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Abstract

The multimodal long-haul transportation of perishable products with management of
Returnable Transport Items (RTIs) has been addressed in SteadieSeifi et al. [2014]. In
that research, our RTIs had equal sizes. In this research, we extend the proposed model
to include three sizes of RTIs. This size difference adds extra features to the problem re-
garding their loading, which increases the complexity of the problem. Therefore, solving
real-world instances of such a planning problem to optimality is impossible. In this work,
we propose a multi-stage constructive algorithm, where we segregate the solution structure
into several layers based on the size of RTIs, and via four stages, we route and reposition
small, medium and big RTIs. We provide detailed computational results and analysis. Our
proposed Mixed-Integer Program (MIP) and algorithm are the first steps in modeling and
solving such a complicated planning problem.

Keywords: Multimodal transportation, Network flow problem, Heterogeneous reusable
transport items, Perishability, Mixed-Integer Program

1 Introduction

In SteadieSeifi et al. [2014], we proposed a Mixed-Integer Program (MIP) for the multimodal
transportation of perishable products with integrated management of Returnable Transport
Items (RTIs). In that paper, we assumed RTIs to have an equal size. In a perishable industry
however, RTIs can have different sizes ranging from a small box to a large 45-feet container. In
the horticultural industry of the Netherlands for instance, flowers and bouquets are loaded in
small RTIs (e.g. boxes and buckets) and small RTIs are then loaded onto medium RTIs (e.g.
cages, Dense fusters, staple wagons, trolleys). In SteadieSeifi et al. [2014], we emphasized the
importance of timely repositioning of empty RTIs, and no RTI of any size is an exception. Their
number is limited, and their availability plays a crucial role in decreasing handling times and
preserving the product quality.

Asset management with multiple sizes in essence is unique, and different from some of the
state-of-the-art heterogeneous fleet management problems (such as in Baldacci et al. [2010]).
Heterogeneous fleet or in general assets, have more than one type, each with its own capacity,
costs, and some other distinct characteristics. A multimodal fleet can be viewed as a special
case of a heterogeneous fleet. However, these assets are not loaded into (onto) each other. We
here call this phenomenon the loading hierarchy.
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Figure 1: Resource allocation structure in a long-haul transportation system

(a) Nesting (b) Folding

Figure 2: Empty nesting and folding

Loading hierarchy brings extra features to the model. In perishable long-haul transportation
for example: 1) Small RTIs are loaded onto medium ones if transported by trucks, 2) Medium
RTIs are then loaded into big RTIs if transported by trains or barges (Figure 1). 3) Capacity
of medium and big RTIs is defined by the number of smaller ones they can carry, and capacity
of transport modes is defined based on the number of biggest RTIs they can accommodate. 4)
Bigger RTIs also have a storage location, and finally, 5) unlike small RTIs, medium and big
ones are labeled, which enables tracking the orders that are consolidated and carried on each of
them.

One of the biggest challenges resulted by this loading relation is synchronization of operations
for all RTI sizes. To pick up a transportation order, all required RTIs should be available in
time based on their loading hierarchy, and their operations cannot be segregated. For example,
medium RTIs cannot start loading, if small RTIs have not arrived to the pick up location and
are ready.

Besides these new features, we introduce a nesting ratio to the multi-size RTI problem.
Nesting ratio is the average ratio of space occupied by an empty RTI compared to a full one.
Figures 2a and 2b show how much space nesting or folding RTIs can save. For instance, if a
loaded trolley takes on average one unit of space, its empty one takes on average 0.3 unit of
space. We then use this ratio in related capacity constraints. Folding or nesting empty RTIs
help more consolidation, less usage of transport modes, and therefore, a cheaper repositioning
operation.

In this paper, we extend the same-size RTI problem to include three sizes (small, medium,
and large). We model this multi-size RTI planning problem and propose a heuristic to solve it.
Our main contribution is to include the interactions between these classes of RTIs (e.g. their
loading hierarchy) into our previous same-size RTI model. In this regard, in Sections 2 and 3,
we describe the problem and review the related literature. In Section 4 then, we explain the
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modeling approach and the mathematical formulation. Then, in Sections 5 and 6, we present
our solution algorithm, and compare its performance with a state-of-the-art solver. Finally, in
Section 7, we provide some concluding remarks.

2 Problem Description

Tactical planning deals with utilizing a given transportation infrastructure by choosing the best
services and associated transportation modes, efficient allocation of their capacities to customer
orders, and management of all resources involved over a particular time span or horizon.

The main decisions are the flow of products (customer demand), the repositioning of RTIs
(for all sizes), the selection of transport modes and schedules to do these jobs, and the number
of vehicles needed for each transport mode.

RTIs being the loading units used for transportation, are the key elements of this problem,
and the main decisions are defined on their flow throughout the network. Their number through-
out the network is limited and their flow is subjected to strict resource balance constraints. For
instance, the number of RTIs available at the beginning of the planning horizon should be equal
to their number at the end of horizon. The initial number of RTIs however is given, and its
value is not a decision.

Demand is here represented by orders. An order is characterized by its pair of origin and
destination locations, its volume, its pickup and delivery schedules, and its freshness require-
ments. Since RTIs are the loading units used to transport the products, the order volume shows
the number of small RTIs (e.g. 32 buckets) needed to transport products from the origin to
the destination. The products can be picked up and loaded onto the RTIs at an earliest given
time, and should be delivered to the destination and unloaded at an latest given time. These
schedules are not definite though, and as long as the order is transported within the length of
this schedule, its flow is feasible. For instance, an order might be held for a few hours at its
origin destination before it is loaded and transported.

Besides management of RTIs, the other factor adding extra complexity to this problem
is preserving product quality and delivering the desired freshness to its market. Perishable
products lose their value over time, and due to geographic distances between production sites and
final markets, preserving product quality is a determining factor in all transportation decisions.
However, measuring and controlling the health of products are not straightforward. In the
horticultural supply chain of the Netherlands, product freshness is approximated by a Time
Temperature Sum (TTS) measure, and a maximum limit is enforced on TTS of orders.

Our problem is an extension to the classic Fixed-charge Capacitated Multicommodity Net-
work Flow Problem (FCMNFP), where additional sets of constraints are added to these prob-
lems. Typically, demand in a FCMNFP problem is defined as commodities, and the only flow
decision is defined on their routing throughout the network. However, we have the following
types of decisions:

1. small laden flow decisions for loaded small RTIs that are transporting the products,

2. small assign flow decisions for empty small RTIs that are repositioned from a location
with surplus of RTIs, to the origin locations of orders to be assigned to their transport,

3. small repos flow decisions for empty small RTIs that are repositioned from the destination
locations of orders back to the storage locations with RTI shortage.

4. medi usage decisions for each available, which is equal to 1, if a particular medium RTI is
used to pickup and deliver the small RTIs flowed around the network, and is equal to 0,
otherwise,
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5. big usage decisions for each available, which is equal to 1, if a particular big RTI is used
to pickup and deliver the medium RTIs flowed around the network, and is equal to 0,
otherwise.

Decisions on small RTIs are different from the decisions on medium and big RTIs. Small
RTIs are not unique (labeled) and have a nonnegative nature, while medium and big RTIs are
labeled, and usage and routing of each of them is optimized in this planning problem. Therefore,
their decision variable has a binary nature.

In order to transport full and empty RTIs, we have fleets of different transportation modes,
available throughout the network. Each transport mode has its own schedules, which is assume
to be given, and its vehicles operate based on these schedules. For instance, trains depart every
6 hours from a hub location. We assume each mode to have a specific temperature, which
for example shows the temperature inside a truck trailer, a train car, or a barge storage room.
Vehicles of a transport mode are capacitated (here, based on RTIs), and there are limited number
of vehicles available for each transport modes.

We introduced the main decisions as decisions on the flows and on transport modes. Besides
transportation activities carried out by the available fleet, these decisions include the relevant
handling or holding activities as well. Therefore, locations are also assumed to have their own
temperature, which is included in the quality measure of loading, unloading, and holding of
laden RTIs at these locations.

Finally, the objective function of our problem is to minimize total system costs. Costs
of renting a truck or reserving space (capacity) on a freight train, costs of handling (loading,
unloading, or transshipping) products or RTIs, costs of storing them, administrative costs of
these operations, etc., are examples of operational costs in such a transportation system.

In the following section, we give an overview on related literature.

3 Related Literature

In our planning problem, we have perishable products. The literature of planning transportation
of such products is identified by extra preservation constraints or penalty costs. There is a vast
literature on distribution planning of perishable products where they are transported from (or
to) a central hub, usually a warehouse or a distribution center, to (or from) the final shops or
customers. However, the literature of which explicitly studies long-haul transportation is very
limited. Long-haul transportation is the one among hubs around the network, which are globally
dispersed and are connected by direct non-truck or a sequence of multimodal options. Reis and
Leal [2015] propose a MIP model for a soybean shipping chain planning problem where choice of
transportation mode is included in the model besides decisions for annual crop purchase. Since
their real-world application deals with significant uncertainty related to crop production, they
define several combinations of scenarios for this uncertainty and apply their MIP model to each
scenario in order to give insights for their decision makers. and Bortolini et al. [2016] propose a
tri-objective LP for tactical planning of a food distribution network considering operating cost,
carbon footprint and delivery time goals. They apply their tool to a real-world distribution
problem and show the trade-off between the operational costs and the carbon footprint.

Our research adds to the literature of long-haul transportation of perishable products by
incorporating management of resources, here RTIs, which is missing in Reis and Leal [2015] and
Bortolini et al. [2016]. Resources (or assets) in general can be RTIs, vehicles, crews, power units,
engines, etc., and positioning, balancing, allocating, repositioning, and rotation of assets are the
subject of asset management.

The general literature on heterogeneous asset management is vast. As we stated earlier,
the entire multimodal transportation planning literature can be considered as a subdivision

4



of heterogeneous asset management literature. Baldacci et al. [2010], Andersen et al. [2009],
and Topaloglu and Powell [2006] are some explicit examples. Baldacci et al. [2010] provide an
overview of different variants of heterogeneous vehicle routing problems (VRPs), and discuss
presented solution approaches in the literature. Andersen et al. [2009] study Service Network
Design (SND) problems with management of multiple fleet, and provide models and formulations
for them. Topaloglu and Powell [2006] models a heterogeneous fleet management problem and
the substitution among them as a Approximate Dynamic Program (ADP).

Combined planning of different assets with their complex interactions is modeled via layering
[Powell, 2003], therefore, our FCMNFP with multiple sizes of RTIs can be formulated as a
multi-layer MIP. The closest study to this environment is Zhu et al. [2014]. They study a rail
transportation problem where customer demand comes to the system as the number of cars
they need to transport. Then, these cars are classified, rearranged into blocks and trains, which
are then routed throughout the rail network. They model it as a three-layered Service Network
Design (SND) problem and solve it by means of a hybrid metaheuristic combining slope scaling,
enhanced by long-term memory-based perturbation strategies and ellipsoidal search method.

Our problem structure and modeling approach is different from Zhu et al. [2014]. For in-
stance, in their study, a new layer was added to the network for each asset management job,
while we do not increase the dimensions of our network in SteadieSeifi et al. [2014]. There are
other differences but more in the details, such as not including loading hierarchy and nesting
ratio in their problem. Our contribution is therefore to include all of these into our model and
since it is a complex problem, design an algorithm to solve it.

In the following sections, we describe our modeling approach and the mathematical formu-
lation.

4 A Three-RTI Mathematical Model

The physical transportation network is characterized by nodes i ∈ N representing the hub
locations, and the arcs (i, j) representing different routes connecting these locations. Between
each location pair, at least one transportation mode m ∈ {1, . . . ,M} can operate.

Similar to SteadieSeifi et al. [2014], in order to include all activities such as handling and
holding operations into the model, we transform the physical network into a mode-space-time
representation. First, we divide the time horizon T (e.g. 48 hours) into a set of time periods
t = 1, . . . , T (e.g. an hour), and map the physical network in both time and space. Each node
v ∈ V in our mode-space-time network represents a location i ∈ N at a time t ∈ {1, . . . , T}
period on a mode m ∈ {1, . . . ,M + 1}. Layers m = 1, . . . ,M can accommodate all transport
activities, whether with fixed timetables or flexible, but the extra layer of m = M + 1, here
called holding mode H, is added to enable modeling handling and holding activities. A feasible
arc a(i,j),t,(m1,m2) ∈ A(V × V), represents four types of operations:

(i) a travel arc for traveling between hub locations (i, j), leaving at particular time t by a
particular mode type m1 = m2 = m (Figure 3a). Depending on its departure time t, a
travel arc has a length of rm(i,j),t.

(ii) a loading/unloading arc for loading RTIs to a particular mode m (or unloading from it) at
a location i = j. A loading arc has a modal state of (m1,m2) = (H,m) and an unloading
arc has a modal state of (m1,m2) = (m,H), and like travel arcs, it can have different

length of r
(m1,m2)
i,t depending on the location and time t.

(iii) a waiting arc representing the stand-by state of a mode m1 = m2 = m (e.g. for switching
rail tracks at borders, or custom clearance) at a location i = j at time t. The length of
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(a) Travel arcs connecting different
nodes

(b) Location arcs representing location
operations

Figure 3: An illustration of different arcs in the model

waiting arc is one.

(iv) a holding arc for holding RTIs at a location i = j at time t for one time period.

Since the last three activities occur at the locations, the arcs representing them are called
location arcs (Figure 3b). Let A1 = {a(i,j),t,(m1,m2) ∈ A(V × V) | i 6= j,m1 = m2} be the set of
all feasible and given travel arcs in the mode-space-time network, and let A2 = {a(i,j),t,(m1,m2) ∈
A(V × V) | i = j,m1 = H ‖ m2 = H} be the set of all feasible location arcs in the network.
Similarly, let Am = {a(i,j),t,(m1,m2) ∈ A(V × V) | m1 = H ‖ m2 = H} be the set of all feasible
loading, unloading, traveling, and waiting arcs in the network related to mode m.

Each transport mode has its given schedules and time-dependent travel time rm(i,j),t, vehicle
capacity capm, total Fm number of available vehicles, a temperature lm(i,j),t, fixed costs Cm

representing the administrative costs associated with usage of its vehicles, and variable costs
Cm

RTI for carrying RTIs (small laden, small empty, medi, and big). Compared to the problem
with same-size RTIs, capacity of each mode is now defined on medium and big RTI scale.
In general, if transportation modes have their own installed big containers (e.g. truck trailers,
train cars, etc.), their capacity is defined on the number of medium RTIs they can accommodate.
Otherwise, their capacity is based on big RTIs. Here, we assume to have reefer trucks, trains,
and barges as examples of modes. Since, reefer trucks are not able to carry containers, their
capacity is defined by the number of medium RTIs they can carry. Such an assumption makes
our MIP a special case, and adds to the complexity of the problem, but it is not unrealistic.
Our reason is to show how these capacity differences can be represented in a MIP.

Each location i has a temperature li,t. Moreover, each location i is assumed to have Si,small,
Si,medi, Si,big ≥ 0 number of small, medium, and big RTIs available at the beginning of the
planning horizon, and the number of RTIs at the end of horizon should be equal to the initial
value. Of course, the location of small, medium, and big RTI storages are not necessarily the

same, and inbound hubs are not obliged to keep similar number of them. Let C
(m1,m2)
i,small , C

(m1,m2)
i,medi ,

and C
(m1,m2)
i,big be the general term for loading, unloading, and holding costs per small, medium,

and big RTI per time period, which are enforced on the location arcs.
An order p is characterized by its origin O(p), its destination D(p), volume (based on small

RTIs) wp, an earliest pick up time of PT (p), a latest delivery due date of DT (p), and the
maximum allowed TTS of Lp. The number of needed medium and big RTIs is not indicated
in the order. Their usage and routing are decisions that the model will determine based on all
consolidation options and order requirements.

We introduced the decisions of our planning problem in Section 2, namely laden, assign,
and repos decisions for small RTIs flows, and medi and big decisions determining the usage of
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medium and big RTIs. For each order p, we define two variables x̌ to show how many small
RTIs enter an arc a(i,j),t,(m1,m2), and x̂ to show how many small RTIs exit the arc. Medium and
big RTIs are labeled, meaning that we optimize the usage and routing of each one of them in
our model. Assuming g = 1, . . . ,G and k = 1, . . . ,K number of medium and big RTIs available
in the system, new sets of binary variables are introduced showing their usage, and similar to
small RTI decisions, two sets of variables ěg, ěk show a medium and a big RTI entering an arc,
and two sets of variables êg and êk show a medium and a big RTI exiting the arc. When a
medium and a big RTI are used to move small RTIs between locations i, and j, departing at
time t, their usage variables are equal to 1.

Similarly, we have two sets of variables y̌ and ŷ to show the number of vehicles respectively
entering and exiting an arc. The auxiliary binary variables b̌ and b̂ are also added to help
calculating TTS.

Three categories of variables U are added to the model to keep track of the inbound and
outbound small RTI flows at each location, and to connect the flows of loaded and empty small
RTIs throughout the network. There are variables Ug and Uk to track the inbound and outbound
medium and big RTI usage throughout the network.

Note that each medium RTI g has a capacity capg based on the number of small ones it
can carry, and each big RTI k has a capacity capk equal to the number of medium RTIs it can
accommodate.

In the remainder of this section, we formulate our FCMNFP model for the multimodal
network flow problem with product quality preservation and management of RTIs with three
sizes as:

min ∑
a(i,j),t,(m1,m2)∈A1

rm(i,j),t

 P∑
p=1

Cm
laden

(
x̌laden
p,(i,j),t,(m1,m2)

) (1a)

+
∑

a(i,j),t,(m1,m2)∈A1

rm(i,j),t

 P∑
p=1

Cm
empty

(
x̌assign
p,(i,j),t,(m1,m2) + x̌repos

p,(i,j),t,(m1,m2)

) (1b)

+
∑

a(i,j),t,(m1,m2)∈A2

r
(m1,m2)
i,t

 P∑
p=1

C
(m1,m2)
i,small

(
x̌laden
p,(i,i),t,(m1,m2)

) (1c)

+
∑

a(i,j),t,(m1,m2)∈A2

r
(m1,m2)
i,t

 P∑
p=1

C
(m1,m2)
i,small

(
x̌assign
p,(i,i),t,(m1,m2) + x̌repos

p,(i,i),t,(m1,m2)

) (1d)

+

M∑
m=1

∑
a(i,j),t,(m1,m2)∈Am

Cm × y̌(i,j),t,(m1,m2) (1e)

+
∑

a(i,j),t,(m1,m2)∈A1

rm(i,j),t

Cm
medi

G∑
g=1

ěmedi
g,(i,j),t,(m,m) + C

(m1,m2)
i,medi

G∑
g=1

ěmedi
g,(i,i),t,(m1,m2)

 (1f)

+
∑

a(i,j),t,(m1,m2)∈A1

rm(i,j),t

(
Cm
big

K∑
k=1

ěbigk,(i,j),t,(m,m) + C
(m1,m2)
i,big

K∑
k=1

ěbig
k,(i,i),t,(m1,m2)

)
(1g)

The objective function is in the form of minimizing total system costs, where its terms
respectively represent (1a) flow costs of the loaded small RTIs, (1b) flow costs of the assigned
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and repositioned empty small RTIs, (1c) and (1d) locational costs of loaded, assigned, and
repositioned small RTIs, and (1e) costs of using the modes. The terms (1f) and (1g) represent
all costs related to medium and big RTIs.

Constraints (2)-(11) match pairs of entering and exiting variables, to ensure network arc
connectivity.

x̌cat
p,(i,j),t,(m1,m2) = x̂cat

p,(i,j),(t+rm
(i,j),t

),(m1,m2)

∀cat ∈ {laden, empty, repos},
a(i,j),t,(m1,m2) ∈ A1

p = 1, . . .P
(2)

x̌cat
p,(i,i),t,(m1,m2) = x̂cat

p,(i,j),(t+r
(m1,m2)
i,t ),(m1,m2)

∀cat ∈ {laden, empty, repos},
a(i,j),t,(m1,m2) ∈ A2

p = 1, . . .P
(3)

y̌(i,j),t,(m1,m2) = ŷ(i,j),(t+rm
(i,j),t

),(m1,m2) ∀a(i,j),t,(m1,m2) ∈ A1 (4)

y̌(i,i),t,(m1,m2) = ŷ
(i,j),(t+r

(m1,m2)
i,t ),(m1,m2)

∀a(i,j),t,(m1,m2) ∈ A2 (5)

b̌p,(i,j),t,(m1,m2) = b̂p,(i,j),(t+rm
(i,j),t

),(m1,m2)
∀a(i,j),t,(m1,m2) ∈ A1

p = 1, . . .P (6)

b̌p,(i,i),t,(m1,m2) = b̂
p,(i,j),(t+r

(m1,m2)
i,t ),(m1,m2)

∀a(i,j),t,(m1,m2) ∈ A2

p = 1, . . .P (7)

ěmedi
g,(i,j),t,(m,m) = êmedi

g,(i,j),t+rm
(i,j),t

),(m1,m2)

∀a(i,j),t,(m1,m2) ∈ A1

g = 1, . . . ,G (8)

ěmedi
g,(i,i),t,(m1,m2) = êmedi

g,(i,j),t+r
(m1,m2)
i,t ),(m1,m2)

∀a(i,j),t,(m1,m2) ∈ A2

g = 1, . . . ,G (9)

ěbig
k,(i,j),t,(m,m) = êbig

k,(i,j),t+rm
(i,j),t

),(m1,m2)

∀a(i,j),t,(m1,m2) ∈ A1

k = 1, . . . ,K (10)

ěbig
k,(i,i),t,(m1,m2) = êbig

k,(i,j),t+r
(m1,m2)
i,t ),(m1,m2)

∀a(i,j),t,(m1,m2) ∈ A2

k = 1, . . . ,K (11)

Constraints (12) are flow conservation constraints. These constraints define variables U as
the total net flow (loaded small RTIs, assigned empty and repositioned empty small RTIs) for
each order at each location and time period.

U cat
pit =

∑
j∈V−{i}

∑
t′>t

M+1∑
m=1

x̌cat
p,(i,j),t,(m1,m2)

−
∑

j∈V−{i}

∑
t′<t

M+1∑
m=1

x̂cat
p,(j,i),t,(m1,m2)

∀cat ∈ {laden, empty, repos},
i ∈ V,
t = 1, . . . , T
p = 1, . . .P

(12)

Constraint set (13) enforces the flow of loaded small RTIs (orders) between origin and des-
tination locations. It enforces the outbound flow of an origin node to be wp and the inbound
flow of a destination node to be −wp. Note that even though Constraints (13) are equality
constraints, there is no obligation for an order to immediately be loaded and transported at its
earliest pick up time. In a feasible solution, an order might be held for several time periods
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before loading. Similarly, the delivery due date of an order is not definite.

U laden
pit


= wp i = O(p), t = PT (p)
= −wp i = D(p), t = DT (p)
= 0 o.w.

∀i ∈ V,
t = 1, . . . , T
p = 1, . . .P

(13)

Uassign
pit


≤ Si,small Si,small > 0, t = 0
= −wp i = O(p), t = PT (p)
0 o.w.

∀i ∈ V,
t = 1, . . . , T
p = 1, . . .P

(14)

U repos
pit


= wp i = D(p), t = DT (p)
≥ −Si,small Si,small > 0, t = T
0 o.w.

∀i ∈ V,
t = 1, . . . , T
p = 1, . . .P

(15)

Constraints (14) and (15), in a similar fashion enforce the flow of empty small RTIs between
origin and destination locations. The origin locations of the assigned empty RTIs are the RTI
storage locations with Si,small > 0. Their destination locations are the locations where they
are needed to be loaded and transport the products (O(p),PT(p)). On the other hand, the
repositioned empty RTIs need to get back to the storage locations. Therefore, the locations
with Si,small > 0 are their destinations and their origin locations are the locations where the
loaded RTIs are unloaded (D(p),DT(p)). Constraint (16) enforces the number of empty small
RTIs assigned from a storage locations to be equal to the number of RTIs returned there.

∑
j∈V−{i}

M+1∑
m=1

P∑
p=1

x̌assign
p,(i,j),0,(m1,m2) =

∑
j∈V−{i}

M+1∑
m=1

P∑
p=1

x̂repos
p,(j,i),T,(m1,m2) ∀i ∈ V : Si > 0 (16)

Constraints (17) and (18) are equivalent conservation constrains for using medium and big
RTIs, and constraint sets (19) and (20) enforces that at each medium and big RTI storage
location, a medium or a big RTI can be at most used once, and for the rest of network, if a
medium or a big RTI enters a node, it should also leave it.

Ugit =
∑

j∈V−{i}

∑
t′>t

M+1∑
m=1

ěmedi
g,(i,j),t,(m1,m2) −

∑
j∈V−{i}

∑
t′<t

M+1∑
m=1

êmedi
g,(j,i),t,(m1,m2)

∀i ∈ V,
t = 1, . . . , T
g = 1, . . . ,G

(17)

Ukit =
∑

j∈V−{i}

∑
t′>t

M+1∑
m=1

ěbig
k,(i,j),t,(m1,m2) −

∑
j∈V−{i}

∑
t′<t

M+1∑
m=1

êbig
k,(j,i),t,(m1,m2)

∀i ∈ V,
t = 1, . . . , T
k = 1, . . . ,K

(18)

Ugit =


≤ 1 Si,medi > 0, t = 0
≤ 1 Si,medi > 0, t = T
= 0 o.w.

∀i ∈ V,
t = 1, . . . , T
g = 1, . . . ,G

(19)

Ukit =


≤ 1 Si,big > 0, t = 0
≤ 1 Si,big > 0, t = T
= 0 o.w.

∀i ∈ V,
t = 1, . . . , T
k = 1, . . . ,K

(20)

Constraints (21) and (22) are logical constraints which are used to calculate the TTS of
orders. Note that M is the classic “big M”. Based on these constraints then, if there is no flow
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of products on a specific arc (x = 0), that arc will not be included in the constraint on TTS
(b = 0).

x̌laden
p,(i,j),t,(m1,m2) ≥ b̌p,(i,j),t,(m1,m2)

∀a(i,j),t,(m1,m2) ∈ A(V × V),

p = 1, . . .P (21)

x̌laden
p,(i,j),t,(m1,m2) ≤Mb̌p,(i,j),t,(m1,m2)

∀a(i,j),t,(m1,m2) ∈ A(V × V),

p = 1, . . .P (22)

Based on Constraints (21) and (22), Constraint (23) states that for each order, the total
time × temperature of moving and handling an order must be less than or equal to the total
required TTS of that order.

∑
a(i,j),t,(m1,m2)∈A1

lm(i,j),t × r
m
(i,j),t × b̌p,(i,j),t,(m,m)

+
∑

a(i,j),t,(m1,m2)∈A2

l
(m1,m2)
i,t × r(m1,m2)

i,t × b̌p,(i,i),t,(m1,m2) ≤ Lp ∀p = 1, . . .P (23)

In this work, there are capacity restrictions enforced on medium RTIs, big RTIs, and on
transportation modes, represented by Constraints (24)-(33). In order to incorporate nesting
ratio into capacity computations, first, Constraints (24), (25), and (26) define the total number
of small RTIs, medium RTIs, and big RTIs between i and j at time t. These constraints are
later used to find the proportion of medium RTIs, big RTIs that are empty and are nested in a
bigger RTI or vehicle.

Πsmall
(i,j),t,(m,m) =

P∑
p=1

x̌laden
p,(i,j),t,(m,m) + βsmall

P∑
p=1

x̌assign
p,(i,j),t,(m,m)

+ βsmall
P∑

p=1

x̌repos
p,(i,j),t,(m,m) ∀a(i,j),t,(m1,m2) ∈ Am (24)

Πmedi
(i,j),t,(m,m) =

G∑
g=1

ěmedi
g,(i,j),t,(m,m) ∀a(i,j),t,(m1,m2) ∈ Am (25)

Πbig
(i,j),t,(m,m) =

K∑
k=1

ěbig
k,(i,j),t,(m,m) ∀a(i,j),t,(m1,m2) ∈ Am (26)

Constraints (27) and (28) are weak and strong capacity constraints on the medium RTIs
respectively. The total number of small RTIs (laden or empty) moved between i and j at time
t should be less than or equal to the total capacity of medium RTIs transporting them.

Πsmall
(i,j),t,(m,m) ≤ cap

medi ×Πmedi
(i,j),t,(m,m) a(i,j),t,(m1,m2) ∈ Am (27)

x̌cat
p,(i,j),t,(m,m) ≤ cap

medi ×Πmedi
(i,j),t,(m,m)

∀cat ∈ {laden, empty, repos},
a(i,j),t,(m1,m2) ∈ Am

(28)

Likewise, constraints (29) and (30) are weak and strong capacity limits on big RTIs. Using
ceiling function, constraint (29) enforces the total loaded and empty medium RTIs to be less
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than the capacity of the big RTIs carrying them.⌈
Πsmall

(i,j),t,(m,m)/cap
medi

⌉
+ βmedi

(
Πmedi

(i,j),t,(m,m)

−
⌈
Πsmall

(i,j),t,(m,m)/cap
medi

⌉)
≤ capbig ×Πbig

(i,j),t,(m,m)
∀a(i,j),t,(m1,m2) ∈ Am (29)

ěmedi
g,(i,j),t,(m,m) ≤ cap

big ×Πbig
(i,j),t,(m,m)

∀a(i,j),t,(m1,m2) ∈ Am (30)

Finally, constraints (31)-(33) enforce the capacity of transportation modes. The total number
of big RTIs transported by each mode should not exceed the capacity of vehicles transporting
them, if that mode is chosen. It was explained in the previous section that big RTIs are not
allowed on reefer trucks (constraint (33)). It was assumed that big RTIs are transported by
trains and barges.

Πmedi
(i,j),t,(m,m) ≤ capm × y̌(i,j),t,(m,m) ∀a(i,j),t,(m1,m2) ∈ Am,m = reefer truck (31)

Πbig
(i,j),t,(m,m) ≤ capm × y̌(i,j),t,(m,m) ∀a(i,j),t,(m1,m2) ∈ Am,m 6= reefer truck (32)

K∑
k=1

ěbig
k,(i,j),t,(m,m) = 0 ∀a(i,j),t,(m1,m2) ∈ Am,m = reefer truck (33)

Let At,m = {a(i,j),t,(m1,m2) ∈ A(V × V) | m1 = m,m2 = m, t̃ ≤ t, t̂ ≥ t} be the set of all arcs
of mode m ∈ {1, . . . ,M} crossing time period t. Constraint (34) then states that in each time
period, the number of used vehicles of a mode type must be less than or equal to a maximum
value Fm. ∑

a(i,j),t,(m1,m2)∈At,m

y̌(i,j),t,(m1,m2) ≤ |Fm| ∀t = 1, . . . , T,
m = 1, . . . ,M (34)

Finally, Constraints (35)-(39) define the nature of variables in this formulation.

x̌cat
p,(i,j),t,(m1,m2), x̂

cat
p,(i,j),t,(m1,m2) ≥ 0

∀cat ∈ {laden, empty, repos},
a(i,j),t,(m1,m2) ∈ A(V × V),

p = 1, . . . ,P
(35)

b̌p,(i,j),t,(m1,m2) ∈ {0, 1}
∀a(i,j),t,(m1,m2) ∈ A(V × V),

p = 1, . . . ,P (36)

ěmedi
g,(i,j),t,(m1,m2), ê

medi
g,(i,j),t,(m1,m2) ∈ {0, 1}

∀a(i,j),t,(m1,m2) ∈ A(V × V),

g = 1, . . . ,G (37)

ěbig
k,(i,j),t,(m1,m2), ê

big
k,(i,j),t,(m1,m2) ∈ {0, 1}

∀a(i,j),t,(m1,m2) ∈ A(V × V),

k = 1, . . . , k
(38)

y̌
(m1,m2)
(i,j),t ∈ N ∀a(i,j),t,(m1,m2) ∈ A(V × V), (39)

In the next section, we describe the designed solution algorithm to solve this problem in
details.
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5 Solution Algorithm

Balakrishnan et al. [1997] have shown that the fixed-charge capacitated network design problem
is NP-hard. Our problem incorporates additional product preservation and resource manage-
ment decisions and constraints which add further complexity to such a problem. There are two
main challenges in designing a solution algorithm for a problem with multiple sizes of RTIs:

1. The structure of a solution in this problem has several interconnected layers, each repre-
senting movements of a particular RTI category. If several small RTIs are moved for an
order, we can have a path for that order showing the flow of these RTIs. In comparison, if
a medium or big RTI is moved, we will have a path showing its route around the network.
These paths have similar segments due to the fact that smaller ones are moved by the
bigger ones, and bigger ones are moved by the transport modes. It is not straightforward
to improve a solution of this problem by traditionally removing and reinserting a partic-
ular part of it. To put it simply, if we remove an arc from the path of a medium RTI,
several smaller RTI flows, a big RTI path, as well as related fleets are removed, leaving
the other paths in different layers damaged. Therefore, an algorithm should repair not
only the medium RTI paths, but should also repair all the other damaged parts. This
intertwined solution structure makes designing a metaheuristic algorithm and its possible
neighborhoods extremely hard. Here, we propose an algorithm that segregates the solution
structure and its layers.

2. Secondly, synchronization of operations at all layers of the solution, makes scheduling
calculations inflexible and difficult to handle. In order to avoid complicated scheduling,
we work with scheduling intervals. Therefore, a feasible solution is one where all small
RTI flows, medium RTIs, and big RTIs using a particular transport mode, have a common
time interval, even though their individual intervals are not necessarily equal. We explain
this scheduling tactic later in this section.

Our proposed algorithm is a multi-stage constructive algorithm, where it starts with empty
repositioning and flows of small RTIs, then generates routes for medium and big RTIs, and
finally arranges the fleet set. Figure 4 gives an overall view on the designed solution algorithm.

Figure 4: The algorithm of the Multi-stage Greedy Heuristic
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A solution z consists of three sets of S-routes, M-routes, and B-routes, auxiliary sets of
M-partial paths and B-partial paths, and a set of fleet. A S-route Rp represents the scheduled
flow of (laden or empty) RTIs for an order p. In other words, an Rp is the set of all x̌laden

p (or

x̌assign
p , or x̌repos

p ) with positive values. Likewise, a M-route Rg and a B-route Rk represent the
scheduled movements of medium and big RTIs respectively. These routes show the sequence of
locations that small, medium, and big RTIs pass through, as well as the departing schedules
of the modes transporting them among these locations. Note that in order to generalize the
solution structure, and have a simpler and more systematic solution space search, we add ghost
big RTIs in the algorithm to carry the medium RTIs transported by reefer trucks. These ghost
RTIs have no capacity, no costs, and no storages, and therefore, they do not need assignment
and repositioning either. As we explained in Section 2, reefer trucks are not able to carry big
RTIs, but if this assumption changes, our ghost RTIs can easily be replaced by real ones.

In order to take synchronization of these connected routes into account, for each location that
is visited on these routes, we define two scheduling intervals on departing from the location, and
arriving to that location. These two intervals are defined by the following four values: earliest
departure time (ED), earliest arrival time (EA), latest departure time (LD), and latest arrival
time(LA). ED and LD show the earliest and the latest possible departing time from a location,
and EA and LA show the earliest and the latest feasible arrival to a location on a route. A
feasible solution is then a solution that for all arcs in it, the related S-route, M-route, B-route,
and fleet traveling that arc, have scheduling overlaps to ensure their timing feasibility and
synchronization.

The fm(i,j),t in the set of fleet represents the mode m used for the arc (i, j) departing at time

t. The set of fleet shows the number of vehicles used (y̌ with positive values) for each space-
time-mode arc. As a result, the solution space is the set of all possible routes and their related
fleet arrangements.

First Stage

At the first stage of our algorithm, we solve an assignment problem with a set of supply locations
with empty small RTI surplus, and a set of demand location with empty RTI shortage or need,
twice. In the first assignment problem, supply locations are the RTI storage locations with
available number of RTIs Si,small > 0, and the demand locations are the origin points O(p)
with demand wp. In the second though, supply locations are the destination point D(p) with
supply wp and the demand points are the storage locations with RTI deficit Si,small < 0. This
assignment problem is an extension to the classic transportation problem which can be solved
via a state-of-the-art solver in a polynomial time.

The result of solving these assignment problems is empty orders. These empty orders de-
fine how many empty small RTIs and between which locations and at what time should be
transported. We add them to the set of all orders, and then we build the S-routes.

In constructing the S-routes, we start with orders that have tighter time windows. Such
orders have less flexible time intervals, and they are less likely to find cheaper but slower trans-
portation. The greedy S-route constructor is a cheapest path algorithm which looks for the
cheapest possible path for an order.

While constructing S-routes with its arcs, we generate partial paths for medium RTIs and big
RTIs as well. The partial path sets keep track of needed medium and big RTIs that are needed
for the S-routes. We use these partial paths in the next stages of the algorithm to construct
M-routes and B-routes.
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Second and Third Stages

At the second stage, we first go through all generated M-partial paths and try to find consoli-
dation options, where the loads of two medium RTIs can be combined into one, and the excess
medium RTI can be removed. It is important to note that this procedure is done while ensuring
scheduling and synchronization feasibility. In this regard, we search for combinations that have
cheaper costs than the original paths. If we find such a consolidation option, we then update
schedules of all the related S-Routes.

After that, we call a greedy M-partial path constructor, in order to assemble the collection
of M-partial paths together and generate longer partial paths. This greedy path constructor is
a cheapest insertion algorithm, where starting from earliest M-partial paths, tries to find the
cheapest feasible assembly to other M-partial paths. Each new and longer path now represents
the sequence of locations visited by one particular medium RTI, transporting the small RTIs in
it. We later use these longer paths to construct M-routes.

Afterwards, we employ a designated assignment heuristic to check whether the head and
the tail locations of these medium partial paths are their storage locations or not. If not, the
heuristic searches for the cheapest assignment and reposition of a medium RTI for that path,
and then completes the M-routes, so that their starting and ending locations are their storage
locations.

Similar to medium RTIs, in the third stage, we execute a consolidation search, a partial path
assembly, and an assignment heuristic for completing the B-routes. In this stage also, if it is
needed, we update the schedules of all related M-routes and S-routes.

The third stage has an additional consolidation search, where starting from the B-routes
with lowest number of medium RTIs on them, we look for options to consolidate these medium
RTIs once again, to see whether we can remove the B-route and its related big RTI.

By the end of second and third stages, all partial paths have been inserted into M-routes
and B-routes, so the auxiliary path sets will become empty.

Fourth Stages

The final stage is a fast procedure to arrange the fleet and schedule their exact depart times,
while monitoring all time interval feasibilities. Again, if necessary, we update schedules of all
related routes.

In the next section, We present the computational results of solving this problem and the
performance of our multi-stage greedy heuristic.

6 Numerical Experiments

In this section, the proposed formulation presented in Section 4 is verified on two groups of
instances with 7 and 11 locations, three transportation modes of reefer trucks, train, and barge,
and three sizes of RTIs. All instances are solved on a 2.4 GHz CPU with 16.00 GB RAM, and
Gurobi solver 6.5.2 is used as the MIP solver. The instances are run for a maximum time of 10
hours.

6.1 Instance Sets

The instance sets we use, were inspired by transportation of horticultural products on the Trans-
European Transport Network (TEN-T) [Tosi, 2014, Verhoeven, 2014, Vlassak, 2014, Rosenboom,
2014].
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Table 1: Transportation mode inputs

freqm
capm
(1)

capm
(2) Fm li speedm Cm

fix Cm
hr Cm

km

Reefer Truck services 1 22 - 200 5 65 136.34 49.02 0.28
Train services 6 - 80 10 5 32.5 179.37 13.17 0.24
Barge services 2 - 32 10 5 18.52 118.04 3.95 0.06

1: based on medium RTIs
2: based on big RTIs

Table 2: Returnable Transport Item (RTI) inputs

capg (1) capk (2) β Chr CH

Small - - 0.33 0.04 0.002
Medi 10 - 0.44 0.20 0.008
Big - 22 1.00 0.29 0.010

1: based on medium RTIs
2: based on big RTIs

We have two sets of instance with 7 and 11 locations. The first group only includes only the
hubs in the Netherlands, the second group includes the hubs in the Netherlands, Belgium and
Luxemburg. Two of the location (Aalsmeer and Naaldwijk) are inbound hubs, and the rest are
outbound hubs. Inbound hubs are locations where the products come from all around the world
to get sold, sorted, and consolidated for the shipments. The outbound hubs on the other hand
are locations that the shipments are divided and packaged for the last-mile distribution.

Regarding the transportation modes, there are three classes of reefer truck, train, and barge
transportation. Table 1 gives the parameter setting for the modes. Table 2 too gives the
parameter setting on the RTIs 1 , 2.

Assuming dist(i,j) to be the distance between locations i and j, the cost of using a mode
Cm is calculated via Cm = Cm

fix +Cm
KM × dist(i,j). The variable cost of moving an empty RTI of

a particular size is calculated as Cm
size = Cm

HR/(cap
m × utilm). If the RTI is loaded, its Cm

size is
multiplied by a coefficient VAT, to show the higher cost of transporting laden RTIs compared
to empty ones.

Without loss of generality, and by observing the practice, we assume that the empty RTIs
in this network are stored at the inbound hubs. We argue that our model is general enough to
accept any mapping of RTI storages. Small RTIs are assumed to be stored at Aalsmeer, while
medium and big RTIs are stored at Naaldwijk. Later, we compare the results with the case
where all types of RTIs are stored at Aalsmeer, to show the repositioning cost differences.

The instances are named as ”nAmBrCoD” where value of A shows the number of locations,
value of B is the number of mode types, value of C is the number of RTI sizes, and value of
D stands for the number of orders. The instances with m1 only have reefer truck options, the
instances with m2 have truck and train options, and the instances with m3 have all modes
available.

6.2 Computational Strengthening

The number of decision variables in our problem goes very quickly beyond what can be solved to
optimality with a state-of-the-art MIP solver. Keeping all the matrices can cost a huge amount
of memory. To deal with huge matrices of the parameters and variables that are extremely
sparse, and to decrease the memory consumption of Gurobi, we used the so-called “colt”3 library

1http://www.containerhomeplans.org/2015/07/how-much-does-it-cost-to-transport-a-shipping-container/
2http://www.approvedindex.co.uk/storage-containers/iso-containers
3http://acs.lbl.gov/software/colt/
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Table 3: Comparison of exact and greedy results

Exact (in 10 Hours) Multi-stage Greedy Constructive Algorithm

No. of RTIs No. of Vehicles No. of RTIs No. of Vehicles

n m r o
Upper
Bound

Gap
(%) Medi Big R. T. B.

Total
System
Cost

Comp.
Time
(sec.)

Medi Big R. T. B.

7 1 3 5 5889 15.08 12 - 13 - - 9310 1 12 - 31 - -
7 2 3 5 4589 13.56 12 3 6 7 - 6462 4 12 3 18 4 -
7 3 3 5 N.S. - - - - - - 5006 23 12 7 4 2 12
7 1 3 10 N.S. - - - - - - 23042 1 35 - 84 - -
7 2 3 10 N.S. - - - - - - 15585 8 35 7 44 14 -
7 3 3 10 N.S. - - - - - - 9146 52 35 12 10 3 20
7 1 3 20 N.S. - - - - - - 42043 1 64 - 150 - -
7 2 3 20 N.S. - - - - - - 27359 12 63 9 83 17 -
7 3 3 20 N.S. - - - - - - 14432 78 63 13 20 3 21

11 1 3 5 3821 44.15 7 - 11 - - 6237 10 8 - 22 - -
11 2 3 5 3348 44.4 7 2 7 5 - 5467 131 8 2 17 3 -
11 3 3 5 N.S. - - - - - - 4621 268 8 7 6 1 14
11 1 3 10 7682 45.45 14 - 21 - - 12579 12 16 - 45 - -
11 2 3 10 N.S. - - - - - - 11668 164 16 5 37 6 -
11 3 3 10 N.S. - - - - - - 6917 458 16 11 6 4 18
11 1 3 20 N.S. - - - - - - 26370 27 34 - 89 - -
11 2 3 20 N.S. - - - - - - 21158 231 33 7 64 10 -
11 3 3 20 N.S. - - - - - - 12468 938 34 17 14 5 26

Note: N.S. stands for “No Solution”, meaning that Gurobi is not able to find any solutions for that instance in 10 Hour time
Note: R. stands for reefer trucks, T. stands for trains, and B. stands for barges.

to replace the standard matrix format with a sparse one. Colt libraries are a set of JAVA
libraries designed for efficient use of scientific and technical data structure and algorithms, such
as in multi-dimensional arrays, Monte Carlo simulations, etc. In multi-dimensional matrices for
instance, it helps structuring the data such that its memory consumption is minimized.

6.3 Initial Results

In this section, we compare the results of Gurobi solver with the ones from our proposed multi-
stage algorithm. Tables 3 gives an overview of the results, including the obtained upper bounds
within 10 hours, the optimality gap, and the multi-stage algorithm cost comparison for the
instances that Gurobi was able to find a solution.

As shown in the table, Gurobi solver is not able at all to find the optimal solution of even
the smallest instances within 10 hours. The computation effort depends not only the number
of locations, but on the number of modes and orders. For instances with more than 10 orders,
Gurobi runs out of memory before starting the branch-and-bound.

In an attempt, we added some time window and some capacity constraints to the model
to enhance preprocessing. However, it did not help at all. Increasing preprocessing setting of
Gurobi itself did not help either.

Comparing results of our proposed algorithm with the obtained upper bounds, it is clear that
despite our algorithm being able to find a feasible solution in less than an hour, it is not able to
find near optimal solutions. The clear difference is in the fixed costs and the fleet arrangement
(Table 4), which shows that the small-towards-big-size approach of the multi-stage algorithm
is causing it to employ too many vehicles, even though the number of medium and big RTIs
are not much different. Table 4 gives an overview on the total cost distribution among different
assets, its small RTI costs representing terms (1a)-(1d) in the objective function, medium RTI
costs representing term (1f), big RTI costs showing term(1g), and finally fixed costs of using the
modes in the term (1e) of the objective function. Table 4 shows that despite cheaper small RTI
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Table 4: Comparison of exact and greedy detailed costs

Exact (10 Hours)
n m RTIs o Small RTI Costs Medi RTI Costs Big RTI Costs Fixed Costs

7 1 3 5 1026 2069 0 2794
7 2 3 5 654 788 91 3148
7 3 3 5 - - - -

11 1 3 5 675 1092 0 2055
11 2 3 5 541 572 41 2194
11 3 3 5 - - - -

Multi-stage Greedy Algorithm
n m RTIs o Small RTI Costs Medi RTI Costs Big RTI Costs Fixed Costs

7 1 3 5 1026 1962 0 6323
7 2 3 5 776 1300 116 4271
7 3 3 5 687 833 368 3117

11 1 3 5 420 1213 0 4604
11 2 3 5 354 909 100 4105
11 3 3 5 248 477 342 3554

Table 5: Comparison of results for repositioning location cases

Different Locations Similar Locations
No. of RTIs No. of Vehicles No. of RTIs No. of Vehicles

n m RTIso
Upper
Bound

Gap
(%) Medi Big R. T. B.

Upper
Bound

Gap
(%) Medi Big R. T. B.

7 1 3 5 5889 15.08 12 - 13 - - 5072 7.63 12 - 10 - -
7 2 3 5 4589 13.56 12 3 6 7 - 4222 21.12 12 2 5 6 -
7 3 3 5 N.S. - - - - - - 5082 42.52 12 6 4 5 8
7 1 3 10 N.S. - - - - - - N.S. - - - - - -
7 2 3 10 N.S. - - - - - - 7155 27.94 33 6 6 13 -
7 3 3 10 N.S. - - - - - - 6934 36.99 35 8 5 4 13

11 1 3 5 3821 44.15 7 - 13 - - 2801 39.37 7 - 9 - -
11 2 3 5 3348 44.4 7 2 7 5 - 2671 43.79 7 2 5 4 -
11 3 3 5 N.S. - - - - - - N.S. - - - - - -
11 1 3 10 7682 45.45 14 - 21 - - N.S. - - - - - -
11 2 3 10 N.S. - - - - - - 5502 59.9 17 6 3 14 -
11 3 3 10 N.S. - - - - - - 5566 63.05 16 8 3 7 10

Note: R. stands for reefer trucks, T. stands for trains, and B. stands for barges.

costs, medium and big RTI routes are not cheap, and the fleet is expensive.

6.4 Similar RTI Storage Locations

So far, we assumed that the empty small RTIs are stored at Aalsmeer, while medium and big
RTIs are stored at Naaldwijk. In this section, we compare the results to the case where all types
of RTIs are stored at Aalsmeer. The reason is that Aalsmeer is the biggest inbound hub with
processing logistics of the majority of imported and exported products. Table 5 and 6 show
the results of comparing solutions for different and similar RTI locations. Looking at Table 5,
Gurobi solver is able to find an upper bound for more instances within 10 hours. However,
this difference is not significant. Moreover, it is clear that new solutions have less repositioning
movements with less vehicles.

Table 6 gives an overview on medium and big repositioning costs for the few comparable
instances. Comparing the results of Gurobi solver, storing all RTIs at Aalsmeer shows a sig-
nificant reduction of repositioning costs for medium and big RTIs, and for instances with 11
locations, the cost decrease is even more than 90%.

Table 6 does not show the comparison of small RTI repositioning. The reason is that reposi-

17



Table 6: Comparison of ”repositioning costs” of medium and big RTI for all cases

Different Location Similar Location
n m RTIso Medi RTIs Big RTIs Medi RTIs Big RTIs

7 1 3 5 514 0 -22 -
7 2 3 5 351 28 -69 -49
7 3 3 5 - - - -
7 1 3 10 - - - -
7 2 3 10 - - - -
7 3 3 10 - - - -

11 1 3 5 314 0 -91 -
11 2 3 5 300 41 -90 -100
11 3 3 5 - - - -
11 1 3 10 - - - -
11 2 3 10 - - - -
11 3 3 10 - - - -

tioning small RTIs did not have any significant difference in all comparable instances. However,
since there are only a few comparable instances at hand, we could not draw further conclusions
on small RTI repositioning. Furthermore, we did not test the separation of medium RTIs storage
locations from the big ones, but our model can still provide solutions for any different medium
RTI storage mapping. In addition, we argue that storing medium RTIs in locations with the
most product flow traffic would results in a repositioning cost decrease, similar to Table 6.

In the next section, we provide some concluding remarks.

7 Concluding Remarks

In this working paper, we extend the multimodal transportation problem of perishable products
with repositioning of same-size RTIs, to include three RTI (small, medium, and big) sizes, their
loading hierarchy, and the empty nesting (folding) phenomenon. In practice, perishable products
are loaded in small RTIs, then these RTIs are loaded onto the medium and big sizes, in order to
be transported via a multimodal network. The empty RTIs to be repositioned are either folded,
or nested onto each other, in order to save space and utilize less mode capacity.

In this regard, we introduced new variables and constraints to the classic FCMNFP prob-
lems. This problem is NP-hard, and as results show, a state-of-the-art MIP solver is hardly able
to find optimal solutions for even the smallest instances with 5 orders within 10 hours. There-
fore, solving real-world sizes of such a planning problem to optimality is impossible. Then, we
introduced a multi-stage constructive algorithm, where the solution structure is segregated into
several layers based on the size of RTI, and via four stages, it routes and repositions small,
medium and big RTIs to orders, and arranges the fleet.

Results show that our proposed algorithm alone is not powerful and sufficient to provide
near optimal solutions, but it can be used as the first step to design more advanced heuristic
or metaheuristic algorithms. The biggest weakness of our algorithm is in repositioning medium
and big RTIs. Therefore, the first possible future work can be to improve the medium and big
RTI assignment and repositioning modules. Moreover, the small-towards-big-size approach of
this algorithm does not efficiently directs it towards the optimal solution, thus, another future
extension could be to add further stages to the algorithm that take a big-towards-small approach
and search for improvements in all layers of the solution.

In designing metaheuristic algorithms, the challenges are threefold: in structuring the so-
lutions, in defining the search neighborhoods, and in designing the relevant destroy and repair
operators. A solution of our problem has different intertwined layers of RTI flows and usage,
and an interesting future work is to find a simple structure that can be used in the body of a
metaheuristic algorithm. Assuming the solution structure to be similar to our segregated one,
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the second interesting future work is to define simple and tractable search neighborhoods on all
layers, and their relevant destroy and repair operators. Standard arc-based operators, especially
on the medium RTI layer might make the metaheuristic algorithm prone to errors, inflexible and
time consuming search, and getting stuck in local optimums. Path-based operators particularly
on small RTI and big RTI layers are more manageable. Therefore, another future extension is
to design these operators, and by using the solution of the multi-stage algorithm as an initial
solution, design further iterative stages to improve it. This is an ongoing work.
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