useful to apply preventive maintenance for the component?
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Assume now that d = 0, β = 2, and η = 4, and that the following maintenance policy is applied. If

the component fails then the component itself is immediately repaired. This takes an exponential

time with mean ν = 0.1 months. During this time the machine is not available. After repair the

component is as good as new.

(c) Determine the expected time µ till the component fails.

(d) Determine the long-run fraction of time that the machine is available.

Exercise 3.4. (On the minimal repair policy; old exam exercise; level: above standard)

A machine has a Weibull distributed lifetime with shape parameter β = 2 and scale parameter

η = 1 (years), i.e., the failure distribution is given by:

F (t) = 1− e−t2 , t ≥ 0 (t in years).

If the machine fails then, by minimal repair, the machine can be brought back into the state it had

just before the failure. The costs of such a minimal repair are equal to Euro 100. The alternative

is to replace the machine by a new one, which costs Euro 900.

(a) The following maintenance policy is applied. The machine is replaced by a new one after τ1

years. If the machine fails before the time τ1, then minimal repair is applied. Determine the

value of τ1 which leads to the lowest average costs per year. How large are the average costs

for this τ1?

(b) Suppose now that at time τ1 as obtained under a) the machine receives a thorough revision,

which is such that the failure rate is brought back to the level of time τ1− 2. The price of this

revision is Euro 300. The time needed for this revision is small and may be neglected. Next,

at time τ2 > τ1, the machine is replaced by a new one. Determine the value of τ2 for which

the average costs are minimal, and give the corresponding average costs.

(c) Which policy is better, the one of a) or the one of b)?

Exercise 3.5. (On the block policy; level: above standard)

A technical system consists of 1000 identical components. For this system, the following block

maintenance policy is applied. The components are inspected at the end of each month. If a

component appears to be broken, then it is immediately replaced by a new one. This costs Euro

30 per component that has to be replaced. After τ periods, τ ∈ N = {1, 2, ...}, all components are

replaced, independently of the fact whether they are broken at that time or not. This costs Euro

10000 for the whole group of components (this is equivalent to Euro 10 per component).
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Let pi, i ∈ N, denote the probability that a new components fails in the i-th month (which is

observed at the end of the i-th month). These probabilities are equal to:

p1 = 0, 10; p2 = 0, 15; p3 = 0, 25; p4 = 0, 25; p5 = 0, 15; p6 = 0, 10; p7 = 0 for all i ≥ 7.

Since the components have a maximal lifetime of 6 months, only block maintenance policies with

τ ≤ 6 are considered.

(a) Let a cycle be defined as the time between two successive moments at which the components

are replaced preventively. To determine the expected cycle costs, one has to determine the

expected number of corrective maintenance actions in a cycle. For that purpose, we define Mt

as the expected number of replacements after t months, t ∈ N. This function may be seen as

the discrete-time version of the renewal function as known from the renewal theory. For Mt,

the following recursive formula holds:

Mt =
t∑
i=1

pi +
t−1∑
i=1

piMt−i , t ∈ N.

Give an intuitive explanation for this formula.

(b) Compute Mt for t = 1, . . . , 6.

(c) Give a formula for the average costs of the block maintenance policy with τ ∈ {1, 2, . . . , 6}.

(d) Determine the optimal value for τ . What are the resulting average costs.

Exercise 3.6. (On the failure-based and minimal repair policy; old exam exercise; level: standard)

The distribution function of the lifetime of a certain machine is given by

F (x) = 1− e−(2x)1.5 , x ≥ 0 (x in years).

If the machine fails, then one can either replace the machine by a new one or apply a minimal

repair, after which the machine is back in the same shape as just before its breakdown. The costs

of a minimal repair are equal to 2000 Euro, while the costs of replacement by a new machine equal

5000 Euro.

For this machine two maintenance policies are considered: (i) The failure-based maintenance

policy; (ii) The minimal repair policy, under which the machine is replaced by a new one after

each τ time units and minimal repair is applied when a breakdown occurs.

(a) What are the average costs obtained under the failure-based maintenance policy? (Given:

Γ(1.667) = 0.9033.)
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(b) Determine the failure rate function. What can be concluded from the behavior of the failure

rate function for the minimal repair policy?

(c) Determine the minimal average costs that can be obtained by the minimal repair policy.

How large is the difference with respect to the average costs obtained for the failure-based

maintenance policy? Are you surprised by this difference?

Exercise 3.7. (On the age maintenance policy; old exam exercise; level: above standard)

A dealer of an automatic orange juice press currently has about 100 customers. These cus-

tomers are mainly restaurants and bars and each of them has one press.

When a customer buys a new press, he receives a (free) warranty of the manufacturer for

failures within the first 3 years. If a failure occurs within the first 3 years, then the maintenance

department of the manufacturer will replace the failed press by a new one for free. It is known that

the presses are very reliable in the first 3 years, and hence these free replacements occur seldom.

After 3 years, a press can break down at any time. Statistics from the past suggest that the

remaining lifetime after 3 years is exponential with mean 1.5 years. As a result, the lifetime

distribution of a new press may be approximated by the following distribution:

F (t) =

{
0 if 0 ≤ t < 3;

1− e− 2
3

(t−3) if t ≥ 3,
(t in years).

If the press fails after the first 3 years, then a customer will buy a new press at the dealer,

for which he will receive a warranty of 3 years again. The price of a new press is Euro 500 if it

is ordered by the normal procedure. This procedure is used when the press is replaced by a new

one preventively. If a press is only replaced after it has failed, then a new press is ordered and

delivered by the emergency procedure, which leads to additional costs equal to Cemer (in Euro).

These costs are subject to a change and hence Cemer is seen as a variable now.

(a) Determine the failure rate function for the orange juice press. Can you conclude from this

function whether it is sensible, or not, to apply preventive replacements?

Suppose that at each customer, replacements of the press are applied according to an age

policy with parameter τ . The corresponding average costs per year are denoted by g(τ). We also

assume that the customers are rational, i.e. that the τ is chosen such that the average costs g(τ)

are minimized.

(b) Determine the average costs g(τ).

(c) Determine the optimal age policy.
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(d) Currently a customer has to pay Cemer = 200 Euro extra when he orders a new press by the

emergency procedure instead of the standard procedure. The dealer plans to charge 300 Euro

extra from now on. What are the consequences of this increase for both the customers and

the dealer?

Exercise 3.8. (On the age policy; old exam exercise; level: (above) standard)

A machine has an Erlang distributed lifetime with shape parameter k = 2 and scale parameter

λ = 1 (per year). So, the failure distribution is given by:

F (t) = 1− (1 + t)e−t , t ≥ 0 (t in years).

(a) Determine the mean and standard deviation of the lifetime of the machine.

(b) Determine the failure rate function. Is it useful to apply preventive maintenance for this

machine?

The costs for a preventive maintenance action for this machine are equal to 200 Euro. The

costs for a corrective maintenance action are equal to 200 +Cemer Euro, where the factor Cemer ≥
0 represents emergency costs. The higher Cemer the more attractive it is to apply preventive

maintenance. We now consider an age maintenance policy with parameter τ .

(c) Determine the average costs g(τ) for the age policy with parameter τ .

(d) The derivative of g(τ) is denoted by g′(τ). Show that: g′(τ) = 0 if and only if

[(Cemer − 200)τ − (Cemer + 200)] + Cemere
−τ = 0 .

When is g′(τ) > 0? When is g′(τ) < 0?

(e) Intuitively, one would think that it becomes attractive to apply a preventive maintenance

action when the lifetime has become equal to the mean lifetime. What is your opinion on this

intuition?

Exercise 3.9. (On the failure-based and minimal repair policy; level: standard)

The distribution function of the lifetime of a certain machine is given by

F (x) = 1− e−(3x)2 , x ≥ 0 (x in years).

If the machine fails, then one can either replace the machine by a new one or apply a minimal

repair, after which the machine is back in the same shape as just before its breakdown. The costs
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of a minimal repair are equal to 400 Euro, while the costs of replacement by a new machine equal

2000 Euro.

For this machine two maintenance policies are considered: (i) The failure-based maintenance

policy; (ii) The minimal repair policy, under which the machine is replaced by a new one after

each τ time units and minimal repair is applied when a breakdown occurs.

(a) What are the average costs obtained under the failure-based maintenance policy? (Given:

Γ(1.5) = 0.8862.)

(b) Determine the failure rate function. What can be concluded from the behavior of the failure

rate function for the minimal repair policy?

(c) Determine the minimal average costs that can be obtained by the minimal repair policy.

How large is the difference with respect to the average costs obtained for the failure-based

maintenance policy? Are you surprised by this difference?

Exercise 3.10. (On the failure-based and age policy; old exam exercise; level: above standard)

In this exercise we consider a component with a uniform (= homogeneous) failure distribution.

We assume that the part may fail from the beginning. Without loss of generality, we assume that

the maximum lifetime is 1. Hence the failure distribution F (t) is given by F (t) = t, 0 ≤ t ≤ 1.

The component is part of an important machine. As soon as the component fails it has to be

replaced by a new one.

For this component we investigate two maintenance policies, the failure-based policy and the

age policy with parameter τ , 0 ≤ τ ≤ 1. The costs for a planned replacement of the component

are denoted by Cp. The costs for an unplanned replacement are equal to Cu. We assume that

Cu > Cp > 0.

The average costs under the failure-based policy are denoted by gfb. The average costs under

the age policy with parameter τ are denoted by gage(τ). The parameter for which these costs are

minimized is denoted by τ ∗ and g∗age = gage(τ
∗). The ratio (gfb − g∗age)/gfb denotes the relative

savings that are obtained under the optimal age policy in comparison to the failure-based policy.

We are interested in how large these savings are as a function of the ratio Cu/Cp.

(a) Determine gfb.

(b) Determine gage(τ), 0 < τ ≤ 1.

(c) Determine the derivative g′age(τ) of gage(τ) and show that

g′age(τ) = 0 ⇔ 1

2

(
Cu
Cp
− 1

)
τ 2 + τ − 1 = 0 ,
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and similarly with the ”=”-sign replaced by the ”>”- and ”<”-sign, respectively.

(d) Show that

τ ∗ =

√
1 + 2

(
Cu
Cp
− 1
)
− 1(

Cu
Cp
− 1
) .

(e) Compute (gfb − g∗age)/gfb for Cu
Cp
↓ 1 and for Cu

Cp
= 2, 5, 13.

(f) Give your opinion on the relative savings that are possible by the age policy in comparison to

the failure-based policy.

Exercise 3.11. (On block replacement, above standard)

A wind-turbine park in the north-sea consists of 10 identical turbines. Each month, a mainte-

nance engineer visits the park and repairs turbines that have failed. Such a repair brings them to

as good as new condition and costs of 500AC per turbine. Once every τ months, a team of engineers

visits the wind-turbine park to maintain all turbines and return them to as good as new condition.

This preventive maintenance costs 2000AC for the entire park. The lifetime of any turbine has a

right-truncated Weibull distribution with β = 2 and η = 5 and truncation parameter R = 12, i.e.,

the probability a turbine fails before x months of service is given by:

F (x) =

{
1− exp

(
−(x/η)β

)
, if x < R;

1, if x ≥ R.

This means that the lifetime of a turbine has a Weibull distribution up to time R, but is certain

to fail at time R if it has not failed before time R. Let pi = F (i)− F (i− 1) for i ∈ {1, . . . , 12}

(a) Suppose that preventive maintenance is never conducted (τ =∞). How many visits will the

maintenance engineer pay to an arbitrary turbine until he finds that it has failed? Give an

expression in terms of pi and compute the numerical answer.

(b) Now suppose that we want to determine the monthly cost as a function of τ . To determine

the expected cycle costs, one has to determine the expected number of corrective maintenance

actions in a cycle. For that purpose, we define Mt as the expected number of turbine repairs

after t months, t ∈ N. This function may be seen as the discrete-time version of the renewal

function as known from the renewal theory. For Mt, the following recursive formula holds:

Mt =
t∑
i=1

pi +
t−1∑
i=1

piMt−i , t ∈ N.

Give an intuitive explanation for this formula.
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(c) Compute Mt for t = 1, . . . , 12.

(d) Give a formula for the average monthly cost of the block maintenance policy with τ ∈
{1, 2, . . . , 12}.

(e) Determine the optimal value for τ . What is the resulting average monthly cost?

Exercise 3.12. (Age replacement and failure rate, standard)

A machine has an Erlang distributed lifetime with shape parameter k = 2 and scale parameter

λ = 1 (per year). So, the failure distribution is given by

F (x) = 1− (1 + x) e−x , x ≥ 0 (x in years).

We assume that the machine is needed for an infinite horizon. Corrective maintenance is executed

when the machine fails, after which the machine is as good as new. Preventive maintenance is

also possible. Also after preventive maintenance, the machine is as good as new. The costs of

a preventive maintenance action are equal to 500AC. For a corrective maintenance action, the

costs are 7000AC because unplanned maintenance interrupts the production process in which the

machine functions.

(a) Currently a failure-based policy is followed. Determine the yearly average costs under this

policy.

(b) Could it be useful to apply preventive maintenance for this machine? Why (not)?

(c) We consider an age policy as an alternative for the failure-based policy. Assume that preventive

maintenance is executed as soon as the failure rate (also called hazard rate) reaches the value

of 1
6

failures per year. If the machine fails before that time point, then corrective maintenance

is executed. Determine the parameter τ0 of the resulting age policy (i.e., the policy that

executes preventive maintenance when the component age reaches τ0 years).

(d) Let g(τ) be the average yearly costs of the age policy with parameter τ . Derive the formula

for g(τ).

(e) Determine the average yearly costs g(τ0) of the age policy as described under c). How large is

the difference with respect to the average cost obtained for the failure-based policy? Do you

find this difference surprising? Why (not)?

Exercise 3.13. (All policies, Old exam, above standard)

We consider 12 solar-energy collectors (collector for short) that are stationed in the desert.

The lifetime of each collector is independently and uniformly distributed between 4 and 8 months.
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To perform maintenance on these collectors, an engineer needs to drive into the desert. A planned

visit costs 2750 Euro and an unplanned visit costs 5000 Euro. There are material maintenance

cost of 250 Euro per collector that is maintained preventively and 1000 Euro per collector that

is maintained correctively. (You may assume that material needed for maintenance is always

available). Failures of collectors are observed immediately because the voltage generated by the

solar park drops after a failure occurs.

(a) Can it be beneficial to perform preventive maintenance on collectors? Why (not)?

(b) Suppose that a failure-based maintenance policy is used to maintain these collectors. What

would be the annual total maintenance cost in this case?

(c) Suppose that an age based is used to maintain these collectors separately. What is the annual

cost of an optimal age-based maintenance policy and when should collectors be replaced under

such a policy?

(d) Management decides that it is silly to drive all the way into the desert (and pay either 3000

or 5000 Euro) to maintain only one collector. If an engineer can maintain multiple collectors

during a visit, this might save money. Explain what a block policy is and how it can be used

to avoid driving into the desert to fix only one collector.

(e) An engineer claims that under a block policy, the optimal time between block replacements,

denoted by τ ∗, satisfies 4 ≤ τ ∗ ≤ 8 (time measured in months). He further claims that any

collector can fail at most once between block replacements. Is the engineer correct? Why

(not)?

(f) Determine the annual cost and maintenance interval for an optimal block maintenance policy.

(Hint: use the results from (e) to determine the renewal function.)

Exercise 3.14. (Deterministic maintenance, above standard)

Consider the air filter of a car. The price for replacing an air filter is 80 Euro. Suppose this

car is driven 2000 km/month and petrol costs 1.50 Euro/l. With a new air filter, the car can drive

15 km/l, but this decreases by 1 km/l/month.

(a) Suppose you start with a new air filter. Show that up to time 0 ≤ t ≤ 15 (in months) the

total amount of money (in Euros) spent on petrol is∫ t

0

3000

15− x
dx

when we do not replace the filter. (Hint: What are the fuel consumption rate and the money

consumption rate at any time?)
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(b) Use substitution to show that∫ t

0

3000

15− x
dx = 3000 ln

(
15

15− t

)
(c) Consider the usage based policy in which the filter is replaced every τ time units. Use (a) and

(b) to give an expression for the costs per time unit for a given τ , and evaluate this expression

for τ = 1, 2, 3, 4, 5.

(d) Suppose that you would like to replace your air filter after an integer number of months, when

should you replace your air filter?

3.3.1 Solutions

We provide answers/solutions for all exercises and complete solutions for the last few exercises.

Solution 3.1. Average costs: g(τ) = 60000+2000τ
20τ−τ2 Euro per month; Optimal age-based policy: τ ∗

= 8.73 months; g(τ ∗) = 787 Euro per month.

Solution 3.2. (a) h(t) = 4t
1+2t

, t ≥ 0.

(b) τ = 0.5 years.

(c) α = 4/3 is equivalent with τ = 1 year.

g(τ) = 700−200(1+2τ)e−2τ

1−(1+τ)e−2τ , τ ≥ 0.

The engineer is right since g(0.5) = 1234 Euro per year < 848 Euro per year = g(1); g(1) −
g(0.5) = 386 Euro per year.

Solution 3.3. (a)

h(t) =

{
0 if 0 ≤ t < d;

β (t−d)β−1

ηβ
if t ≥ d.

h(t) = 0 on [0, d); on [d,∞), h(t) is constant if β = 1 (equal to η−1), h(t) is increasing if β > 1,

and h(t) is decreasing if 0 < β < 1.

(b) Only if d = 0 and 0 < β ≤ 1, it can be said beforehand that it is not useful to apply preventive

maintenance. In all other cases, i.e. if d > 0 or β > 1, it depends on the costs for the different

maintenance actions whether preventive maintenance is useful or not.

(c) µ = 3.54 months.

(d) 97.3 %



Arts: Maintenance Modeling and Optimization 49

Solution 3.4. (a) g(τ1) = 900
τ1

+ 100τ1 Euro per year, τ1 ≥ 0.

τ ∗1 = 3 year; g(τ ∗1 ) = 600 Euro per year.

(For comparison: the no preventive maintenance policy would lead to average costs equal to

1016 Euro per year.)

(b) Average costs as a function of τ2: 2400
τ2

+ 100τ2 − 400, τ2 ≥ τ1.

τ ∗2 = 2
√

6 = 4.9 years; the corresponding average costs are equal to 580 Euro per year.

(c) The policy of b) is slightly better; it is 20 Euro per year cheaper than the policy of a).

Solution 3.5. (b) M1 = 0.10; M2 = 0.26; M3 = 0.541; M4 = 0.868; M5 = 1.158; M6 = 1.461.

(c) g(τ) = 10000(1+3Mτ−1)
τ

Euro per month. (Note that at time τ everything is replaced.)

(d) τ ∗ = 3 months; g(τ ∗) = 5933 Euro per month.

Solution 3.6. (a) 11071 Euro per year.

(b) h(x) = 3
√

2 ·
√
x, x ≥ 0. The failure rate function is increasing and goes to infinity if x→∞.

Hence, we will find a finite value for the optimal τ for the minimal repair policy.

(c) τ ∗ = 1.46 years; g(τ ∗) = 10260 Euro per year; difference = 811 Euro per year.

Solution 3.7. (a)

h(t) =

{
0 if 0 ≤ t < 3;
2
3

if t ≥ 3;

This function is increasing, and hence preventive maintenance may be sensible.

(b) Since the failure rate is 0 on [0, 3), only values for τ with τ ≥ 3 are interesting;

g(τ) =
500 + Cemer(1− e−

2
3

(τ−3))

3 + 3
2
(1− e− 2

3
(τ−3))

, τ ≥ 3.

(c) By analyzing g′(τ), it may be shown that g(τ) is strictly increasing on [3,∞) if Cemer > 250

Euro, constant if Cemer = 250 Euro, and strictly decreasing if Cemer < 250 Euro. Hence,

τ ∗ = 3 if Cemer > 250 Euro, τ ∗ = ∞ if Cemer < 250 Euro, and τ ∗ may be taken equal to any

value in [3,∞) if Cemer = 250 Euro.

(d) In the current situation, Cemer = 200 Euro, and hence: (i) τ ∗ =∞ and g(τ ∗) = 156 Euro per

year; (ii) Customers replace their orange juice press only correctively, on average once per 4.5

years; (iii) The dealer sells on average 100
4.5

= 22.2 presses per year.
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If Cemer is increased to 300 Euro, then: (i) τ ∗ becomes equal to 3 years and g(τ ∗) = 167 Euro

per year; (ii) Customers start to replace their orange juice preventively each 3 years; (iii) The

dealer sells on average 100
3

= 33.3 presses per year.

Solution 3.8. (a) 2 years and 1.41 years, respectively.

(b) h(t) = t
t+1

, t ≥ 0. The failure rate function is increasing, and thus preventive maintenance

may be sensible.

(c)

g(τ) =
200 + Cemer[1− (1 + τ)e−τ ]

2− (2 + τ)e−τ
, τ ≥ 0.

(d) g′(τ) > 0 if and only if [(Cemer − 200)τ − (Cemer + 200)] + Cemere
−τ > 0;

g′(τ) < 0 if and only if [(Cemer − 200)τ − (Cemer + 200)] + Cemere
−τ < 0.

(e) The following appears to hold:

• If Cemer = 528 Euro, then it is optimal to apply preventive maintenance when the lifetime

has reached the mean lifetime;

• If Cemer > 528 Euro, then it is sensible to apply preventive maintenance when the lifetime

has reached the mean lifetime, but earlier is even better;

• If Cemer < 528 Euro, then it is better to wait longer with applying preventive mainte-

nance, and no preventive maintenance should be applied at all in case Cemer ≤ 200.

Solution 3.9. (a) 6770 Euro per year.

(b) h(x) = 18x, x ≥ 0. The failure rate function is increasing and goes to infinity if x → ∞.

Hence, we will find a finite value for the optimal τ for the minimal repair policy.

(c) τ ∗ = 0.75 years; g(τ ∗) = 5367 Euro per year; difference = 1403 Euro per year.

Solution 3.10. (a) gfb = 2Cu.

(b)

gage(τ) =
Cp + (Cu − Cp)τ
−1

2
τ 2 + τ

, 0 < τ ≤ 1.

(c) 0 % if Cu
Cp
↓ 1; 6.7 % if Cu

Cp
= 2; 20 % if Cu

Cp
= 5; 31 % if Cu

Cp
= 13.

Solution 3.11. (a) Let N be the number of visits a maintenance engineer pays to an arbitrary

turbine until he finds that it has failed. Then P{N = i} = pi and so E[N ] =
∑12

i=1 ipi = 4.9263.
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(b) The first term of Mt is the expected number of times the first turbine will fail in (0, t). The

second term described the expected number of turbine failures beyond the first failure. To

find the expected number of turbine failures beyond the first, we condition on the failure time

of the first turbine: If the first turbine fails in period i (with probability pi), then the expected

number of remaining failures is Mt−i.

(c) Filling in the given equation, we find:

t 1 2 3 4 5 6 7 8 9 10 11 12

Mt 0.0392 0.1494 0.3124 0.5072 0.7157 0.9262 1.1338 1.3379 1.5401 1.7419 1.9440 2.1498

(d) Note that there are 10 turbines and that turbines that fail between τ−1 and τ are maintained

at a cost of 200 Euro per turbine. Let Cu = 500 and Cp = 2000 and let g(τ) be the average

monthly cost for the entire park under a block replacement policy with interval τ ; then we

find

g(τ) =
10CuMτ−1 + Cp

τ
=

5000Mτ−1 + 2000

τ

(e) First observe that because a turbine always fails within 12 months the optimal τ ∈ {1, ..., 12}.
Thus, using the answers of (c) and (d) we find:

τ 1 2 3 4 5 6 7 8 9 10 11 12

g(τ) 2000.00 1098.03 915.66 890.55 907.25 929.76 947.29 958.60 965.50 970.05 973.59 976.68

From this we conclude that the optimal τ is 4 months and that the optimal average monthly

cost is 890.55 Euro.

Solution 3.12. (a) Let X be the lifetime of a machine. For a failure based policy ECC = 7000

Euro and since X has an Erlang distribution with k = 2 and λ = 1, ECL = k/λ = 2 years.

Combining we find that the average yearly cost under a failure based policy is ECC/ECL =

7000/2 = 3500 Euro per year.

(b) It is only useful to apply preventive maintenance for machines that have an increasing failure

rate. An Erlang distribution with k ≥ 2 has an increasing failure rate and so it might be

useful to apply preventive maintenance in this case.

(c) The failure rate of X is given by h(x) = f(x)/(1−F (x)) = x/(x+ 1). Setting h(x) = 1/6 and

solving for x yields τ0 = 1/5 = 0.2.

(d) Setting Cu = 7000 and Cp = 500 for an age based policy, we obtain

g(τ) =
7000(1− (1 + τ)e−τ ) + 500(1 + τ)e−τ∫ τ

0
x2e−xdx+ (τ 2 + τ)e−τ

(3.20)
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Working out the integral in the denominator using integration by parts twice, we have∫ τ

0

x2e−xdx =
[
−x2e−x

]τ
0

+ 2

∫ τ

0

xe−xdx

= −τ 2e−τ + 2

(
[−xe−x]τ0 +

∫ τ

0

e−xdx

)
= −τ 2e−τ + 2

(
−τe−τ + [−e−x]τ0

)
= −τ 2e−τ − 2τe−τ − 2e−τ + 2

= −e−τ (τ 2 + 2τ + 2) + 2 (3.21)

Now substituting (3.21) back into (3.20), we find:

g(τ) =
7000(1− (1 + τ)e−τ ) + 500(1 + τ)e−τ

−e−τ (τ 2 + 2τ + 2) + 2 + (τ 2 + τ)e−τ
=

7000− 6500(1 + τ)e−τ

−e−τ (τ + 2) + 2
(3.22)

(e) Filling in (3.22), we find g(τ0) = g(0.2) = 3088.15 Euro per year. This is not surprising

because Cp is much smaller than Cu and X has IFR. It is perhaps surprising that the benefit

is 11.86% already, even though τ0 is not the optimal τ for an age based policy.

Solution 3.13. (a) Yes, because the uniform distribution has increasing failure rate and because

preventive maintenance is cheaper than corrective maintenance.

(b) ECC = Cu = 5000 + 1000 = 6000, ECL = µ = (8 + 4)/2 = 6, Cost per collector are

6000/6=1000 Euro per month. For the whole collector park, it is 12 · 1000 = 12000 Euro per

month.

(c) Let τ denote the replacement threshold. Define

f(x) =

{
1/4, if 4 ≤ x ≤ 8;

0, otherwise;
F (x) =


0, if x < 4;

(x− 4)/4, if 4 ≤ x ≤ 8;

1, if x ≥ 8.

Then for 4 ≤ τ ≤ 8:

ECC = 6000F (τ) + 3000(1− F (τ)) = 6000
τ − 4

4
+ 3000

8− τ
4

= 750τ, (3.23)

ECL =

∫ τ

4

t
1

4
dt+

8− τ
4

τ = 2τ − τ 2/8− 2, (3.24)

(3.25)
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Setting g′(τ) = d
dτ

ECC
ECL

= 0 yields the following quadratic equation for τ ∗:

750

8
τ 2 − 1500 = 0

which yields τ ∗ =
√

16 = 4.0. This means the complete costs for the solar park are 12g(4) =

9000.00 Euro per month.

(d) In a block policy, all 12 solar panels are maintained preventively simultaneously every τ

months. Therefore, we only need to pay the 5000 Euro to drive into the desert once for 12

collectors for each block maintenance moment.

(e) Before 4 months, collectors cannot fail and after 8 months they will all fail for sure so 4 ≤
τ ∗ ≤ 8. Since the time between failures is at least 4, there can happen only one failure in any

interval of length less than 8.

(f) Observe (by arguments of (e)) that M(t) = F (t) for 4 ≤ t ≤ 8. Now we define a cycle for all

12 collectors together. We have:

ECC = 12M(τ)6000 + 2750 + 12 · 250 = 18000τ − 66250, (3.26)

ECL = τ (3.27)

g(τ) = ECC/ECL = 18000− 66250/τ, (3.28)

Observe that g is increasing in τ for τ > 0, so τ ∗ = 4. Therefore, the costs for maintaining

the whole solar park will be 18000-66250/4=1437.50 Euro per month.

Solution 3.14. (a) At time t, the car can drive 15− t km/l, so the fuel consumption rate at time

t is 2000/(15 − t) l/month. Since a liter of petrol costs 1.5 Euro/l, the money consumption

rate at time t is 1.5 · 2000/(15 − t) = 3000/(15− t). The total costs incurred up to time t is

the integral of the money consumption rate from 0 to t.

(b) We use the substitution u = 15− x so −du = dx.∫ t

0

3000

15− x
dx = −3000

∫ 15−t

15

1

u
du

= −3000 [ln(u)]u=15−t
u=15

= 3000(ln(15)− ln(15− t))

= 3000 ln

(
15

15− t

)
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(c) Let g(τ) denote the costs per time unit.

g(τ) =
3000

τ
ln

(
15

15− τ

)
+

80

τ

Now it is straightforward to compute:

τ 1 2 3 4 5

g(τ) 286.9786 254.6513 249.8102 252.6162 259.2791

(d) The filter should be replaced every three months.



Chapter 4

Degradation Models

“Essentially all models are wrong, but some

are useful.”

George Box

We need to understand how assets and components degrade before we can use this understand-

ing to make better maintenance decisions based on the condition, rather than the age of an asset

or component. An indicator of the condition/degradation level of a component depends heavily

on the technology. The condition of a break-pad, for example, is its thickness. The thickness of

break-pads can be measured periodically when a vehicle enters the maintenance shop, but with

modern sensing technology, it is also possible to monitor it continuously over time. In either case,

we need to model the way the thickness of the break-pad evolves over time, and use data to fit such

models. Modern high-tech equipment generates many signals from sensors in the equipment that

monitor such things as vibration amplitude, temperature, light intensity, concentration of con-

taminants in lubrication fluids, deformation, and position of parts relative to each other. Figure

4.1 shows several modern sensors that are used to measure several physical quantities over time.

These measurements provide information about the condition of equipment and are generated

in increasing abundance. Using this data is an important field within the big-data movement,

partially because this application is devoid of most privacy issues. This chapter is devoted to

the development of degradation models, with a special emphasis on Markov degradation models.

In Chapter 5, we will use these models to evaluate and optimize condition based maintenance

policies.

There are 3 main types of degradation processes that are most commonly used in practice

and literature. We treat representative models from all three classes. However, there are some

55
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Vibration

Figure 4.1: Different types of sensors that are used to monitor equipment.

common notions and notations that we introduce here. A degradation process is a stochastic

process X(t). We will assume for convenience that X(0) = 01. There is a threshold L such that a

component fails at time T = inf{t|X(t) ≥ L}; see Figure 4.3. We assume that limt→∞X(t) ≥ L

with probability one, i.e., a component will fail eventually. We call a stochastic process X(t)

that satisfies this condition a degradation process. Figure 4.3 depicts a degradation path of a

roller bearing. For roller bearings (see Figure 4.2), a good condition measure is the amplitude of

vibrations as measured by an accelerometer.

4.1. Random Coefficient Models

Suppose that X(t) is given by some function X(t) = f(t|θ) where θ = (θ1, . . . , θn) are the param-

eters (or coefficients) of the function f(t). Examples of this are X(t) = θt and X(t) = θ1t+ θ2

√
t.

1If X(0) = a 6= 0, we can study the process X̃(t) = X(t)− a.
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Figure 4.2: An example of a roller bearing.
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Figure 4.3: A sample degradation path of a ball bearing.

The degradation path is deterministic if θ is known (and one such case is covered in Section 3.1).

However, we will assume that θ is a random variable. X(t) then becomes a stochastic process,

although a finite number of samples of X(t) will allow you to compute the realization of θ and

therefore reveal the entire future degradation path. In general, if θ = (θ1, θ2, . . . , θn), then n sam-

ples of X(t) at different points in time will give you n equations in the n unknown variables so

that the future degradation path is known deterministically from then on. This is a rather strange

model feature that makes random coefficient models inappropriate in maintenance models where

X(t) is inspected more than n times; see also van Noortwijk (2009). Despite this, the random
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coefficient model is used in much literature, which is why we cover its basics here. We will not

use this degradation model to feed into CBM policies later. The original application of random

coefficient models is to estimate the time-to-failure distribution based on degradation data; see Lu

and Meeker (1993). We provide an example of this below.

Example 4.1. Bernstein distribution. The condition of break-pads is measured by their

thickness in some appropriate unit such as mm. Suppose that X(t) denotes the thickness that

has been lost since a break-pad was new from the factory. Empirically it is found that the

break thickness decreases linearly with time, so that X(t) = θt. Furthermore, a break-pad is

considered to have failed if X(t) grows beyond the failure limit L. Now suppose that θ has a

normal distribution with mean µ and standard deviation σ. Let T be the time to failure of a

break-pad. Now if we wish to determine the time to failure distribution, we have for t > 0:

FT (t) = P(T ≤ t)

= P(X(t) ≥ L)

= P(θt ≥ L)

= P(θ ≥ L/t)

= P
(
θ − µ
σ
≥ L/t− µ

σ

)
= 1− Φ

(
L/t− µ

σ

)
, (4.1)

where Φ(·) is the standard normal distribution. This distribution is called the Bernstein distribu-

tion. We could carry a similar analysis if θ has a different distribution. From this distribution we

can, in principle, determine measures such as the mean time to failure. The assumption that θ has

a normal distribution is somewhat peculiar however, because there is always a positive probability

that θ < 0, and the break-pad will increase in thickness and never fail. This “detail” actually

shows that the mean time to failure of a Bernstein distribution is infinite. However, if P(θ < 0) is

very small, this is often ignored and then the numerical computation of
∫M
t=0

Φ
(
L/t−µ
σ

)
dt for some

large M yields a numerical approximation for E[T ]. �

4.1.1 Fitting procedure for random coefficient models

Suppose there is data from m different degradation paths and let xij denote the degradation

level of path i ∈ {1, . . . ,m} at time tij. Data is available in the form shown in Table 4.1. Least

squares regression is the most commonly used technique to fit random coefficient models. For each
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degradation path i ∈ {1, . . . ,m}, an estimate for θ, θ̂i, is found as the solution to the following

optimization problem:

θ̂i = argminθ

(
n∑
j=1

(f(tij|θ)− xij)2

)
. (4.2)

This optimization problem is simple to solve if f is linear or affine2 in θ (regression). If f is not

linear or affine in θ, then the usual approach is to find a suitable transformation that makes it

affine or linear. These are standard techniques that can be found in books such as Montgomery

and Runger (2007). This procedure will yield an estimate θ̂i for each i ∈ {1, . . . ,m}. From this

sample of size m, one can construct an estimator for the mean of θ, µ̂θ, by its sample average

µ̂θ =
1

m

m∑
k=1

θ̂k, (4.3)

and its variance by

S2
θ =

1

m− 1

m∑
k=1

(θ̂k − µ̂θ)2. (4.4)

These moment estimators can then be used to fit a distribution on the vector θ.

Table 4.1: Data from of past degradation paths

time item 1 Item 1 time item 2 item 2 . . . time item m item m

t1,1 x1,1 t2,1 x2,1 . . . tm,1 xm,1

t1,2 x1,2 t2,2 x2,2 . . . tm,2 xm,2
...

...
...

... . . .
...

...

t1,n x1,n t2,n x2,n . . . tm,n xm,n

Example 4.2. Reconsider the break-pads from Example 4.1. Suppose that the degradation paths

of six units are given as shown in Table 4.2. These degradation data are visualized in Figure 4.4.

We will suppose that f(t|θ) = θt. Note that this is different from a usual linear regression model

because there is no intercept.3 The lack of an intercept is equivalent to the assumption that there

is no degradation when a break-pad is new. Running a least squares fit for each of these units gives

the fits shown in Figure 4.5. The estimators for θ are shown in Table 4.3. The sample mean, µ̂θ,

is 8.91 · 10−5 m and the sample standard deviation Sθ is 1.75 · 10−5 m. We can use these estimates

2A function f : Rn → R is said to be affine if it can be written as f(x) =
∑n

i=1 aixi + b.
3Some care must be taken with computer software here. Most regression packages assume by default that there

is an intercept.
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Figure 4.4: Degradation paths from data shown in Table 4.2.
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Table 4.2: Example degradation data of six break-pads.

Wear of breakpad in 10−5 m

Time (in weeks) 1 2 3 4 5 6

4 35 30 14 106 36 25

8 76 116 41 171 57 36

12 118 143 61 200 77 117

16 129 175 89 222 119 155

20 165 190 112 240 137 173

24 190 260 136 283 190 295

28 207 289 151 301 232 332

32 225 325 173 321 263 363

36 281 340 214 365 290 380

40 298 384 287 399 323 394

44 311 417 300 444 530 403

to fit a normal distribution on θ to obtain the Bernstein model from Example 4.1. Under such an

estimate, P(θ < 0) = 1.8 · 10−7 is indeed negligible. �

Table 4.3: Estimations of θ for Example 4.2.

Component 1 2 3 4 5 6

θ̂ 7.51 9.89 6.20 10.71 8.93 10.24

Remark 4.1. Regression analysis of degradation paths can be a useful tool to find an appropriate

transformation that will “linearize” the degradation data. Therefore, is it useful to do some

exploratory regression analysis on degradation data before fitting more sophisticated models.

4.2. Gamma process

A Gamma process with shape parameter α and scale parameter β is a process such that

1. X(0) = 0
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Figure 4.5: Random coefficient models as fitted by least squares estimates for all components.

2. X(t) has independent increments, that is, if 0 ≤ t1 < t2 < t3, then X(t3) − X(t2) is

independent of X(t2)−X(t1).

3. X(t) has stationary Gamma distributed increments, that is for 0 ≤ t1 < t2, X(t2) −X(t1)

has a Gamma distribution with shape α(t1 − t2) and scale β.

From this definition we may infer some interesting and useful properties of the Gamma process:

1. The distribution of an increment depends only on the length of that increment. For example

X(8)−X(5) has the same distribution as X(5)−X(2), and in general for 0 ≤ t2 < t2 and

s > 0, X(t1 + s)−X(t1) has the same distribution as X(t2 + s)−X(t2).

2. X(t) is non-decreasing over time. Indeed, for any t, ε > 0, X(t+ε) = X(t)+(X(t+ε)−X(t)),

and since X(t+ε)−X(t) has a Gamma distribution, it is non-negative. Therefore X(t+ε) ≥
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X(t). This property is also intuitive for degradation processes: The condition of equipment

should only deteriorate over time, not ameliorate.

3. X(t) is a Markov process, that is, it has the memoryless property. This can easily be verified

by observing that for 0 ≤ t1 < t2:

P(X(t2) ≤ x | (X(t))t≤t1) = P(X(t1) + (X(t2)−X(t1)) ≤ x | (X(t))t≤t1)

= P(X(t1) + (X(t2)−X(t1)) ≤ x | X(t1)). (4.5)

4. The definition of the Gamma process is consistent with known properties of the Gamma

distribution. In particular, for 0 ≤ t1 < t2 we have from the definition that X(t2) has a

Gamma distribution with shape αt2 and scale β. But we also have that X(t2) = (X(t2) −
X(t1)) + (X(t1) −X(0)) so that we must also have shape α(t2 − t1) + α(t1 − 0) = αt2 and

scale β. This works out nicely.

5. The Gamma process and its increments have constant variance-to-mean ratios. E[X(t)] = α
β
t

and Var[X(t)] = α
β2 t so that for all t ≥ 0

Var[X(t)]

E[X(t)]
=

α
β2 t
α
β
t

= β−1. (4.6)

This property also holds for increments, i.e., for any 0 ≤ t1 < t2, Var[X(t2)−X(t1)]
E[X(t2)−X(t1)]

= β−1.

Another property of the Gamma process that is more subtle, and does not follow immediately

from the results above, is that a sample degradation path of a Gamma process is almost nowhere

continuous. Despite this, it is common to plot such paths as if they are continuous. Figure 4.6

shows four sample paths of the same process.

An alternative parameterization of the Gamma process is to let µ = α/β and σ =
√
α/β. This

alternative parameterization is easier to interpret because µ and σ2 represent the increase in mean

and variance respectively of X(t) per unit time, i.e.,

E[X(t)] = µt and Var[X(t)] = σ2t. (4.7)

The original parameters can be recovered from µ and σ as

α =
µ2

σ2
and β =

µ

σ2
. (4.8)

The Gamma process is suitable to model random degradation that is approximately linear

in time. If the original degradation process is not linear, it can often be linearized by applying
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Figure 4.6: Four sample paths of Gamma degradation processes generated by identical processes

appropriate transformations. For example, many mechanical degradation processes are roughly

exponential in time, but after a logarithmic transformation, such processes are also linear. Other-

wise there exist many generalizations of the Gamma process that allow for modeling more involved

non-linear degradation patterns. We refer the reader to van Noortwijk (2009) for an overview of

this.

4.2.1 Fitting procedure for the Gamma process

We will find a fit for the Gamma process by estimating the (alternative) parameters µ and σ

because they are easier to interpret. The original parameters α and β can then be found via (4.8).

We will use the method of moments. Another commonly used method is maximum likelihood

estimation, see van Noortwijk (2009). Data is assumed to be available in the same form as
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explained in Section 4.1.1 and shown in Table 4.1. For convenience assume that ti,1 > 0 and define

ti,0 = 0 and xi,0 = 0. Thus, the first measurement is taken after the initial use of an item, and

there is no initial degradation4. Let ∆xij = xi,j − xi,j−1 and ∆tij = ti,j − ti,j−1 for j ∈ {1, . . . , n}.
We assume that the times at which data are collected are independent of the degradation levels.

Now suppose that ∆tij = t is constant for all measurements. Then ∆xij are i.i.d. samples

of a Gamma distribution with mean µt and variance σ2t. Unbiased estimators for µ and σ2 are

therefore given by correcting the sample average and variance for the time length t:

µ̂ =
1

mnt

m∑
i=1

n∑
j=1

∆xij, σ̂2 =
1

t

1

mn− 1

m∑
i=1

n∑
j=1

(∆xij − µ̂t)2. (4.9)

When tij is not the same for all measurements, some care needs to be taken. The following theorem

shows how to estimate µ and σ2 in this case.

Theorem 4.1. Unbiased estimators for µ and σ2 are given by

µ̂ =

∑m
i=1

∑n
j=1 ∆xij∑m

i=1

∑n
j=1 ∆tij

and σ̂2 =

∑m
i=1

∑n
j=1(∆xij − µ̂∆tij)

2∑m
i=1

∑n
j=1 ∆tij − 1∑m

i=1

∑n
j=1 ∆tij

∑m
i=1

∑n
j=1(∆tij)2

. (4.10)

Proof. Let Xij denote the random variable of which xij is a realization. Observe that

E
[∑m

i=1

∑n
j=1 ∆Xij

]
=
∑m

i=1

∑n
j=1 µ∆tij. (4.11)

Rearrangement proves that µ̂ is unbiased.

Next we will compute the expectation of the numerator of σ̂2 to show that the denominator of

σ̂2 is correct:

E
[∑m

i=1

∑n
j=1

(
∆Xij −

∑m
k=1

∑n
l=1 ∆Xkl∑m

k=1

∑n
l=1 ∆tkl

∆tij

)2
]

= E
[∑m

i=1

∑n
j=1

(
(∆Xij − µ∆tij)−

(∑m
k=1

∑n
l=1 ∆Xkl∑m

k=1

∑n
l=1 ∆tkl

∆tij − µ∆tij

))2
]

=
∑m

i=1

∑n
j=1 E [(∆Xij − µ∆tij)

2]

− 2
∑m

i=1

∑n
j=1 E

[
(∆Xij − µ∆tij)

(∑m
k=1

∑n
l=1 ∆Xkl∑m

k=1

∑n
l=1 ∆tkl

∆tij − µ∆tij

)]
+
∑m

i=1

∑n
j=1 E

[(∑m
k=1

∑n
k=1 ∆Xkl∑m

k=1

∑n
l=1 ∆tkl

∆tij − µ∆tij

)2
]
. (4.12)

4These assumptions are not difficult to relax, but they make the notation and ideas in this section more trans-

parent.
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For convenience, we will work out each of the three terms above separately. The first term simplifies

to ∑m
i=1

∑n
j=1 E [(∆Xij − µ∆tij)

2] = σ2
∑m

i=1

∑n
j=1 ∆tij. (4.13)

The second term simplifies as

m∑
i=1

n∑
j=1

E
[
(∆Xij − µ∆tij)

(∑m
k=1

∑n
l=1 ∆Xkl∑m

k=1

∑n
l=1 ∆tkl

∆tij − µ∆tij

)]

=
m∑
i=1

n∑
j=1

∆tij∑m
k=1

∑n
l=1 ∆tkl

E [(∆Xij − µ∆tij) (
∑m

k=1

∑n
l=1 ∆Xkl − µ

∑m
k=1

∑n
l=1 ∆tkl)]

=
1∑m

k=1

∑n
l=1 ∆tkl

m∑
i=1

n∑
j=1

m∑
k=1

n∑
l=1

∆tijCov(∆Xij,∆Xk,l)

=
1∑m

k=1

∑n
l=1 ∆tkl

m∑
i=1

n∑
j=1

∆tijVar[∆Xij]

=
1∑m

k=1

∑n
l=1 ∆tkl

m∑
i=1

n∑
j=1

∆tijσ
2∆tij

=
σ2∑m

k=1

∑n
l=1 ∆tkl

m∑
i=1

n∑
j=1

(∆tij)
2, (4.14)

where the third inequality follows from the independent increments of the Gamma process which

implies that Cov(∆Xij,∆Xkl) = 0 whenever (i, j) 6= (k, l). The final term simplifies as follows:

m∑
i=1

n∑
j=1

E

[(∑m
k=1

∑n
l=1 ∆Xkl∑m

k=1

∑n
l=1 ∆tkl

∆tij − µ∆tij

)2
]

=
m∑
i=1

n∑
j=1

E

[
(∆tij)

2

(∑m
k=1

∑n
l=1 ∆Xkl∑m

k=1

∑n
l=1 ∆tkl

− µ
)2
]

=
m∑
i=1

n∑
j=1

(∆tij)
2Var

[∑m
k=1

∑n
l=1 ∆Xkl∑m

k=1

∑n
l=1 ∆tkl

]

=
m∑
i=1

n∑
j=1

(∆tij)
2Var [

∑m
k=1

∑n
l=1 ∆Xkl]

(
∑m

k=1

∑n
l=1 ∆tkl)

2

=
m∑
i=1

n∑
j=1

(∆tij)
2σ

2
∑m

k=1

∑n
l=1 ∆tkl

(
∑m

k=1

∑n
l=1 ∆tkl)

2

=
σ2∑m

k=1

∑n
l=1 ∆tkl

m∑
i=1

n∑
j=1

(∆tij)
2 (4.15)
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Now combining the three results above we find that

E
[∑m

i=1

∑n
j=1

(
∆Xij −

∑m
k=1

∑n
l=1 ∆Xkl∑m

k=1

∑n
l=1 ∆tkl

∆tij

)2
]

= σ2
∑m

i=1

∑n
j=1 ∆tij − 2∑m

k=1

∑n
l=1 ∆tkl

σ2
∑m

i=1

∑n
j=1(∆tij)

2 + 1∑m
k=1

∑n
l=1 ∆tkl

σ2
∑m

i=1

∑n
j=1(∆tij)

2

= σ2
(∑m

i=1

∑n
j=1 ∆tij − 1∑m

k=1

∑n
l=1 ∆tkl

∑m
i=1

∑n
j=1(∆tij)

2
)

(4.16)

Rearranging the last expression completes the proof.

We remark that there also exist maximum likelihood estimators for the Gamma process, but

these are much more involved and require the numerical solution of non-linear equations. Further-

more, the Gamma process can be generalized to allow for non-stationary (but still independent

increments) so that non-linear degradation behavior can also be modeled. These non-stationary

processes can be fit on data in a similar manner. Interested readers are referred to Zhu (2015) or

van Noortwijk (2009).

Example 4.3. Reconsider the data set from Example 4.2 in Table 4.2 depicted in Figure 4.4.

This data set has ∆tij = t = 4 for all i, j. Therefore we can use either (4.9) or Theorem 4.1 to

yield µ̂ = 9.1098 and σ̂2 = 234.7164. Using (4.8) we find the estimates for the original parameters

α̂ = 0.3536 and β̂ = 0.0388. We simulated this fitted model four times to verify that the fit is

reasonable; compare Figures 4.4 and 4.7.

4.3. Markov degradation processes

This section studies discrete state Markov processes. The Gamma process is also a Markov process

in the sense that is has the Markov (memoryless) property, but it is also a continuous state

process. This section deals with processes where the degradation state is countable and in many

cases even finite. The tools we will use are discrete and continuous time Markov chains as well

as semi-Markov processes. Such processes are convenient modeling tools because they lead to

computational schemes that are straightforward later on when we will study condition based

maintenance policies.

4.3.1 Erlangian degradation

The simplest model of degradation is where there is a finite number of degradation states and

a component moves through these states sequentially, sojourning in each one for an exponential

amount of time. Each sojourn time also has the same mean and the last state is considered the
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Figure 4.7: Four samples from the Gamma process fitted in Example 4.3.

failed state. The lifetime of such systems is Erlangian (see Section 2.2.3). The state diagram of

an Erlang degradation model is shown in Figure 4.8.

First 

degradation 

condition

Second 

degradation 

condition

Third 

degradation 

condition

Failed stateλλλInitial/New 

condition λ

Figure 4.8: Transition diagram of an Erlang degradation model with 5 phases and transition intensity λ.

When the sojourn times in each state have different means, this model is also called the

Hypoexponential model (not to be confused with the Hyperexponential model). It is usually

difficult to fit these models to real data, but there are some situations where it arises naturally.
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In particular, if a system consists of k cold standby redundant components5, each of which has

an exponential lifetime, then the state of this system can be measured by the number of failed

components. This leads naturally to this model. Some safety critical electrical systems are set-up

this way.

Finally we note that this model is usually formulated in continuous time, but it can also be

formulated in discrete time; see the exercises.

4.3.2 Delay time models

A particularly popular class of Markov degradation models are semi-Markov models with only

three sequential states as shown in Figure 4.9. Since this is a semi-Markov model, the sojourn

time in each state is not necessarily exponential, but can be any distribution with finite mean.

The time until a defect occurs is called time to defect and the time from then until failure is called

delay time.

Defect FailureDelay time
Initial/New 

condition Time to defect

Figure 4.9: Delay time semi-Markov model

Even if the actual degradation measure is a continuous process, it is convenient for engineers

and maintenance managers to work with the delay time degradation model because of its simplicity.

This is illustrated by the following examples:

• The condition of ball bearing is measured by the amplitude of vibrations. This amplitude

is continuous on a certain range. Despite this, it is common practice to divide the whole

range of possible vibration amplitudes in three areas: (1) normal operation, (2) defective

operation, and (3) failure. If we base maintenance decision only on the area in which the

vibration amplitude signal resides, the delay time model occurs naturally.

• The condition of a metal part can be determined by counting the number of cracks and their

length in a visual inspection. Here too it is possible to define an area of normal operation,

defective operation and failure. The delay time degradation model again becomes natural.

5A system has redundant components if is has multiple components of which only one needs to work. As soon

as the working component fails, another component takes over. This components is considered redundant before

it takes over because it was not actually needed to make the system work. A cold standby component does not

degrade unless it is functioning. A warm standby component also degrades while it is still redundant.
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Figure 4.10: The ballast on a railway track and the axle of a train bogie

• The concentration of ferrous parts in the lubrication fluid of a metal system with moving

parts gives a good indication of the condition. Engineers often define control limits such that

if the concentration exceeds these limits, the system is considered defective or failed. Given

these control limits, the delay time model again occurs as a natural degradation model.

Furthermore, the delay time model can also be a natural consequence of the physics of failure.

This occurs in settings where the degradation processes are initiated by an initial defect. The

axle rod of a train is an example where the delay time model is accurate. The axle rod of a train

degrades hardly at all until it is somehow damaged by a rock from the ballast hitting it; see Figure

4.10 for an illustration. After a small crack occurs due to such a random event, a crack in the

metal will grow according to more or less predictable models of crack growth and propagation

from material science. Accidents where the ballast damages the axle rod should occur randomly

and uniformly over time. Therefore a usual assumption is that the time to defect is exponentially

distributed while the delay time is modeled by a distribution with a much smaller coefficient of

variation.

4.3.3 Compound Poisson process

When damage or wear accumulates over time through incidents that occur randomly over time,

then the compound Poisson process is a good degradation model. For example, certain metal

and ceramic components in structures such as trains and aircraft, only degrade when they are

subjected to a load that exceeds some threshold. In materials engineering, it is known that a

metal/ceramic deforms when it is subjected to a force at a given temperature (stress). When

the stress is sufficiently low, a part will return to its original shape when the stress disappears.
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This is called elastic deformation. However, there is a critical stress that depends on the type

of metal/ceramic and the component’s original form. When the stress applied to a component

exceeds this critical level, the part will deform and not return completely to its original form.

This is called plastic deformation. Large plastic deformations can hamper system functioning and

ultimately lead to component rupture. Therefore, the amount of plastic deformation is usually a

good degradation measure. When stress/loads arrive to the system arrive according to a Poisson

process and the size of the stress/load has a certain distribution, then the degradation can be

modeled by a compound Poisson process.

The compound Poisson process is a process where damage arrives according to a Poisson

process with rate λ and the damage done at each arrival is a random variable D. Let N(t) denote

the number of load arrivals in [0, t]. (Recall that N(t) has a Poisson distribution with mean

λt.) Furthermore, let Di denote the damage corresponding to the i-th damage arrival. Then the

degradation process, X(t), is given by

X(t) =

N(t)∑
i=1

Di. (4.17)

Di is also called the compounding random variable and its distribution is called the compounding

distribution. Figure 4.11 shows four sample paths of a compound Poisson degradation process.

Sometimes, we can only observe the degradation at certain points in time 0, τ, 2τ, 3τ, . . .. Let

Xt = X(tτ) for t ∈ N0. Then we can write

Xt = Xt−1 + Zt, (4.18)

where (Zt)t∈N is a sequence of i.i.d. random variables each distributed as
∑N(τ)

i=1 Di. The distri-

bution of Zt depends on λ and the distribution of Di. For convenience we will now assume that

that Di is a discrete random variable on the integers. If this is not originally so, this can be

achieved by discretization and an appropriate choice of measuring unit6. Finding the probability

mass function of Zt involves several steps. First let D(n) =
∑n

i=1 Di. We will now compute the

6For example, if damage is measured by deformation and has a Gamma distribution with mean E[D] = 2.3·10−4m

and standard deviation
√
Var[D] = 1.2 · 10−4m, then we can choose the micrometer (µm=10−6m) as unit and

discretize by setting P(D = x) ≈ FD((x+ 1/2) · 10−6)− FD((x− 1/2) · 10−6) for x ∈ N.
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Figure 4.11: Four sample paths of a compound Poisson degradation process where the compounding distribution

is geometric.

probability mass function of D(2).

P(D(2) = x) = P(D1 +D2 = x)

=
x∑
y=0

P(D1 +D2 = x | D2 = y)P(D2 = y)

=
x∑
y=0

P(D1 = x− y)P(D2 = y). (4.19)

This trick can be applied recursively to find P(D(n) = x) for any n ∈ N:

P(D(n) = x) =
x∑
y=0

P(Dn = x− y)P(D(n−1) = y). (4.20)
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Now we can express the probability mass function of Zt:

P(Zt = x) = P
(∑N(τ)

i=1 Di = x
)

=
∞∑
n=0

P
(∑N(τ)

i=1 Di = x | N(τ) = n
)
P(N(τ) = n)

=
∞∑
n=0

P(D(n) = x)P(N(τ) = n) (4.21)

The infinite summation in (4.21) needs to be truncated at some large value to actually use this

expression for computations. Certain assumptions on the distribution of D yield nice closed form

expressions for the distribution of Zt. If D has a logarithmic distribution with parameter q, then

Zt has a negative binomial distribution with parameters7

p = 1− q, r = − λτ

ln(1− q)
. (4.22)

Thus, if Di has a Logarithmic distribution, then closed form expressions for the distribution of

Zt are available by using (4.22) and Section 2.2.8. In fact, the compound Poisson process with a

logarithmic compounding distribution can also be interpreted as a negative binomial process with

shape r = − λ
ln(1−q) and scale p = 1 − q. The negative binomial process is defined analogously to

the Gamma process:

1. X(0) = 0

2. X(t) has independent increments (because the Poisson process has independent increments.)

That is, if 0 ≤ t1 < t2 < t3, then X(t3)−X(t2) is independent of X(t2)−X(t1).

3. For 0 ≤ t1 < t2, X(t2) − X(t1) has a negative binomial distribution with shape r(t2 − t1)

and scale p.

It is clear by its construction, that the negative binomial process has the same or analogous

properties to the Gamma process:

1. The distribution of an increment depends only on the length of that increment.

2. X(t) is non-decreasing over time.

3. X(t) is a Markov process.

7A proof of this fact is contained in the appendix. Since this proof uses the Laplace domain, we decided to not

put it in the main text.
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4. The definition of the negative binomial process is consistent with known properties of the

negative binomial distribution. In particular, for 0 ≤ t1 < t2 we have from the definition

that X(t2) has negative binomial distribution with shape rt2 and scale p. But we also

have that X(t2) = (X(t2) − X(t1)) + (X(t1) − X(0)) so that we must also have shape

r(t2 − t1) + r(t1 − 0) = rt2 and scale p.

5. The negative binomial process and its increments have constant variance-to-mean ratios.

E[X(t)] = rt1−p
p

and Var[X(t)] = rt1−p
p2

so that for all t ≥ 0

Var[X(t)]

E[X(t)]
=

1

p
≥ 1. (4.23)

This property also holds for increments, i.e., for any 0 ≤ t1 < t2, Var[X(t2)−X(t1)]
E[X(t2)−X(t1)]

= p−1.

4.3.4 Approximating a Gamma process by a compound Poisson process

The compound Poisson process with logarithmic compounding distribution can also be inter-

preted as a negative binomial process that shares many characteristics with the Gamma process;

see Section 4.3.3. Just like the geometric distribution is the discrete analog of the exponential

distribution, the negative binomial distribution is the discrete analog of the Gamma distribution.

If the mean of a Gamma distribution is sufficiently large, a negative binomial distribution with

the same mean and standard deviation usually provides a good fit as shown in Figure 4.12. Such a

discrete fit is convenient in many computational procedures where continuous distributions would

have to be discretized anyway.

To approximate a Gamma process by a negative binomial process, note that the negative

binomial process can be alternatively parameterized by µ = r 1−p
p

and σ2 = r 1−p
p2

too. These

parameters have the same interpretation as under the Gamma process, and can be estimated from

data as shown in Theorem 4.1. Estimators for r and p can then be obtained from the identities

p =
µ

σ2
, r =

p

1− p
µ =

µ2

σ2 − µ
. (4.24)

Example 4.4. Reconsider the break-pads from Example 4.2 and the data from Table 4.2. If we

fit a negative binomial process on these data using Theorem 4.1 and (4.24), we find the estimators

r̂ = 0.36785, p̂ = 0.03881. Using (4.22), this is equivalent to a compound Poisson process with

arrival intensity λ̂ = −r̂ ln(p̂) = 1.195 and logarithmic compounding distribution with parameter

q̂ = 1 − p̂ = 0.9612. Figure 4.13 shows four samples of this fitted compound Poisson process.

These should be compared to the original data in Figure 4.4 and sample paths of the fitted

Gamma process in Figure 4.7.
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Figure 4.12: Four comparisons of Gamma densities and Negative binomial probability mass function all with a

coefficient of variation of 0.6. (CV =
√
Var[X]/E[X] = 0.6)
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Figure 4.13: Four sample paths of a compound Poisson process with logarithmic compounding fit on the data in

Table 4.2
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4.4. Non-stationary processes

THIS SECTION IS STILL TO DO AND NOT MATERIAL FOR AMSL

4.5. Exercises

Exercise 4.1. (Random coefficient model; level: standard; use of computer of graphical calculator

permitted for this exercise.)

One sample degradation path for the degradation of diffusion controlled ageing in the concrete

of a nuclear reactor is given in the Table 4.4 below. (We omit units purposefully.)

Table 4.4: Data of diffusion controlled ageing of the concrete in a nuclear reactor

Time Degradation level

0 0

1 6

2 11

3 13

4 15

5 16

6 18

7 18

8 19

9 21

10 23

11 25

12 24

13 27

14 27

15 29

In order to understand the degradation character, we would like to under stand the functional

form of the degradation path. Let x(t) denote the degradation level at time t.

(a) Suppose that the functional form is given by x(t) = at. Give a point estimate for a based on

this degradation path using least squares regression.

(b) Suppose that the functional form is given by x(t) = at + b. Give a point estimates for a and

b based on this degradation path using least squares regression.
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(c) It is known from literature (Ellingwood and Mori (1993)) that this type of degradation grows

as the square root, i.e., x(t) = a
√
t. Use least squares regression to estimate a for this

degradation model.

(d) A more general functional form is x(t) = atb. Use least squares regression to estimate a and

b. (Hint: a logarithmic transformation may be useful to accomplish this.) Is your estimate

for b close to the 1
2

suggested in the literature?

(e) Suppose that in fact x(t) = a
√
t and a has a normal distribution with mean µ and standard

deviation σ and that failure occurs when x(t) exceeds L for the first time. Let T be the lifetime

of the concrete, i.e., T = inf{t | x(t) ≥ L}. Express P(T ≤ t) in terms of µ, σ, L and the

standard normal random variable. Compute P(T < t) for µ = 7, σ = 1, L = 12 and t = 2.

Exercise 4.2. (Random coefficient model; level: standard; use of computer or graphical calculator

admitted.)

Consider the data set below in Table 4.5 about the degradation of concrete subject to sulphate

attack.

Table 4.5: Concrete sulphate attack degradation data.

Time Degradation level

0 1

1 0

2 0

3 2

4 4

5 4

6 5

7 7

8 8

9 11

10 14

11 18

12 21

13 25

14 28

15 34
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(a) Use this degradation path to fit a linear model (no intercept) and an affine model (linear

model with intercept) using least squares regression. What are the values of the slopes and

intercept?

(b) According to Ellingwood and Mori (1993), degradation of this kind should have a quadratic

form. Fit a quadratic model without intercept and linear term.

(c) Verify whether the quadratic form is appropriate by fitting a general power model of the form

x(t) = atb. What is your estimate for b?

(d) Do you expect the Gamma process to provide a good fit for this data? Why (not)?

Exercise 4.3. (Gamma process and fitting procedure)

An engineer plans to study the degradation of a roller bearing. He has an experimental setup

where he can monitor the degradation signal in continuous time. Storing the entire degradation

signal however is not feasible due to computer memory considerations. He comes up with the

following idea: Each time the degradation signal exceeds 2n, n ∈ N for the first time, both the

degradation signal and the time this happens are recorded. (Note that this will lead to a data set

of the form shown in Table 4.1.) The engineer then plans to use this data to estimate µ and σ

using Theorem 4.1. Do you believe this combination of sampling plan and estimation procedure

is a good idea? Why (not)? If you believe the plan is bad, can you suggest a better alternative?

Exercise 4.4. (Markov and Erlangian models)

The navigation unit on a transatlantic ship is an essential component for safety. A navigation

unit only needs one antenna, but it usually has several redundant antennas for safety considera-

tions. Suppose a system has three antenna: the best one has an exponential lifetime with failure

rate λ and the other two also have an exponential lifetime, but with a higher failure rate of θ.

(a) Suppose that the ship uses only one antenna at any time, starting with the best one. Suppose

that the lifetime of an antenna starts only after it is put into use. Make a Markov model

for the degradation of the antenna unit of the navigation system. What is the mean time to

failure and variance of the time to failure?

(b) Suppose now that the navigation system actually uses all three antennas (so that the lifetime

of each antenna starts immediately) but that the navigation system will remain working as

long as at least one antenna is working. Make a Markov model for the degradation of this

system.

Exercise 4.5. (Erlangian degradation)
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We consider an Erlangian degradation process with 6 states numbered 0, 1, . . . , 5 where 5

denotes the failed state. The rate out of each state to the next degradation state is λ. However,

this system is only inspected every τ time units. Let pij denote the probability of jumping from

state i to state j between inspections.

(a) Give a general expression of pij for i, j ∈ {0, 1 . . . , 5} as a function λ and τ

(b) Compute p0j for j = 0, . . . , 5 if λ = 2 and τ = 1
2
.

Exercise 4.6. (Compound Poisson process; level: advanced)

A particular wing section of an aircraft is loaded whenever turbulence in a specific frequency

range occurs. It is known from data that such turbulences occur 10.0 times per year according to

a Poisson process. The stress experienced at the wing section (Xi) is measured in kN and has an

Erlang distribution with shape k = 2 and scale λ = 1 kN. The wing section only degrades when

the stress exceeds 5.00 kN and the strain/plastic deformtion/degradation is 0.1 mm for every 0.2

kN of stress beyond 5.00 kN.

(a) Argue that the amount of degradation deformation in mm at a turbulence incident is max(0, Xi−
5.0)/(0.2/0.1) = (Xi − 5)+/2, with x+ = max(0, x).

(b) What fraction of turbulence incidents will lead to actual damage? What is the effective arrival

rate if we use the Compound Poisson distribution to model degradation?

(c) Suppose that the aircraft can fail catastrophically when the plastic deformation exceeds 6

mm. If a new aircraft makes a flight and encounters turbulence, what is the probability of a

catastrophe?

(d) Suppose that a turbulence incident leads to degradation. Let Di denote the amount of degra-

dation (and recall that this is conditional on degradation happening in the first place). Find

an expression for P(Di ≤ x).

Exercise 4.7. (Gamma process; level: below standard)

Suppose that the degradation of a component occurs according to a Gamma process with

shape α = 1.2 and scale β = 2. A component fails when the degradation exceeds 15. Compute

the probability that the components is still working at time 5.

Exercise 4.8. (Delay time model; level: standard)

Consider a component whose degradation can be modeled by an exponential time to defect

time with mean 1, and a delay time that is uniform between 0.4 and 0.6. Let T denote the lifetime

of this components. Use conditioning to compute the distribution function of T .
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Exercise 4.9. The degradation data of two pantographs are shown in Table 4.6. The maintenance

engineer would like to fit either a gamma process or a compound Poisson process with logarithmic

compounding on this data.

Table 4.6: Pantograph degradation data of two parts

time 1 degradation 1 time 2 degradation 2

0 0 0 0

13 5 16 7

29 12 28 16

39 18 39 20

55 26 53 27

64 31 70 32

75 34 - -

94 40 - -

106 47 - -

(a) Explain why Theorem 4.1 cannot be applied directly. (Hint: What is n and what is m for

these data?)

(b) The problem highlighted under (a) can be easily fixed by replacing n by nm in Theorem 4.1.

What is the interpretation of nm and what are n1 and n2 for the pantograph data set?

(c) Fit a Gamma process on the pantograph degradation data. What do you find for µ̂, σ̂2, α̂,

and β̂?

(d) Fit a compound Poisson process with logarithmic compounding on the pantograph data. If

you cannot, explain why this is not possible.

(e) Suppose that µ̂ = 5 and σ̂2 = 17. Fit a compound Poisson process based on these estimators.

4.5.1 Solutions

Solution 4.1. (a) â = 2.2089.

(b) â = 1.6147, b̂ = 6.1397.

(c) â = 7.2315.
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(d) x(t) = atb implies also that ln(x(t)) = ln(atb) = ln(a) + ln(tb) = ln(a) + b ln(t). However,

ln(0) = −∞ so that we must omit the first observation from this fitting model. We find the

estimates b̂ = 0.5276 and ˆln(a) = 1.9184 so that â = exp( ˆln(a)) = 6.8103.

(e) P(T ≤ t) = P(a
√
t ≥ L) = P(a ≥ L/

√
t) = 1−Φ((L/

√
t− µ)/σ). P(T < 2) = 1−Φ(12/

√
2−

7) = 0.0687

Solution 4.2. (a) Linear: x(t) = at, â = 1.6944. Affine: x(t) = at+ b, â = 2.1647, b̂ = −4.8603.

(b) Quadratic: x(t) = at2, â = 0.1462.

(c) Power law: x(t) = atb; omit first three observation because of zeros; â = 0.2717, b̂ = 1.7308.

(d) No. The mean of a Gamma process grows linearly with time and this degradation process is

far from linear.

Solution 4.3. This combination of sampling plan and estimation is a bad idea because the time

measurements and degradation measurements will not be independent. Therefore the estimation

procedure is inappropriate. A better alternative is to measure the degradation signal at equally

spaced points in time.

Solution 4.4. (a) The state space for this Markov model is given by (i, j) ∈ {0, 1} × {0, 1, 2}
where i ∈ {0, 1} denotes whether the best antenna is working and j ∈ {0, 1, 2} denotes how

many of the other antennas are working. The transition diagram looks as follows.

(0,2) (0,1) (0,0)qq(1,2) λ

Let T denote the lifetime of the antenna system. We have E[T ] = 1/λ + 2/θ and Var[T ] =

1/λ2 + 2/θ2.

(b) We use the same state space as the previous subquestion. The transition diagram now looks

as follows.

(1,1) (1,0)

(0,0)

λq

(1,2)

2q

(0,2) (0,1)2qλ q

λ
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Solution 4.5. (a) Let X denote a Poisson random variable with mean λτ . Then we have qx =

P(X = x) = (λτ)x

x!
exp(−λτ) and q≥x = 1−

∑
k<x qk. Now we can write:

pij =


qj−i, if j < 5 and i ≤ j;

q≥j−i, if i < j and j = 5;

1, if i = j = 5;

0, if j < i.

(b) Use that qx = λτ
x
qx−1 to find quickly p00 = 0.3679, p0,1 = 0.3679, p0,2 = 0.1839, p0,3 = 0.0613,

p0,4 = 0.0153, and p0,5 = 0.0031.

Solution 4.6. (a) -

(b) Fraction that leads to damage is P(Xi > 5.0) =
∑1

n=0
5n

n!
exp(−5) = 6 exp(−5) = 0.0404.

Effective arrival rate of damage incidents per year is therefore 10.0 · 6e−5 = 0.4043 incidents

per year.

(c) A plastic deformation of 6 mm occurs when Xi > 5 + 0.2 · 6/0.1 = 17 kN. P(Xi > 17) =

18e−17 = 7.4519 · 10−7.

(d)

P(Di ≤ x) = P((Xi − 5)/2 ≤ x | Xi > 5)

=
P((Xi − 5)+/2 ≤ x ∩Xi > 5)

P(Xi > 5)

=
P(5 < Xi ≤ 2x+ 5)

P(Xi > 5)

=
P(Xi ≤ 2x+ 5)− P(Xi ≤ 5)

P(Xi > 5)

=
6e−5 − (2x+ 6)e−2x−5

6e−5
. (4.25)

Solution 4.7. Let X(t) denote the degradation level. Then X(5) has a Gamma distribution with

α = 1.2 · 5 = 6 and β = 2. Let T be the lifetime of the component. Since α is integer we have:

P(T > 5) = P(X(5) > 15) =
∑α−1

n=0
(βL)n

n!
exp(−βL) =

∑5
n=0

30n

n!
exp(−30) = 2.2573 · 10−8.
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Solution 4.8. Let T = X +U where X is exponential with mean 1 and U is uniform between 0.4

and 0.6. We have for t ≥ 0.4 and using the substitution x = −t− u:

P(T ≤ t) = P(X + U ≤ t)

=

∫ 0.6

u=0.4

P(X + U ≤ t | U = u)5du

=

∫ 0.6

u=0.4

5P(X ≤ t− u)du

=

∫ 0.6

u=0.4

5(1− e−(t−u))du

=

∫ 0.6

u=0.4

5du− 5

∫ 0.6

u=0.4

e−(t−u)du

= [5u]0.6u=0.4 + 5

∫ −(t−0.6)

x=−(t−0.4)

exdx

= 1 + 5[ex]
−(t−0.6)
x=−(t−0.4)

= 1 + 5(e−(t−0.6) − e−(t−0.4)). (4.26)

For t < 0.4 a similar derivation can be made.

Solution 4.9. (a) -

(b) nm is the number of measurements for component m. n1 = 8, n2 = 5.

(c) µ̂ = 0.448864, σ̂2 = 0.239513, α̂ = 0.841201, β̂ = 1.874069.

(d) This is not possible because the estimated variance to mean ration σ̂2/µ̂ ≈ 0.5 < 1 and the

negative binomial process must have a variance to mean ratio of at least one.

(e) First we fit a negative binomial process and then reinterpret that as a compound Poisson

process. We find for the negative binomial process p̂ = 5/17 = 0.2941 and r̂ = 52/(17− 5) =

2.0833. Fitting a compound Poisson process we have for the parameter q of the logarithmic

compounding distribution q̂ = 1− p̂ = 0.7059, and for the arrival rate λ̂ = −r̂ ln(p̂) = 2.5495

per time unit.



Chapter 5

Condition Based Maintenance

“There is only one kind of shock worse

than the totally unexpected: the expected

for which one has refused to prepare”

Mary Renault

As in Chapter 3, we are still mostly interested in the questions “When should we perform

maintenance?” and “What is the cost associated with a certain maintenance policy?”. Rather

than only using the usage or age of a component to address these questions, we will use in-

formation about the condition/degradation of components. Chapter 4 provides models for the

condition/degradation level over time of a component as well as fitting procedures. This Chapter

has two main sections. Section 5.1 considers delay time degradation models and focusses on opti-

mizing the length of inspection intervals. Section 5.2 studies discrete state Markovian degradation

and studies what degradation levels should trigger preventive replacement.

5.1. Maintenance policies for delay time degradation

A component degrades according to a delay time model where the time to defect is denoted by

X and the delay time by Y . We assume these random variables have densities and distributions

given by fX(·), fY (·) and FX(·), FY (·) respectively. The next three subsection will make different

assumptions about X, Y and inspection regimes, and show how to evaluate and optimize these

inspection regimes.

85
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Figure 5.1: Sample path of delay time model subject to periodic inspection and emergency corrective maintence

5.1.1 Exponential time to defect and emergency corrective maintenance

Assume that X has an exponential distribution with mean µ−1 and that we inspect the compo-

nent at times τ, 2τ, 3τ . . . after it has been replaced. If a defect is found at one of these inspection

epochs, the component is replaced. We assume that the component will be replaced correctively

immediately after failure in an emergency procedure. (This requires that the failure is self an-

nouncing. If an emergency-break-system fails between inspection epochs, it will likely go unnoticed

and this assumption will not hold. If the component is the crankshaft of an engine, the failure will

be self announcing.) A sample path of this maintenance policy is shown in Figure 5.1. We assume

that inspections cost Ci per inspection. These costs include the cost of performing the inspection

itself, but they may also include the cost for the down-time of the asset while the system is down

for inspection. We will use renewal reward theory to analyze this policy.

Since X has an exponential distribution, a renewal cycle starts at each inspection epoch and

at each corrective replacement. The lack of memory of the exponential distribution is crucial here:

When no defect is found during an inspection, the component can be considered as good as new.

There are three events that can end a renewal cycle: (1) the component fails between inspection

epochs and is replaced correctively, (2) a defect is found during inspection and the component is

replaced preventively, and (3) no defect is found during an inspection epoch and the components

is as good as new. Now to analyze this renewal cycle, we will need the following preliminaries.
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Let T = X + Y and note that by the independence of X and Y we have

P(T ≤ t) = FT (t) = P(X + Y ≤ t)

=

∫ t

x=0

P(X + Y ≤ t | X = x)fX(x)dx

=

∫ t

x=0

FY (t− x)fX(x)dx, (5.1)

and similarly

fT (t) =
d

dt
FT (t) =

∫ t

x=0

fY (t− x)fX(x)dx. (5.2)

The expected cycle length is given by

ECL = E[min(T, τ)] =

∫ τ

x=0

tfT (t)dt+ τ(1− FT (τ)). (5.3)

For the expected cycle cost, we distinguish three types of cycles:

1. A component fails before the next inspection epoch and incurs a cost of Cu. This event

occurs with probability P(T < τ) = FT (τ)

2. A component is defective at the next inspection epoch and incurs a cost of Cp for the

preventive replacement and Ci for the inspection. This event occurs with probability

P(X < τ ∩X + Y > τ) =

∫ τ

x=0

P(X < τ ∩X + Y > τ |X = x)fX(x)dx

=

∫ τ

x=0

P(Y > τ − x)fX(x)dx

=

∫ τ

x=0

(1− FY (τ − x))fX(x)dx. (5.4)

3. A component still functions normally at the next inspection epoch and only incurs the

inspection cost Ci. This event occurs with probability P(X > τ) = 1− FX(τ).

Combining the results of the analysis above we find

ECC = CuFT (τ) + (Ci + Cp)

∫ τ

x=0

(1− FY (τ − x))fX(x)dx+ Ci(1− FX(τ)), (5.5)

so that the cost-rate is g(τ) = ECC/ECL. The optimal inspection interval τ ∗ can be found by

minimizing g(τ). Although g(τ) is not in general convex, it is usually uni-modal such that greedy

algorithms and first order conditions can be used to find the optimum.
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Example 5.1. Consider a part where the time to defect has an exponential distribution with rate

λX = 0.6 and the delay time has an exponential distribution with rate λY = 0.75. The time unit

is years, corrective maintenance costs 1000, preventive maintenance costs 100 and inspections cost

15 EuroS. Now if we let X denote the time to defect, Y the delay time, and T = X + Y , then by

using (5.2) we find

fT (t) =

∫ t

x=0

λXe
−λXxλY e

−λY (t−x)dx

= λXλY

∫ t

x=0

e−λXxeλY xe−λY tdx

= λXλY e
−λY t

∫ t

x=0

e−(λX−λY )xdx

= λXλY e
−λY t

[
e−(λX−λY )x

λY − λX

]t
x=0

= λXλY e
−λY t

[
e−(λX−λY )t

λY − λX
− 1

λY − λX

]
=
λXλY (e−λX t − e−λY t)

λY − λX
. (5.6)

The easiest way to compute FT (t) is now (try this yourself)

FT (t) =

∫ t

x=0

fT (x)dx = 1− λY e
−λX t − λXe−λY t

λY − λX
, (5.7)

so that

ECL =

∫ τ

t=0

t
λXλY (e−λX t − e−λY t)

λY − λX
dt+ τ

λY e
−λXτ − λXe−λY τ

λY − λX

=
λXλY
λY − λX

[
1− e−λXτ (λXτ + 1)

λ2
X

− 1− e−λY τ (λY τ + 1)

λ2
Y

]
+ τ

λY e
−λXτ − λXe−λY τ

λY − λX
, (5.8)

and

ECC = 1000FT (τ) + 15e−λXτ + 115

∫ τ

t=0

λXe
−λX te−λY (τ−t)dt

= 1000FT (τ) + 15e−λXτ + 115λXe
−λY τ

∫ τ

t=0

e−(λX−λY )tdt

= 1000FT (τ) + 15e−λXτ + 115λXe
−λY τ

[
e−(λX−λY )t

λY − λX

]τ
t=0

= 1000FT (τ) + 15e−λXτ + 115λX
e−λXτ − e−λY τ

λY − λX
. (5.9)

Using these expressions we can compute g(τ) = ECC/ECL as shown in Figure 5.2. It is now

easy to verify that g∗ = 157.77 Euro per year and τ ∗ = 0.33 year. Notice that g(τ) is not convex,

but it is uni-modal. �
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Figure 5.2: Annual cost versus inspection interval for the delay time model in Example 5.1

5.1.2 General time to defect and emergency corrective maintenance

We consider a model that is identical to the model in Section 5.1.1 except that X now has a

general distribution rather than an exponential distribution. Refer to Figure 5.1 for the policy we

consider. The analysis for this system is quite different, because inspection epochs need no longer

be renewal points. (Make sure you see why!) However, each time the component is replaced

is a renewal point. Thus there are two type of renewal events: (1) the component is replaced

preventively after an inspection, and (2) the component is replaced correctively after failure. The

probability that the component is replaced preventively at inspection epoch i since the previous
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replacement is given by

P(X + Y > iτ ∩ (i− 1)τ < X < iτ)

=

∫ iτ

x=(i−1)τ

P(X + Y > iτ ∩ (i− 1)τ < X < iτ | X = x)fX(x)dx

=

∫ iτ

x=(i−1)τ

P(Y > iτ − x)fX(x)dx

=

∫ iτ

x=(i−1)τ

(1− FY (iτ − x))fX(x)dx. (5.10)

If we let Z denote the time until the next renewal point starting from a renewal point, then its

distribution P(Z ≤ t) for t ∈ ((i− 1)τ, iτ) and i ∈ N is given by

P(Z ≤ t) = P(X + Y ≤ t ∩ (i− 1)τ < X < iτ) + P(X < (i− 1)τ)

=

∫ iτ

x=(i−1)τ

P(X + Y ≤ t ∩ (i− 1)τ < X < iτ | X = x)fX(x)dx+ FX((i− 1)τ)

=

∫ iτ

x=(i−1)τ

P(Y ≤ t− x)fX(x)dx+ FX((i− 1)τ)

=

∫ iτ

x=(i−1)τ

FY (t− x)fX(x)dx+ FX((i− 1)τ), i ∈ N, t ∈ ((i− 1)τ, iτ). (5.11)

Now from this we have for the density of Z for t ∈ ((i− 1)τ, iτ) and i ∈ N

fZ(t) =
d

dt
P(Z ≤ t)

=
d

dt

∫ iτ

x=(i−1)τ

FY (t− x)fX(x)dx+
d

dt
FX((i− 1)τ)

=

∫ iτ

x=(i−1)τ

fY (t− x)fX(x)dx, t ∈ ((i− 1)τ, iτ), i ∈ N, t ∈ ((i− 1)τ, iτ), (5.12)

where the last equality holds by applying Leibniz’s rule and noting that d
dt
FX((i− 1)τ) = 0.

Combining the results above, we find for the expected cycle length:

ECL =
∞∑
i=1

[∫ iτ

t=(i−1)τ

∫ iτ

x=(i−1)τ

tfX(x)fY (t− x)dxdt+ iτ

∫ iτ

x=(i−1)τ

(1− FY (iτ − x))fX(x)dx

]
.

(5.13)

Now let us analyze the expected cycle cost. If the component fails in the inspection interval

((i − 1)τ, iτ) for some i ∈ N, then the incurred costs over the cycle are (i − 1)Ci + Cu. The

probability of failing in the interval ((i − 1)τ, iτ) follow by a derivation similar to (5.11) (verify

this yourself):

P(X + Y < iτ ∩ (i− 1)τ < X < iτ) =

∫ iτ

x=(i−1)τ

FY (iτ − x)fX(x)dx. (5.14)
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Therefore the expected cost during a cycle due to failure renewal is

∞∑
i=1

[(i− 1)Ci + Cu]

∫ iτ

x=(i−1)τ

FY (iτ − x)fX(x)dx. (5.15)

The cost associated with preventive renewal at inspection epoch i ∈ N is iCi + Cp so that the

expected cost due to preventive renewal is

∞∑
i=1

(iCi + Cp)

∫ iτ

x=(i−1)τ

(1− FY (iτ − x))fX(x)dx. (5.16)

Combining the last two equations we find

ECC =
∞∑
i=1

[
(iCi + Cp)

∫ iτ

x=(i−1)τ

(1− FY (iτ − x))fX(x)dx+

([i− 1]Ci + Cu)

∫ iτ

x=(i−1)τ

FY (iτ − x)fX(x)dx

]
. (5.17)

The infinite summation in (5.17) should be truncated at a large number for practical computations.

The cost-rate is g(τ) = ECC/ECL. Here too, g(τ) is not convex, but it usually is uni-modal so

that greedy search will yield an optimal inspection interval τ ∗.

The performance for a given inspection interval τ for example 5.1 can be computed also using

the results in the present section. We leave this up to the reader.

5.1.3 Periodic condition based maintenance

Under some circumstances performing a full maintenance/replacement at any time other than

the planned inspection epochs is not feasible. Consider for example a wind-turbine park at sea.

To replace/maintain a rotor shaft of a wind-turbine requires the use of equipment such as a

jack-up barge; see Figure 5.3. Getting a jack up barge to the wind-turbine park and setting it

up is so costly (on the order of 100,000 Euro per day) that it is common practice to maintain

multiple wind-turbines at the same time using one jack-up barge. If a wind-turbine fails between

inspection epochs, a minimal repair may be applied, for example by sending a small crew on a

crew transportation vessel; see Figure 5.4.

We will analyze the following policy for these types of situations: The component is inspected

every τ time units. If the component is found to be defect, we apply a preventive replacement at

cost Cp. If the component fails during the inspection interval, we apply minimal repair at a cost of

Cmr. Such a minimal repair restores a component to the condition that is statistically identical to

its condition just prior to failure. The last statement is best understood by an example: Suppose
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Figure 5.3: A jack up barge is used to replace or conduct maintenance on the rotor shaft or fan blades of a

wind-turbine at sea.

Figure 5.4: A crew transportation vessel returning mechanics to shore after the repair of a wind-turbine at sea

τ = 4.0 and a defect occurs at time 1.7 and a failure at time 3.1. After minimal repair, the

component is in the same shape as a component that has been operating 3.1-1.7=1.4 time units

since a defect occurred. If minimal repair occurs during an inspection interval, then there is a

full replacement at the next inspection epoch at the cost Cu. Usually Cu ≥ Cp because it is more

difficult to maintain a component that has been “kept together” by minimal repairs. (Note that

the cost structure is slightly different from what is assumed in Section 3.2.4 for a block policy
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with minimal repair. That model can easily be modified to the present cost structure if needed.)

Finally, there is an inspection cost Ci per inspection epoch. A sample path of this policy is shown

in Figure 5.5. We will assume that X, the time to defect, is exponentially distributed. Each

inspection epoch is a renewal point under this assumption and the expected cycle length is

ECL = τ. (5.18)

The expected cycle costs more involved to determine due to the minimal repairs. If a minimal

repair occurs x time units after the last inspection epoch we know that the expected number of

minimal repairs is
∫ τ−x

0
hY (t)dt. Therefore we can condition on the time of the defect to find that

the expected number of minimal repair in a cycle is given by∫ τ

x=0

∫ τ−x

t=0

hY (t)dtfX(x)dx.

Now it is straightforward to determine the expected cycle costs,

ECC = Cmr

∫ τ

x=0

∫ τ−x

t=0

hY (t)dtfX(x)dx+ CuP(T ≤ τ) + CpP(X < τ ∩X + Y > τ) + Ci

= Cmr

∫ τ

x=0

∫ τ−x

t=0

hY (t)dtfX(x)dx+ CuFT (τ) + Cp

∫ τ

x=0

(1− FY (τ − x))fX(x)dx+ Ci,

(5.19)

where the last equality follows from using (5.4). The cost-rate of this policy is g(τ) = ECC/ECL

and can be optimized numerically; see the example below.
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Example 5.2. Consider a component whereX is exponential with mean λ−1
X year, Y is exponential

with mean λ−1
Y year, Cu = 175, Cp = 100, Ci = 5, and Cmr = 85 (λX 6= λY ). From Example 5.1

we have that

P(X + Y ≤ t) = P(T ≤ T ) = FT (t) = 1− λY e
−λX t − λXe−λY t

λY − λX
,

and

P(X ≤ τ ∩X+Y > τ) =

∫ τ

0

(1−FY (τ−t))fX(t)dt =

∫ τ

0

λXe
−λX te−λY (τ−t)dt = λX

e−λXτ − e−λY τ

λY − λX
.

Next we compute the expected number of minimal repairs in a renewal cycle:∫ τ

x=0

∫ τ−x

t=0

hY (t)fX(x)dtdx =

∫ τ

x=0

λXe
−λXx

∫ τ−x

t=0

λY dtdx

=

∫ τ

x=0

λY (τ − x)λXe
−λXxdx

= λY τP(X ≤ τ)− λXλY
∫ τ

0

xe−λXxdx

= λY τ(1− e−λXτ )− λY
1− e−λXτ (λXτ + 1)

λX
(5.20)

The expected cycle costs are now given by

ECC = 85

[
λY τ(1− e−λXτ )− λY

1− e−λXτ (λXτ + 1)

λX

]
+ 175

(
1− λY e

−λXτ − λXe−λY τ

λY − λX

)
+ 100λX

e−λXτ − e−λY τ

λY − λX
+ 5. (5.21)

The expected costs per time unit are shown in Figure 5.6 for λX = 0.5 and λY = 4. Note that the

expected costs per time unit are not convex in τ but they are uni-modal. However, they need not

be uni-modal. If λY = 0.1 for the example above, the optimal inspection interval τ ∗ approaches

infinity. The reason for this is that the delay time is much longer than the time to defect and

is memoryless. This is also a general principle: If the delay time of much longer than the time

to defect, then condition based maintenance based on defect inspections is not beneficial. The

optimal inspection interval for the current example is τ ∗ = 0.22 and year with an annual cost of

100.19 EURO per year, as can be seen in Figure 5.6. �

5.2. Preventive maintenance thresholds for Markovian degra-

dation

We consider a component subject to degradation according to a discrete state Markovian degrada-

tion processX(t) that is inspected and available for preventive maintenance at times 0, τ, 2τ, 3τ, . . ..
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Figure 5.6: Annual cost versus inspection interval for the periodic condition based maintenance model in Example

5.2.

The times 0, τ, 2τ, . . . are also called inspection epochs. We assume now that τ is given. With a

slight abuse of notation, we will use Xt to denote X(tτ) for t ∈ N0, i.e., Xt denotes the degradation

level at inspection epoch t ∈ N0. The (finite) set of degradation levels is S = {0, 1, 2, 3, . . . , L},
where L denotes the failed state. We let pij = P(Xt+1 = j | Xt = i) denote the transition proba-

bilities of Xt given that we do not interfere with the system. If possible, it is customary to order

states in increasing order of degradation. For the degradation processes discussed in Chapter 4

this is possible and natural1. At each inspection epoch we observe Xt and decide whether we apply

preventive replacement/maintenance at cost Cp or continue without performing maintenance. If

we find that Xt = L, we replace/maintain correctively at cost Cu irrespective of when exactly the

component failed between inspection epochs. If we replace/maintain the component, the degra-

dation levels moves to 0 instantaneously and the component will start degrading from that level

again. Since the cost of corrective maintenance usually includes the cost of down-time, Cu should

be tied to the length of the inspection interval τ (Why?). We will explore this further in Section

1Ordering states in a degradation process in some kind of increasing level of degradation is not always possible

and it is also not essential as long as there is a failed state L. An example where this is not possible occurs when

degradation can follow two different degradation paths in the same Markov process depending on the nature of the

initial defect. Within a single path it is possible to order stated in increasing levels of degradation, but making

such an ordering between paths is not always possible.
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5.2.3 and Chapter 6. We assume that there is no inspection cost Ci because for fixed τ , such cost

would be sunk for the decision at hand. Our present goal is to decide at what degradation levels

we should replace/maintain preventively at a given inspection epoch so as to minimize the average

cost-rate.

When it is possible to order degradation states in increasing order of degradation, it is plausible

that there is an optimal control limit replacement rule. Under such a rule, there is control limit

M , such that a component is replaced at inspection epoch t if Xt ≥ M . The next subsections

give two different algorithms to compute optimal replacement policies, and as a byproduct the

optimal control limit M∗ if it exists. The existence of such an optimal control limit replacement

policy is guaranteed under mild conditions on the degradation process; see Kolesar (1966). These

conditions basically state that the state space can be ordered in increasing levels of degradation

and that the degradation process should not be able to ameliorate2 much. For an exact statement

of this result, see Kolesar (1966) Theorem 1. All the degradation processes in Chapter 4 are non-

decreasing so for them the optimal preventive replacement policy can be described by a control

limit. Figure 5.7 shows a sample path of a component subject to negative binomial degradation

and a control limit preventive replacement policy. The next two subsection provide two different

algorithms to compute optimal replacement decision rules.

5.2.1 Stochastic dynamic programming solution

Stochastic dynamic programming is a very versatile technique to optimize decisions made in sys-

tems that evolve over time in a stochastic (Markovian) manner. We will apply this technique to

the problem above.

At each inspection epoch t, we see the state Xt, and can decide to either replace the component

or not. We let Ax denote the set of possible decisions in state x ∈ S and At the decision that

we make in period t. For x < L, Ax = {0, 1}, where we let 1 denote the decision to replace and

0 denote the decision to do nothing. We must replace the component once it has failed so that

AL = {1}. Now we let paij = P(Xt+1 = j|Xt = i ∩ At = a), i.e., paij is the probability of the

degradation level jumping from i to j at the next inspection epoch if we make decision a at time

t. These probabilities can be derived from the degradation process.

Example 5.3. Consider a component subject to Erlangian degradation with 4 degradation states

so that L = 3 and the state space is given by S = {0, 1, 2, 3}. Suppose that the exponential sojourn

time in each state has rate λ = 2.0 and that the inspection interval has length τ = 0.5. The number

of degradation steps that occur between inspection epochs is a Poisson random variable with mean

2Ameliorate is the opposite of deteriorate or degrade.
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Figure 5.7: Sample path of a system subject to negative binomial degradation that is periodically inspected and

replaced/maintained when degradation exceeds the control limit M

µ = λτ = 1 that is truncated at the failed state L = 3. Let Y denote a Poisson random variable

with mean µ = 1. Then we have for p0
0,y:

p0
00 = P(Y = 0) =

(λτ)0

0!
e−λτ = e−2.0·0.5 = e−1 = 0.3679

p0
01 = P(Y = 1) = . . . = 0.3679

p0
02 = P(Y = 2) = . . . = 0.1839

p0
0L = P(Y ≥ 3) = 1− P(Y ≤ 2) = . . . = 0.0803. (5.22)

Continuing in similar fashion we find that

P 0 =


p0

00 p0
01 p0

02 p0
0L

p0
10 p0

11 p0
12 p0

1L

p0
20 p0

21 p0
22 p0

2L

p0
L0 p0

L1 p0
L2 p0

LL

 =


0.3679 0.3679 0.1839 0.0803

0 0.3679 0.3679 0.2642

0 0 0.3679 0.6321

0 0 0 1

 . (5.23)

For the decision to replace, the transition probabilities are independent of the initial state because
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replacement means instantaneously moving to state 0:

P 1 =


p1

00 p1
01 p1

02 p1
0L

p1
10 p1

11 p1
12 p1

1L

p1
20 p1

21 p1
22 p1

2L

p1
L0 p1

L1 p1
L2 p1

LL

 =


0.3679 0.3679 0.1839 0.0803

0.3679 0.3679 0.1839 0.0803

0.3679 0.3679 0.1839 0.0803

0.3679 0.3679 0.1839 0.0803

 . (5.24)

Observe that these transition probabilities can easily be computed for different inspection intervals.

�

Now let us embark on the following thought experiment: Suppose that we only need to make

decisions for a finite number of inspection epochs, N say. After inspection epoch N , the system

just stops and no more decisions need to be made. However, if the component is found to have

failed at inspection epoch N , i.e., XN = L, we still need to pay Cu for the corrective replacement

/ maintenance. Now we introduce some crucial notation: Let Vn(x) denote the minimal expected

cost that will be incurred from period N − n up to and including period N when XN−n = x.

Vn = (Vn(0), Vn(1), Vn(2), . . . , Vn(L))T is also referred to as the value function because Vn(x)

expresses the expected value (cost) of being in state x with n periods to go. Now by definition

V0(x) = 0 for x < L and V0(L) = Cu. The vector (V0(0), V0(1), . . . , V0(L))T is also referred to as

the terminal cost vector or terminal value function. Suppose now that we are in period N − 1

in state XN−1 = x and need to decide what to do. If x = L, we only have one possible decision

(replace) and so

V1(L) = Cu + p1
L,LCu. (5.25)

If x < L, we can either replace or not replace leading to the following two expected costs:

replace: Cp + p1
x,LCu, do not replace: p0

x,LCu. (5.26)

Since V1(x) is the minimal expected cost, it is the minimum of these two.

V1(x) = min(Cp + p1
x,LCu, p

0
x,LCu). (5.27)

Recalling the values of the terminal cost vector, (5.25) and (5.27) can be combined to

V1(x) =

{
min{Cp +

∑
y∈S p

1
x,yV0(y),

∑
y∈S p

0
x,yV0(y)} x < L;

Cu +
∑

y∈S p
1
x,yV0(y), x = L.

(5.28)

Now suppose that we are in period N − 2 in state XN−2 = x and we need to make the decision

whether or not to replace and we will make optimal decisions in period N − 1. Then the decision

to replace leads to a total cost from period N − 2 up to N of

Cp +
∑
y∈S

p1
xyV1(y), (5.29)
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whereas the decision to not replace leads to a cost of∑
y∈S

p0
xyV1(y). (5.30)

Since we must replace in state L and V2(x) is the optimal cost to go with 2 periods left to the end

of the horizon, we have

V2(x) =

{
min{Cp +

∑
y∈S p

1
x,yV1(y),

∑
y∈S p

0
x,yV1(y)} x < L;

Cu +
∑

y∈S p
1
x,yV1(y), x = L.

(5.31)

Now this argument can be repeated for N − 3, N − 4 and so forth to find the general expression

Vn(x) =

{
min{Cp +

∑
y∈S p

1
x,yVn−1(y),

∑
y∈S p

0
x,yVn−1(y)} x < L;

Cu +
∑

y∈S p
1
x,yVn−1(y), x = L.

(5.32)

Using (5.32), we can compute the optimal expected cost with n inspection epochs to go until we

stop operating the system. Equation (5.32) is known as the Bellman optimality equation and also

as the Dynamic programming recursion. From the value function Vn, we can deduce the optimal

replacement decision with n periods to go in state x < L: It is optimal to replace if

Cp +
∑
y∈S

p1
x,yVn−1(y) ≤

∑
y∈S

p0
x,yVn−1(y) (5.33)

and to not replace if the inequality above is reversed. This also means that if there is an optimal

threshold with n periods to go, say M∗
n, it satisfies

M∗
n = min

{
x ∈ S | Cp +

∑
y∈S

p1
x,yVn−1(y) ≤

∑
y∈S

p0
x,yVn−1(y)

}
. (5.34)

By Theorem 1 of Kolesar (1966), such a control limit M∗
n always exists if the degradation process

is non-decreasing. All the degradation processes in Chapter 4 have this property.

Example 5.4. Reconsider Example 5.3 and suppose that Cu = 1000 and Cp = 300 Euro. Using

the probabilities computed in Example 5.3, we can compute Vn(x) for x ∈ S and n = 0, 1, . . .. The

results for n = 0, . . . , 10 are shown in Table 5.1 and Figure 5.8. From these we may compute M∗
n

for n = 0, . . . , 10. This result is shown in Figure 5.9. It appears that a control limit of 2 is optimal

for all inspection epochs preceding sudden termination of the system. Furthermore notice from

Figure 5.8 that the distance between Vn(x) and Vn−1(x) appears to converge to the same number

for each x ∈ S. �
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Table 5.1: Value function Vn(x) for Example 5.4

x V0(x) V1(x) V2(x) V3(x) V4(x) V5(x) V6(x) V7(x) V8(x) V9(x) V10(x)

0 0.00 80.30 283.45 506.90 730.35 953.81 1177.26 1400.71 1624.16 1847.61 2071.06

1 0.00 264.24 522.57 746.03 969.48 1192.93 1416.38 1639.83 1863.28 2086.73 2310.18

2 0.00 380.30 583.45 806.90 1030.35 1253.81 1477.26 1700.71 1924.16 2147.61 2371.06

L 1000.00 1080.30 1283.45 1506.90 1730.35 1953.81 2177.26 2400.71 2624.16 2847.61 3071.06
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Figure 5.8: Value functions V0 to V10 for Example 5.4.

Example 5.5. Reconsider Examples 5.3 and 5.4. Suppose now that the Erlang degradation

process has 41 phases so that L = 40. What is the behaviour of M∗
n as a function of n for

λ = 2, 5, 10, 15? This behaviour is shown in Figure 5.10. It appears that the thresholds converge

to a single threshold as the number of periods to go increases.

We are not looking for decisions that minimize the cost with n inspection epochs to go, but
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Figure 5.9: Optimal control limits for Example 5.4 with n periods to go
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Figure 5.10: Optimal control limits as n grow for different λ

for decisions that minimize the average cost-rate. It seems reasonable to expect that the decisions

that are optimal with n periods to go, for some very large n, are decisions that are good on average.

This is what the results in Example 5.5 suggest at least. Under some mild conditions that all the

degradation processes in Chapter 4 satisfy3, the optimal replacement decisions with n periods to

go converge to decisions that minimize the average cost-rate as n approaches infinity. So we can

3The mild conditions are satisfied if a certain degradation state is reachable for any conceivable maintenance
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use Bellman equation (5.32) to find replacement policies that are optimal for the average cost-rate.

But how do we know whether the n we choose is large enough, and what is the average cost-rate

that these decisions achieve? To say something about this we need some more notation. Let

gn =
maxx∈S(Vn(x)− Vn−1(x)) + minx∈S(Vn(x)− Vn−1(x))

2
. (5.35)

Thus gn represents the average of the maximum and minimum cost increase from n− 1 inspection

epochs to go, to n inspection epochs to go. It can be interpreted as an estimate of the distance

between Vn and Vn−1, which is easy to visualize looking at Figure 5.8. Let g′n be the average cost

per inspection interval of applying the replacement decisions corresponding to control limit M∗
n

and let g∗ be the cost-rate per inspection interval of a control limit policy that minimizes the

average cost-rate per inspection epoch. From the theory of stochastic dynamic programming (also

known as Markov decision processes), we have the following theorem (Puterman, 1994, Theorem

8.5.4 and 8.5.6):

Theorem 5.1. For any ε > 0 there is an n <∞ such that

max
x∈S

(Vn(x)− Vn−1(x))−min
x∈S

(Vn(x)− Vn−1(x)) < ε. (5.36)

For this n, we have |gn− g′n| < ε/2, |g′n− g∗| < ε/2, and |gn− g∗| < ε. Thus the average cost-rate

of applying control limit M∗
n can exceed the optimal cost-rate by no more than ε and gn is within

ε of the optimal cost-rate.

Based on this theorem, we can find a control limit that is as good as we like by the following

algorithm:

1. Set ε > 0, n = 1, V0(L) = Cu and V0(x) = 0 for all x < L.

2. Compute Vn using (5.32). If (5.36) is satisfied, continue to the next step, otherwise set

n = n+ 1 and repeat this step.

3. Compute M∗
n and gn using (5.34) and (5.35) and output these as the optimal control limit

and cost per inspection interval respectively.

Note that the average cost per inspection interval can be translated to the expected cost per time

unit by dividing by τ . Common practice is to set ε = 10−6.

policy and this state has transitions to itself. Under all degradation processes we consider in Chapter 4, L and 0

are reachable under any policy and there are transitions from 0 to itself so these conditions are verified.



Arts: Maintenance Modeling and Optimization 103

Example 5.6. Reconsider Examples 5.3, 5.4, and 5.5. Using the algorithm above, we compute

policies that are within ε = 10−6 of optimality. The results are shown in Table 5.2 below for all the

instances considered in Examples 5.4 and 5.5, and one additional instance of a component subject

to Erlangian degradation. We see that the optimal threshold is indeed given by the thresholds

to which we see convergence in Figure 5.10. Now we also know the average cost-rates that these

control limits induce. �

Table 5.2: Optimal control limits and costs for several components subject to Erlangian degradation.

Instance |S| L λ τ Cu Cp M∗ g∗

1 4 3 2 0.5 1000 300 2 223.45

2 41 40 5 0.5 1000 300 34 21.67

3 41 40 10 0.5 1000 300 31 45.90

4 41 40 15 0.5 1000 300 29 72.16

5 41 40 20 0.5 1000 300 27 100.71

6 51 50 3 3 5000 900 36 208.51

5.2.2 Linear programming solution

Optimal control limits for the problem in Section 5.2 can also be found by linear programming.

We will use the notation introduced in the first paragraph of Section 5.2.1 and use the word policy

to refer to a decision rule. A replacement policy can be encoded as follows: Let fx,a = P(At = a |
Xt = x) denote the probability of applying action a ∈ A(x) when the degradation level is x during

an inspection epoch. If fx,1 = 1, we always replace the component when finding degradation x

during an inspection epoch, if fx,0 = 1, we never replace the component when finding degradation

x during an inspection epoch, and if fx,1 = u ∈ (0, 1), then we replace with probability u and do

not replace with probability fx,0 = 1− u when finding degradation x during an inspection epoch.

Next let πx = limt→∞ P(Xt = x) denote the steady state probability of finding degradation level x

during an inspection epoch when the system is controlled by the replacement policy encoded by

fx,a. Then πxfx,a is the steady state probability finding degradation level x during an inspection

and making decision a. Let us denote this probability

zx,a = lim
t→∞

P(Xt = x ∩ At = a) = πxfx,a. (5.37)
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For example, z5,0 is the steady state probability of finding a degradation level of 5 during an

inspection epoch and deciding not to replace the component. Observe that

πx =
∑
a∈Ax

zx,a. (5.38)

Under our notation, the average cost per inspection interval can be written as

g =
∑

x∈S\{L}

Cpzx,1 + CuzL,1. (5.39)

The balance equations for the Markov process Xt under this policy are

πx =
∑
y∈S

∑
a∈Ay

πyfy,ap
a
y,x, x ∈ S, (5.40)

and using (5.37) and (5.38) these equations can be rewritten as∑
a∈Ax

zx,a =
∑
y∈S

∑
a∈Ay

zy,ap
a
y,x, x ∈ S. (5.41)

Now any set of zx,a that satisfy (5.41) and normality (
∑

x∈S
∑

a∈Ax zx,a = 1) corresponds to a

policy where the steady state probabilities and decisions can be recovered by using (5.37) and

(5.38):

πx =
∑
a∈Ax

zx,a, fx,a =
zx,a∑
b∈Ax zx,b

. (5.42)

Therefore the cost of an optimal replacement policy can be found by choosing zx,a to minimize

(5.39) while satisfying (5.41) and normality, which is the following linear program:

(LP) min
zx,a

g =
∑

x∈S\{L}

Cpzx,1 + CuzL,1

subject to
∑
a∈Ax

zx,a =
∑
y∈S

∑
a∈Ay

zy,ap
a
y,x, ∀x ∈ S

∑
x∈S

∑
a∈Ax

zx,a = 1

zx,a ≥ 0, ∀x ∈ S, ∀a ∈ Ax. (5.43)

After (5.43) has been solved to optimality, the objective g∗ represents the optimal cost per inspec-

tion interval and an optimal policy can be obtained from the optimal z∗x,a using (5.42). From the

theory of linear programming, it can be shown that for each x ∈ S, either zx,0 > 0 or zx,1 > 0, but

not both. Therefore, the optimal control limit M∗ satisfies

M∗ = min{x ∈ S | z∗x,1 > 0}, (5.44)

if it exists.
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Remark 5.1. Some care must be taken in solving the linear program above. The solution can

only be trusted if
∑

a∈A(x) z
∗
x,a > 0 for all x ∈ S. A sufficient condition for this is the existence of a

degradation state that can be reached under any maintenance policy. The degradation processes

in Chapter 4 satisfy this condition, because each state in S can be reached under any policy.

Remark 5.2. Stochastic dynamic programming and linear programming are general approaches

for making decisions in a Markov process whose cost and evolution depends on these decision.

This field is also called Markov decision processes (MDP) and stochastic dynamic programming

and linear programming are common solution algorithms. Other applications of MDP include

inventory and supply chain management, manufacturing, and call centers. For example, the state

of an inventory problem is often the inventory position and the decisions are ordering decisions.

Example 5.7. Reconsider Examples 5.3 and 5.4 where degradation occurs as an Erlangian process

with 4 states, sojourn times in each state are exponential with rate λ = 2, the inspection interval

τ = 0.5, Cp = 300, and Cu = 1000. We can solve the linear program (5.43) for this instance to

find the results in Table 5.3. We can read from the Table that M∗ = 2, which coincides with what

we found in Example 5.6. The optimal objective also coincides: g∗ = 223.45. Note that since g∗

is the optimal cost per inspection epoch, the optimal cost per time unit is g∗/τ = 446.90. �

Table 5.3: Solution of linear program (5.43) for instance of Example 5.7

z∗x,a f ∗x,a

x a = 0 a = 1 π∗x a = 0 a = 1

0 0.232544 0 0.232544 1 0

1 0.367879 0 0.367879 1 0

2 0 0.251607 0.251607 0 1

3 (L) - 0.147969 0.147969 - 1

5.2.3 Extensions

The model of Section 5.2 can be extended in several ways. Here we briefly sketch several directions.

The inspection interval need not be given a priori. In this case, the inspection interval must

be optimized as well. Some care must be taken here to ensure that Cu should now become an

increasing function of τ for this to make any sense. (If Cu remains fixed, then as τ → ∞, g → 0

and that does not make physical sense. In essence we can let the component break down, but

never pay for the replacement because we simply do not inspect the component to find that it has
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broken.) Inspection costs Ci are no longer sunk when τ is a decision variable, so these need to be

included as well. If we assume that component breakdown leads to down-time, and down-time is

penalized linearly in the amount of down-time, a good choice is to let Cu(τ) = C1τ + C2 where

C1 captures the down-times cost times the expected amount of time a component was down per

time unit in a failure interval, and C2 captures the actual cost of a corrective replacement. We

can now use the following approach: Compute the optimal control limit for a given τ using either

stochastic dynamic programming or linear programming, and then vary τ to find the best τ .

The model in Section 5.2 assumes that the current degradation level carries sufficient informa-

tion to understand future degradation, at least probabilistically. When degradation is non-linear,

it often depends also on the time since the last replacement. In this case, the state should be

extended to include the number of inspection epochs since the last replacement. The approach

still works for this model, but all the computations become more involved. See Benyamini and

Yechiali (1999) for more details.

Finally, there are situations where we would like to determine a maintenance threshold and

learn form the degradation path of the component that is currently in use, what the actual

transition probabilities are. Such models are also studied, see for example Elwany et al. (2011)

and Zhang et al. (2015).

5.3. Exercises

Exercise 5.1. Old exam exercise about inspections

Consider a machine that has only one critical component. Before the component actually

fails, a potential failure symptom occurs that can be detected via inspection. Such a signal can

be, e.g. excessive vibration that can be detected with a counter. This means that the machine

can be in three different states: the perfect functioning state, a defective state (in which the

failure symptom is detectable), and the failure state. The time until a failure symptom occurs is

exponentially distributed with a constant rate of λ = 2/year, and the time between the occurrence

of the failure symptom and the actual failure, i.e. the “delay time” Y = 0.2 years, is constant.

The management is considering two maintenance policies for this machine. The first policy

considered is the failure-based maintenance policy (FB). The costs of a corrective maintenance

actions is Cu = 7000 Euro.

(a) What is the average cost per year for the FB policy, gFB?

Policy 2 uses the possibility of preventive maintenance (PM), and can be described as follows:

An inspection takes place every τ ≤ Y = 0.2 years (i.e., the inspection interval is shorter than
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the delay time), which costs Ci = 200 Euro. The inspections are perfect in the sense that if the

system is in a defective state, this will be identified by the inspection. If a defect is identified at

an inspection, the component is replaced by a new one at a cost of Cp = 1000 Euro.

(b) What is the long term expected cost per year of this policy as a function of τ?

(c) What is the optimal inspection interval, τ ∗, of this policy?

Finally, suppose that the delay time is zero (Y = 0) and Ci = 200 still.

(d) What is the optimal policy in this case? Why?

Exercise 5.2. Computation of transition probabilities

Consider a component subject to degradation that is inspected periodically. The degradation

level takes values in S = {0, 1, 2, . . . , L} where L denotes the failed state and Xt denotes the

degradation level at the t-th inspection epoch. If no maintenance is applied, then the degradation

evolves according to

Xt+1 = min(Xt + Zt, L)

where (Zt)
∞
t=0 are i.i.d. random variables on the integers with distribution pz = P(Zt = z) and

p≥z = P(Zt ≥ z) = 1−
∑z−1

x=0 px. If maintenance is applied, then the degradation evolves according

to

Xt+1 = min(Zt, L).

Let p1
ij = P(Xt+1 = j|Xt = i ∩ maintenance is applied at time t) and p0

ij = P(Xt+1 = j|Xt =

i ∩ no maintenance is applied at time t).

(a) Suppose that degradation follows an Erlang process with rate µ and that the inspection interval

has length τ . Give an expression for pz in this case.

(b) Suppose that degradation follows a compound Poisson process with arrival intensity λ and

logarithmic compounding distribution with parameter q. Suppose further that the inspection

interval has length τ . Give a closed form expression for pz for this case.

(c) Give closed form expressions of p0
ij for i, j ∈ S in terms of pz and p≥z. Use case distinctions if

convenient.

(d) Give closed form expressions of p1
ij for i, j ∈ S in terms of pz and p≥z. Use case distinctions if

convenient.
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Exercise 5.3. Exam level exercise about comparison delay time model and age-based policies.

Consider the radio communication system on a helicopter. This system has two antennas that

can be used both for transmission and receiving. However, only one of the antennas is used at any

given time, that is, the second will only be used after the first has failed. The lifetimes of these

antennas has an exponential distribution with a mean of 4 years and the lifetime of an antenna

does not start until after it is put into use.

(a) If we do not interfere with the antennas, what is the distribution of the time until both

antennas fail?

(b) Suppose that an inspection reveals that one of the two antennas has already failed. Does it

make sense to replace both antennas preventively? Why (not)?

(c) Suppose inspections of antennas costs 500 Euro and that replacing one antenna costs 3400

Euro. We inspect both antennas every τ time units and if we observe that one has failed

we replace it. If both antennas fail before the next planned inspection, the communication

system will stop functioning and this will be noticed immediately. In this case, both antennas

will be replaced (for 3400 Euro each) and an additional cost of 11500 Euro will be incurred

due to unplanned maintenance. The next inspection after such an incident will be planned τ

time units later. Give a closed form expression for the expected cost per time unit under this

policy as a function of τ .

(d) Determine the optimal inspection interval τ ∗ and optimal expected cost per time unit. You

may use a computer if convenient.

(e) A team of maintenance managers and engineers would like to compare the policy of question

(c) with an age-based policy. Under this age-based policy, the antennas are replaced in full if

both fail and otherwise one of them can be replaced preventively when they reach an age of

τ . Both antennas have exponential lifetimes so when they reach a certain age, the inspection

of 500 Euro is used to determine which antenna needs to be replaced for 3400 Euro. If both

antennas are still working, then no antenna will be replaced. Three engineers come up with

different suggestions on how to compute the cost of the best age-based policy for the antennas.

They are:

(1) Compute the cost of the best age-based policy using the model in Section 3.2.2 with the

life-time distribution as determined in question (a) with a planned maintenance cost of

Cp = 3400+500 = 3900 Euro and an unplanned maintenance cost of Cu = 2·3400+11500 =

18300 Euro.
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(2) Compute the cost of the best age-based policy using the model in Section 3.2.2 with the

life-time distribution as determined in question (a) with a planned maintenance cost that

is a function of the preventive replacement time parameter τ as follows: Cp = 500+P(X <

τ)3400 = 500 + (1− e−τ/4)3400 Euro and unplanned maintenance cost of Cu = 2 · 3400 +

1150 = 18300 Euro. (X is the time it takes for the first antenna to fail.)

(3) Compute the cost of the best age-based policy using the model in Section 3.2.2 with the

life-time distribution as determined in question (a) with a planned maintenance cost that

is a function of the preventive replacement time parameter τ as follows: Cp = 500+P(X <

τ | X+Y > τ)3400 Euro and unplanned maintenance cost of Cu = 2 ·3400+1150 = 18300

Euro. (X and Y are the lifetime of the first and second antenna respectively.)

Should you follow the suggestion of engineer 1, 2, or 3? Why?

(f) Do you expect the cost of the optimal age-based policy as selected in (d) to be strictly more

expensive, strictly cheaper or exactly as costly as the optimal policy computed under (c)?

Why? (You do not have to perform computations here.)

Exercise 5.4. Use of a computer is advised for this exercise

Consider an emergency break system subject to Erlangian degradation with 7 degradation

states numbered 0,1,. . . ,6. The Sojourn time in each state is exponential with a mean of 20

weeks. Unless the emergency break is used, a failure cannot be detected without an inspection.

Law requires that this break system, along with other safety critical systems on the vehicle, are

inspected every 12 weeks by an independent inspection agency. They report the degradation level

of the emergency break to the owner. If they find that the emergency break has failed, a safety

enforcement fee of 15000 Euro is charged. Before returning a vehicle to service, the emergency

break can be replaced at a cost of 4200 Euros regardless of whether it is has failed already or not.

(a) Let p0
ij denote the probability of moving from degradation state i to degradation state j

between inspection epochs. Compute p0
ij for i, j = 0, . . . 6.

(b) Let p1
ij denote the probability of moving from current degradation state i to degradation state

j when replacement is applied.

(c) In order to minimize the average cost-rate, at what degradation level should the emergency

break be replaced? Use both value iteration and linear programming to compute the opti-

mal control limit threshold M∗ and average cost per inspection epoch g∗. Verify that your

implementations are correct by obtaining the same answer using both methods.



110 Arts: Maintenance Modeling and Optimization

Exercise 5.5. Use of a computer is advised for this exericse

Consider a component subject to degradation with 11 degradation states numbered 0,. . . ,10.

This system has been inspected weekly for several years now and it was found that the degradation

increases each week by 1.27 states on average. The standard deviation of the increase is 1.31.

(a) The increments in the degradation per week can be modeled by a negative-binomial distribu-

tion. Estimate the shape and scale of this negative binomial distribution.

(b) Suppose that the degradation process is a compound Poisson process with logarithmic com-

pounding distribution. (This leads to the negative-binomial increments assumed in (a).) Es-

timate the arrival intensity λ of the Poisson process and the parameter q of the logarithmic

compounding distribution.

(c) Let p0
ij denote the probability of moving from degradation state i to j in a week when we do

not replace the component. Compute p0
ij for i, j = 0, . . . , 10.

(d) Suppose that applying maintenance return the component to state 0. Let p1
ij denote the

probability of moving from state i to state j if we apply maintenance.

(e) Suppose now that applying maintenance will return the component to degradation level 0

with probability 1
2
, but will only return it to degradation level 1 with probability 1

2
. Let X

denote the increment of degradation in a week and let B denote a random variable that is 0

with probability 1
2

and 1 with probability 1
2
. Show that now p1

ij = P(min(X +B, 10) = j).

(f) Use the result in (e) to compute p1
ij.

(g) Suppose that a preventive replacement costs 1300 Euro and a corrective replacement costs

6100 Euro. Suppose again that replacement leads to a component with an initial degradation

level of 0. Starting from which degradation level should preventive replacement be applied?

What is the average cost per week under such a replacement policy?

Exercise 5.6. Formulation of problem. Exam level

Consider a cutting tool subject to degradation. When the cutting tool is new, it can cut

workpieces at a rate of 7000 per week. These workpieces are sold with at a price of 2 EuroS per

workpiece. The demand for these pieces is sufficiently big that all workpieces that can be produced

can also be sold. However, this tool is subject to degradation: The speed with which it can cut

workpieces degrades over time. The best degradation measure is therefor the number of workpieces

that the machine can produce per week, which takes values in {0, 1, . . . , 7000}. Each weekend, the

factory shuts down and it is possible to replace the cutting tool at a cost of 350 Euro. Suppose
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that the transition probabilities paij are given; paij denote the transition probability of moving from

cutting speed i to cutting speed j in a week if we make replacement decision a ∈ {0, 1}, where

a = 1 denotes replacement and a = 0 denotes leaving the current cutting tool in place. Further,

you may assume that when the cutting tool can cut at speed x at the beginning of the week, it

will be able to cut at this speed all week, before its cutting speed goes down for the next week.

(a) Let R(x, a) denote the profit (revenue minus cost) made during a week when the cutting

speed at the end of the week before is x and we take decision a ∈ {0, 1} where a = 1 denotes

replacement and a = 0 denotes the decision not the replace the cutting tool. Give a closed

form expression for R(x, a).

(b) Suppose we would like to maximize the weekly profit. Give a dynamic programming formula-

tion of this problem, i.e., formulate the dynamic programming recursion. You do not need to

perform any computations.

(c) Give a linear programming formulation for the problem described in (b). You do not need to

perform any computations.

5.3.1 Solutions

Solution 5.1. (a) The average annual costs gFB are: gFB = ECC
ECL

= 7000
0.5+0.2

= 10000 Euro per

year.

(b) If τ < 0.2 then a failure can never occur so in this case ECC = Ci + CpP(X ≤ τ) =

1200− 1000e−2τ and ECL = τ . g2(τ) = ECC
ECL

= 1200−1000e−2τ

τ
.

(c) g2(τ) has the following derivative: d(g2(τ))
dτ

= τ(2000e−2τ )−(1200−1000e−2τ )
τ2

= (2000τ+1000)e−2τ−1200
τ2

.
d(g2(τ))
dτ

is negative for all τ ≤ 0.2. Therefore, τ ∗ = 0.2 years.

(d) Failure based is optimal due to constant failure rate of time to failure.

Solution 5.2. (a) P(Zt = z) = pz = e−µτ (µτ)z

z!
, z ∈ N0.

(b) P(Zt = z) = pz =
(−λτ/ ln(1−q)+z−1

z

)
(1− q)−λτ/ ln(1−q)qz, z ∈ N0

(c) p0
ij =


pj−i, if i ≤ j < L;

p≥L−i, if j = L;

0, otherwise.

(d) p1
ij = pj
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Solution 5.3. (a) Erlang distribution with shape parameter k = 2 and scale parameter λ = 1/4.

(b) No, because the remaining lifetime of the non-failed antenna will not improve by replacement

due to lack of memory of the exponential distribution.

(c) Use DTM model with exponential time to defect with Ci = 500, Cp = 3400, Cu = 2 · 3400 +

11500 = 18300 Euro. Let X denote the time to defect (lifetime of first antenna), Y the delay

time (lifetime of second antenna), and T = X + Y . Now to compute the ECL, we need the

following integral: ∫ τ

0

tfT (t)dt =
1

16

∫ τ

0

t2e−t/4dt

=
1

16

[
−
e−t/4

(
1
16
t2 + 1

2
t+ 2

)
1
64

]t=τ
t=0

=
1

16

[
−e−t/4(4t2 + 32t+ 128)

]t=τ
t=0

= 8−
(

1

4
τ 2 + 2τ + 8

)
e−τ/4 (5.45)

so that

ECL =

∫ τ

0

tfT (t)dt+τ(1−FT (τ)) = 8−
(

1

4
τ 2 + 2τ + 8

)
e−τ/4 +τ

(
e−τ/4 +

τ

4
e−τ/4

)
. (5.46)

The following integral will be needed to compute ECC:∫ τ

x=0

(1− FY (τ − x))fX(x)dx =

∫ τ

x=0

e−(τ−x)/4 1

4
e−x/4dx

=
1

4

∫ τ

x=0

e−τ/4ex/4e−x/4dx

=
1

4

∫ τ

x=0

e−τ/4dx

=
1

4

[
e−τ/4x

]x=τ

x=0

=
τ

4
e−τ/4. (5.47)

(This last integral calculation can also be avoided completely by noticing that P(X < τ ∩
X + Y > τ) is equivalent to the probability that in a Poisson process with arrival intensity 1

4

exactly one arrival occurs in an interval of length τ so that the result can be found immediately

from the Poisson distribution.) Now we have

ECC = 18300
(

1− e−τ/4 − τ

4
e−τ/4

)
+ 3900e−τ/4

τ

4
+ 500e−τ/4 (5.48)

Now the average cost rate is g = ECC/ECL.



Arts: Maintenance Modeling and Optimization 113

(d) Numerical optimization yields g∗ = 1601.15 Euro per year and τ ∗ = 1.50 year.

(e) Option 3, because preventive replacement costs of 3400 Euro are only incurred if exactly one

antenna fails, but the second does not. The conditioning suggested by Engineer 3 achieves

this.

(f) The cost will be the exactly the same, because the age-based policy described is actually

identical to the delay time model of this problem.

Solution 5.4. (a) Organizing transition probabilities in the same type of matrix as shown in

Example 5.3 we find:

P 0 =



0.54881 0.32929 0.09879 0.01976 0.00296 0.00036 0.00004

0.00000 0.54881 0.32929 0.09879 0.01976 0.00296 0.00039

0.00000 0.00000 0.54881 0.32929 0.09879 0.01976 0.00336

0.00000 0.00000 0.00000 0.54881 0.32929 0.09879 0.02312

0.00000 0.00000 0.00000 0.00000 0.54881 0.32929 0.12190

0.00000 0.00000 0.00000 0.00000 0.00000 0.54881 0.45119

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000


.

(b) Similarly:

P 1 =



0.54881 0.32929 0.09879 0.01976 0.00296 0.00036 0.00004

0.54881 0.32929 0.09879 0.01976 0.00296 0.00036 0.00004

0.54881 0.32929 0.09879 0.01976 0.00296 0.00036 0.00004

0.54881 0.32929 0.09879 0.01976 0.00296 0.00036 0.00004

0.54881 0.32929 0.09879 0.01976 0.00296 0.00036 0.00004

0.54881 0.32929 0.09879 0.01976 0.00296 0.00036 0.00004

0.54881 0.32929 0.09879 0.01976 0.00296 0.00036 0.00004


.

(c) M∗ = 4, g∗ = 679.92 Euro per 12 weeks.

Solution 5.5. (a) Scale: p̂ = 0.7401. Shape: r̂ = 3.6156.

(b) λ = 1.0884, q = 0.2599.



114 Arts: Maintenance Modeling and Optimization

(c)

P 0 =



0.3367 0.3165 0.1899 0.0924 0.0397 0.0157 0.0059 0.0021 0.0007 0.0002 0.0001

0.0000 0.3367 0.3165 0.1899 0.0924 0.0397 0.0157 0.0059 0.0021 0.0007 0.0004

0.0000 0.0000 0.3367 0.3165 0.1899 0.0924 0.0397 0.0157 0.0059 0.0021 0.0011

0.0000 0.0000 0.0000 0.3367 0.3165 0.1899 0.0924 0.0397 0.0157 0.0059 0.0032

0.0000 0.0000 0.0000 0.0000 0.3367 0.3165 0.1899 0.0924 0.0397 0.0157 0.0090

0.0000 0.0000 0.0000 0.0000 0.0000 0.3367 0.3165 0.1899 0.0924 0.0397 0.0248

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3367 0.3165 0.1899 0.0924 0.0645

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3367 0.3165 0.1899 0.1569

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3367 0.3165 0.3468

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3367 0.6633

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000



(d)

P 1 =



0.3367 0.3165 0.1899 0.0924 0.0397 0.0157 0.0059 0.0021 0.0007 0.0002 0.0001

0.3367 0.3165 0.1899 0.0924 0.0397 0.0157 0.0059 0.0021 0.0007 0.0002 0.0001

0.3367 0.3165 0.1899 0.0924 0.0397 0.0157 0.0059 0.0021 0.0007 0.0002 0.0001

0.3367 0.3165 0.1899 0.0924 0.0397 0.0157 0.0059 0.0021 0.0007 0.0002 0.0001

0.3367 0.3165 0.1899 0.0924 0.0397 0.0157 0.0059 0.0021 0.0007 0.0002 0.0001

0.3367 0.3165 0.1899 0.0924 0.0397 0.0157 0.0059 0.0021 0.0007 0.0002 0.0001

0.3367 0.3165 0.1899 0.0924 0.0397 0.0157 0.0059 0.0021 0.0007 0.0002 0.0001

0.3367 0.3165 0.1899 0.0924 0.0397 0.0157 0.0059 0.0021 0.0007 0.0002 0.0001

0.3367 0.3165 0.1899 0.0924 0.0397 0.0157 0.0059 0.0021 0.0007 0.0002 0.0001

0.3367 0.3165 0.1899 0.0924 0.0397 0.0157 0.0059 0.0021 0.0007 0.0002 0.0001

0.3367 0.3165 0.1899 0.0924 0.0397 0.0157 0.0059 0.0021 0.0007 0.0002 0.0001



(e) -

(f)

P 1 =



0.1684 0.3266 0.2532 0.1411 0.0661 0.0277 0.0108 0.0040 0.0014 0.0005 0.0003

0.1684 0.3266 0.2532 0.1411 0.0661 0.0277 0.0108 0.0040 0.0014 0.0005 0.0003

0.1684 0.3266 0.2532 0.1411 0.0661 0.0277 0.0108 0.0040 0.0014 0.0005 0.0003

0.1684 0.3266 0.2532 0.1411 0.0661 0.0277 0.0108 0.0040 0.0014 0.0005 0.0003

0.1684 0.3266 0.2532 0.1411 0.0661 0.0277 0.0108 0.0040 0.0014 0.0005 0.0003

0.1684 0.3266 0.2532 0.1411 0.0661 0.0277 0.0108 0.0040 0.0014 0.0005 0.0003

0.1684 0.3266 0.2532 0.1411 0.0661 0.0277 0.0108 0.0040 0.0014 0.0005 0.0003

0.1684 0.3266 0.2532 0.1411 0.0661 0.0277 0.0108 0.0040 0.0014 0.0005 0.0003

0.1684 0.3266 0.2532 0.1411 0.0661 0.0277 0.0108 0.0040 0.0014 0.0005 0.0003

0.1684 0.3266 0.2532 0.1411 0.0661 0.0277 0.0108 0.0040 0.0014 0.0005 0.0003

0.1684 0.3266 0.2532 0.1411 0.0661 0.0277 0.0108 0.0040 0.0014 0.0005 0.0003



(g) g∗ = 269.63 Euro per week and M∗ = 6.

Solution 5.6. (a) R(x, a) = 2x− 350a

(b) Vn+1(x) = maxa∈{0,1}

(
R(x, a) +

∑7000
y=0 p

a
xyVn(y)

)
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(c)

max
zx,a

g =
7000∑
x=0

1∑
a=0

R(x, a)zx,a

subject to zx,0 + zx,1 =
7000∑
y=0

1∑
a=0

zy,ap
a
yx, ∀x ∈ {0, . . . , 7000}

7000∑
x=0

1∑
a=0

zx,a = 1

zx,a ≥ 0, ∀z ∈ {0, . . . , 7000}, ∀a ∈ {0, 1} (5.49)
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Chapter 6

Design of Maintenance Programs for

Systems

“Assumptions eat mathematical models for

breakfast”

Qiushi Zhu

Maintenance rules are rarely designed for components in isolation. Components belong to a

technical system such as an aircraft, MRI-scanner, lithography machine, baggage handling system

or building. Therefore, maintenance programs are usually designed for systems as a whole. The

primary considerations that govern this design are avoiding down-time of the system, especially

unscheduled down-time (USD) and cost of maintenance/replacement. A system usually needs to

be down in order to replace or maintain any of its components. The consequence of down-time

differ per capital asset, but in general they are quite severe and expensive. Possible consequences

include the shut down of entire factories, delays of flights and other appointments with customers

and all the ensuing costs and inconveniences. If we design a maintenance policy for each component

in isolation, we can end up in a situation where we have to shut down the system very often to

replace or inspect only one or two components. This is very disruptive for the operations that the

system supports. Therefore, maintenance programs often have scheduled down-times, also called

scheduled downs, during which it is possible do maintenance, inspections, and/or replacements

for any component in the system. At these moments, we need to perform maintenance in such

a way that the risk of unscheduled down-time due to failure before the next scheduled down-

time is minimized. In principle, we then like to plan all inspections and preventive maintenance

117
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during these scheduled downs so as to minimize cost, while also minimizing unscheduled down-time

between scheduled downs. However, a system consists of many components. For some components

a form of condition based maintenance (CBM, see Chapter 5) is advisable, for others some form of

usage based maintenance (UBM, see Chapter 3) and for some components, failures are completely

random and failure based maintenance (FBM) is really the best one can do. CBM is usually only

applied for expensive components whose condition can be measured with a sensor or a (simple)

inspection. UBM is applied for components that degrade, but for which the condition is difficult

or expensive to determine. Finally FBM is often applicable for electronics because electronics

often have a constant failure rate. The goal of this chapter is to integrate some of the FBM, UBM

and CBM models from Chapters 3 and 5 to design a maintenance program for an entire system.

6.1. Problem description

Consider a system consisting of multiple components that are subject to failure. Let I denote

the set of all components in a system and let ICBM denote the set of components for which we

apply CBM, IFBM denote the set of components for which we apply FBM, and IUBM denote the

set of components for which we apply UBM; ICBM ∩ IUBM = IFBM ∩ IUBM = ICBM ∩ IFBM = ∅,
IFBM ∪ ICBM ∪ IUBM = I. The system will have a scheduled down every τ time units, so at times

0, τ, 2τ, . . .. In this chapter, τ is a decision variable. Each scheduled down incurs an expected cost

of Cd so that the cost-rate due to scheduled downs is Cd/τ . Cd will include the cost for stopping a

system and making technicians and equipment available to perform maintenance. For a production

line in a factory, Cd will include costs for lost production time, costs for travel of maintenance

technicians, rent of specialized equipment and possibly other costs. For a wind turbine park at sea,

Cd will include the travel cost of the maintenance crew, rent of a vessel from which maintenance

can be conducted and possibly other costs.

For each component i ∈ IFBM , we apply failure based maintenance as explained in Section

3.2.1. We assume that the mean lifetime and corrective replacement cost Cu,i are given. Section

3.2.1 explains how to evaluate the performance of a failure based policy for components i ∈ IFBM .

We let cFBM,i denote the average cost-rate incurred due to component i ∈ IFBM .

For each component i ∈ IUBM , the lifetime Ti, its distribution FTi(t) and density fTi(t) are

given, as well as the cost of a minimal repair Cmr,i, corrective replacement Cu,i and planned

preventive replacement Cp,i. We apply the periodic usage based replacement policy with minimal

repair as described in Section 3.2.5. The length of a period in this case is τ . For each component

i ∈ IUBM , we need to decide on the number of periods ni before we apply preventive maintenance.

The performance of such a policy can be evaluated using the results in Section 3.2.5. For fixed
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τ , this section also explains how to optimize ni. We let cUBM,i(ni, τ) denote the average cost-

rate of a component i ∈ IUBM when scheduled downs are τ time units apart and ni is used to

decide after how many scheduled downs to replace preventively. Furthermore, we let c∗UBM,i(τ) =

cUBM,i(n
∗
i (τ), τ), where n∗i (τ) minimizes cUBM,i(ni, τ) over ni ∈ N for a given τ .

We partition ICBM into two sets depending on whether components have delay time model

degradation or Markovian degradation with a discrete state space. The first set is denoted IDTM

and the second set IMDP .

Components i ∈ IDTM are assumed to have an exponential time to defect, Xi, and generally

distributed delay time Yi with corresponding known distributions and densities. Corrective main-

tenance costs Cu,i, preventive maintenance costs Cp,i, and minimal repairs cost Cmr,i per repair

are given. We control the system using the condition based maintenance model for delay time

degradation in Section 5.1.3, where scheduled down times correspond to inspection epochs. The

performance of such a policy for a given time between unscheduled downs can be computed using

the results in Section 5.1.3. We let cDTM,i(τ) denote the expected cost-rate incurred by component

i ∈ IDTM when scheduled downs are τ time units apart. Note that we do not charge the inspection

costs because they are included in the cost of a scheduled down Cd.

Components i ∈ IMDP are subject to Markovian degradation. We let Xi(t) denote the

degradation at time t ∈ R and (with a slight abuse of notation) Xi,t = Xi(tτ) with t ∈ N.

The state space of Xi,t is Si = {0, . . . , Li} where Li denotes the failed state of component i.

The transitions of Xi,t depend on whether we apply replacement at a scheduled down. We let

pax,y,i(τ) = P(Xi,t+1 = y | Xi,t = x,Ai,t = a) where Ai,t denotes the decision to replace component

i at scheduled down t (Ai,t = 1 if we decide to replace, and 0 otherwise). Note also that we make

the dependence of these transition probabilities on τ explicit because both τ and the replace-

ment threshold will be decision variables in this context. The cost of a preventive replacement

is Cp,i the cost of a corrective replacement is now a function of τ for reasons explained in 5.2.3:

Cu,i(τ) = C1,iτ + C2,i. We will assume that the degradation process Xi,t is such that there exists

an optimal control limit M∗
i (τ) that minimizes the cost-rate for a given time between scheduled

downs τ . Finally, we let cMDP,i(Mi, τ) denote the average cost-rate and c∗MDP,i(τ) = cMDP,i(M
∗
i , τ).

These functions can be evaluated using the results in Section 5.21.

The optimization problem that we seek to solve is the following multi-variable non-linear non-

1Be careful here. The results in Section 5.2 describe how to compute the average cost per inspection epoch

g(M). Here we are interested in the average cost per time unit. This can be obtained by dividing the cost per

inspection epoch over the length of the inspection interval/time between scheduled downs.



120 Arts: Maintenance Modeling and Optimization

convex integer programming problem:

min
τ,ni,Mi

∑
i∈IFBM

cFBM,i +
∑

i∈IUBM

cUBM,i(ni, τ) +
∑

i∈IDTM

cDTM,i(τ) +
∑

i∈IMDP

cMDP,i(Mi, τ) +
Cd
τ

subject to ni ∈ N, ∀i ∈ IUBM

Mi ∈ N, ∀i ∈ IMDP

τ ≥ 0, (6.1)

which is equivalent to the following single variable non-linear non-convex programming problem:

min
τ≥0

Csystem =
∑

i∈IFBM

cFBM,i +
∑

i∈IUBM

c∗UBM,i(τ) +
∑

i∈IDTM

cDTM,i(τ) +
∑

i∈IMDP

c∗MDP,i(τ) +
Cd
τ

(6.2)

6.2. Solution approach

Optimization problems (6.1) and (6.2) are non-linear and non-convex, so we cannot hope for a very

efficient algorithm. However, for a fixed τ , the objective of (6.2) can be approximately evaluated by

assuming cUBM,i(ni, τ) are uni-modal in ni for fixed τ and using a greedy search to find n∗i for each

i ∈ IUBM . For components i ∈ IMDP , we can determine c∗MDP,i(τ) using the results in Section 5.2.

A good solution for optimization problem (6.2) can therefore be found by evaluating Csystem(τ)

using the scheme above on a sufficiently fine grid. For example, one can evaluate Csystem(τ) for

τ = 0.01, 0.02, 0.03, . . .. Sometimes, there is a natural grid size because scheduled downs need to

occur at known occasions such as weekends or the end of the month.

Example 6.1. Consider a Tunnel that consists of 4 components.

• Component 1 is an electronic system that monitors the number of vehicles in the tunnel.

This electronic system has a constant failure rate of 0.05 failures per year.

• Component 2 is metal frame in the tunnel on which ventilation units are placed. The

condition of this frame is difficult to asses, but the lifetime distribution is Weibul with shape

β = 5 and scale η = 2.

• Component 3 is the ventilation unit in the tunnel. (See Figure 6.1.) The condition of this unit

can be measured by an accelerometer. The maintenance engineer brings this accelerometer

to the tunnel when it is shut down for inspection. The amplitude of vibration measured

in m−4 degrades following a negative binomial process with r = 2.2 and p = 0.15. The

ventilation unit is considered to have failed if the amplitude of vibration exceeds 60 m−5.
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• Component 4 is the surface concrete on which vehicles drive. The condition of the concrete is

classified in 3 different states: (1) as good a new, (2) there are cracks but the width of these

cracks does not exceed 1.0 cm, and (3) there are cracks and the width of cracks sometimes

exceeds 1.0 cm. When the concrete is as good as new (state (1)), it takes an exponential

amount of time with mean 5.5 years to move to state (2). Once in state (2), it takes an

exponential amount of time with mean 1.0 year to move to failed state (3).

When one of these components needs to be replaced, the whole tunnel needs to be shut down as

a safety precaution. This is only allowed to happen on weekends and it costs 9000 Euro to set-up

these safety precautions as well as to compensate local businesses that suffer from the tunnel shut

down.

When component 1 fails, it is usually fixed by inspecting various subcomponents and replacing

the broken one. A specialized technician takes 4 hours to do this and charges 130 Euro per hour.

The subcomponent that is replaced costs 50 Euro on average. These operations can be done

without shutting down the tunnel.

Component 2 is maintained by a specialized contractor that charges 4500 Euro to restore the

frame to as good as new condition. If the frame fails between inspection epochs, it has to be

fixed temporarily (minimal repair) for 9100 Euro without closing down the tunnel. After such a

minimal repair, the frame needs to be restored to as good as new condition for 4500 at the next

planned down-time.

Component 3 is can be replaced by the original equipment manufacturer with an overhauled

ventilation unit. This costs 8000 Euro if the ventilation unit has not failed yet. If the ventilation

unit has already failed, a cost of 9500 Euro is charged to account for the extra cost to overhaul

a failed ventilation unit. On top of this, the road safety inspection charges 700 Euro for every

month since the last inspection if the ventilation unit is found to have failed during an inspection.

The surface concrete can be replaced entirely and this costs 7000 Euro. However, if all crack

have a width of less then 1.0 cm, then the concrete does not need to be replaced and can be

fixed by filling the cracks. Past experience indicates that this costs 3900 Euro. A minimal repair

consists of locally filling a single crack and costs 3500 Euro. Inspecting the tunnel costs 50 Euro.

The situation above can be cast into the model of this chapter. In this case Cd = 9000 Euro,

I = {1, 2, 3, 4}, IFBM = {1}, IUBM = {2}, IMDP = {3} and IDTM = {4}. The cost per component

can be determined as a function of the length of the scheduled down interval τ as follows:

• Component 1: Applying the model in Section 3.2.1 yields cFBM,1 = 0.05·(4·130+50) = 28.50

Euro per year.

• Component 2: Applying the model in Section 3.2.5 we find can evaluate cUBM,2. Note that
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Figure 6.1: A ventilation unit

numerical integration is not needed for Weibul distributions.

• Component 3: Applying stochastic dynamic programming and using Cu,3(τ) = 9500 + 12 ·
700τ the cost per scheduled down interval are determined. Dividing this by the length of

the interval yields the cost per year.

• Component 4: Note that the model is a variation to Example 5.2 with different cost and

lifetime parameters and follows the same procedure for evaluation.

The cost functions of components 1 to 4 as a function of τ (so with n∗2(τ) and M∗
3 (τ)) are shown

in Figure 6.2. Summing the cost of these four components and adding the term Cd/τ = 9000/τ

yields Csystem as shown in Figure 6.3. The optimal scheduled down interval is τ ∗ = 3.2692 year

(which is 170 weeks) and the optimal annual cost C∗system = 10.68 kEuro. �

6.2.1 Extensions

The model in this chapter can be extended in several ways. For surveys on so-called multi-

item maintenance problems, we refer the reader to Nicolai and Dekker (2008), Cho and Parlar

(1991), and Thomas (1986). Many extensions are based on approximations rather than exact

models. These approximations capture some more realistic features of industrial problem such

as opportunistic maintenance. When the system has an unscheduled down due to an unexpected

failure, then this opportunity may be used to replace and or maintain several other components

as well. See Zhu et al. (2014) for recent research on this topic.
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Figure 6.2: Annual cost per component vs scheduled down interval
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6.3. Exercises

Exercise 6.1. Replicate Example 6.1 by yourself.



Appendix A

Technical proofs

Lemma A.1. Let N be a Poisson random variable with mean µ, D a logarithmic random variable

with parameter p, and X a negative binomial random variable with shape r and scale 1− p. Then

their generating functions are given by

GN(z) = E[zN ] = exp(µ(z − 1)), z ∈ R

GD(z) = E[zD] =
ln(1− pz)

ln(1− p)
, |z| < 1

p

GX(z) = E[zX ] =

(
1− p
1− pz

)r
, |z| < 1

p
(A.1)

These results can be found in most good textbooks on probability so we omit the proof of this

lemma.

Theorem A.1. Consider a compound Poisson process with logarithmic compounding distribution.

The logarithmic compounding distribution has parameter p and the corresponding random variables

are denoted (Di)i∈N. Furthermore, the Poisson arrival intensity is (without loss of generality)

−r ln(1 − p) and N(t) denotes the number of Poisson arrivals in a period of length t. Then the

compound Poisson process X(t) =
∑N(t)

i=1 Di has a negative binomial distribution with shape rt and

scale 1− p.

Proof. We will show this result by showing that the generating function of X(t) coincides with
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the generating function of a negative binomial random variable with said parameters.

E[zX(t)] = E[z
∑N(t)
i=1 Di ]

=
∞∑
n=0

E
[
z
∑N(t)
i=1 Di | N(t) = n

]
P(N(t) = n)

=
∞∑
n=0

E
[
z
∑n
i=1Di

]
P(N(t) = n)

=
∞∑
n=0

E
[
zD
]n P(N(t) = n)

= GN(t)(GD(z))

= exp

(
−rt ln(1− p)

(
ln(1− pz)

ln(1− p)
− 1

))
= exp (−rt (ln(1− pz)− ln(1− p)))

= exp

(
−rt ln(1− pz)

ln(1− p)

)
=

(
1− pz
1− p

)−rt
=

(
1− p
1− pz

)rt
(A.2)

The fourth equality holds because the Di are i.i.d. The fifth equality follows from the definition of

the generating function. The sixth equality follows from using Lemma A.1 and the Poisson arrival

intensity.



Appendix B

Frequently occurring integrals

The following integrals will occur frequently in expressions that include the exponential distribu-

tion, Erlang distribution, and related distributions. It will be convenient to have these integrals

ready for exercises and such. All of the integrals below can be found without too much effort by

using integration by parts and/or substitution. However, they occur so frequently that it can be

convenient to have them ready. In these expressions, C is an arbitrary constant.∫
e−axdx = −e

−ax

a
+ C (B.1)∫

xe−axdx = −e
−ax(ax+ 1)

a2
+ C (B.2)∫

x2e−axdx = −e
−ax(a2x2 + 2ax+ 2)

a3
+ C (B.3)∫

x3e−axdx = −e
−ax(a3x3 + 3a2x2 + 6ax+ 6)

a4
+ C (B.4)∫

xne−axdx = −
e−ax

∑n
k=0 a

kxk n!
k!

an+1
+ C, n ∈ N. (B.5)
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