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Abstract

Rolling stock needs regular maintenance in a maintenance facility. Rolling stock from

different fleets needs to be routed to maintenance facilities using interchanges between train

lines and possible empty drives. We consider the problem of locating maintenance facilities

in a railway network under uncertain or changing line planning, fleet planning and other

factors. These uncertainties and changes are modeled by a discrete set of scenarios. We show

that this new problem is NP-hard and provide a two-stage stochastic programming and a

two-stage robust programming formulation. The second stage decision is a maintenance

routing problem with similarity to a minimum cost-flow problem. We prove that the facility

location decisions remain unchanged under a simplified routing problem and this gives rise to

an efficient mixed integer programming (MIP) formulation. We also provide an accelerated

Benders decomposition algorithm that uses these insights and bounds obtained from this

MIP formulation. This result also allows us to find an efficient decomposition algorithm

for the robust programming formulations based on Scenario Addition (SA). Computational

work on instances of industrial size and larger shows that our improved MIP formulation

outperforms Benders decomposition in computational time. SA improves the computational

time for the robust formulation even further and can handle larger instances due to more

efficient memory usage. Finally, we apply our algorithms to a case study at the Dutch

Railways.

Keywords: Two-stage robust optimization, two-stage stochastic optimization, row-and-

column generation, facility location, rolling stock, maintenance routing

1 Introduction

In this paper, we study the optimal location of maintenance facilities for rolling stock in a railway

network. Like most facility location problems, we have a set of candidate facilities and their
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costs, and we have to decide which facilities to open. However, the maintenance location routing

problem has essential features that makes it substantially different from other facility location

models. In particular, the customers of facilities (rolling stock) have to travel to a facility over

a fixed railway network. There are multiple train lines, a path in the railway network operated

with a certain frequency, and the preferred way for train units to enter a maintenance facility is to

interchange from one train line to another until a maintenance facility is reached. Whether such

an interchange is possible depends on the line-planning in the railway network, the shunting

infrastructure at locations where two or more lines intersect, and the rolling stock schedule.

Sometimes it is necessary to plan an empty train drive to reach a maintenance facility. We call

the problem of routing a train unit to a maintenance facility the maintenance routing problem

(MRP). This routing problem cannot be separated from the facility location problem because

whether a facility is easy to reach depends intricately on the railway infrastructure and line

planning.

The next essential feature of maintenance facility location problems is that the line planning

within a railway network changes regularly to accommodate changing travel demands. Any

reasonable facility location plan must work well under a wide variety of line planning scenarios.

This includes changes in how lines run, up and down-scaling of service frequencies on any given

line, the rolling stock types assigned to the lines, and the introduction of new rolling stock types.

To deal with the features we outline above (maintenance location routing and line planning),

we provide two different and novel models to help managers decide where to locate maintenance

facilities. The first model is a two-stage robust programming model, where we minimize the

cost for the worst line planning scenario. We call this the robust maintenance location routing

problem (RMLRP). The second model seeks to minimize the annual cost of operating facilities

and routing trains to facilities averaged over a set of line planning scenarios. This model is

therefore called the stochastic maintenance location routing problem (SMLRP).

The first stage decision for the R/SMLRP is to open or close a facility, given a set of candidate

facilities, deterministic facility costs, and a discrete set of line planning scenarios. The second

stage decision is taken once a scenario is realized, and corresponds with the MRP. The MRP is

modelled as a linear programming problem, which has some similarity to the minimum-cost flow

problem. We show that the two-stage models can be reformulated to mixed integer programming

models, and prove that exactly the same facilities are opened when a simplified routing problem

is used. Simplifying the routing problem within the combined problem, decreases the number

of variables by the number of facilities times the number of train lines raised to the square for

every scenario. However, after solving the improved mixed integer program (IMIP), the MRP

should be solved for every scenario for the opened facilities, to recover the routings and the

assignments. As the MRP is a linear programming problem, this can can be done in polynomial

time. We show that using this IMIP, instances can be solved quickly by CPLEX and are solved

a lot faster than the two-stage models by accelerated Benders decomposition (Benders, 1962;

van Slyke and Wets, 1969). Furthermore, we improve the computational time for the RMLRP
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further, by providing a scenario addition (SA) method, which is a row-and-column (also called

column-and-constraint) generation method (similar to Zeng and Zhao, 2013) for the RMLRP. SA

adds the scenario constraints iteratively to the IMIP until an optimal solution is found, which

improves the computational time and memory requirements for most instances.

The main contributions of this paper are:

1. We are the first to study a maintenance location problem on a railway network. In this

setting it is necessary to incorporate the maintenance routing of train units in the facility

location decision. This leads to a new class of problems that we call maintenance location

routing problems (MLRP).

2. We provide a two-stage stochastic (SMLRP-2SSO) and robust programming formulation

(RMLRP-2SRO) for the MLRP that can deal with uncertainties that are inherent in any

application. In particular, our model can deal with uncertainties in line planning and

rolling stock management.

3. We provide an efficient mixed integer programming formulation (which we call IMIP), that

decreases the number of variables by the number of facilities times the number of train lines

raised to the square for every scenario relative to a standard MIP formulation. The IMIP

can solve both the SMLRP and RMLRP for industrial size instances. This formulation

outperforms accelerated Benders decomposition computationally.

4. We provide a SA algorithm (a row-and-column generation method) that can solve the

RMLRP even more efficiently than the IMIP for instances with many scenarios.

5. We showcase how our algorithms can be used in a case study at the Dutch railways.

The paper starts with a literature review, followed by a more detailed description of the

maintenance routing problem. In Section 4, we model the RMLRP and the SMLRP as two-

stage problems, and in Section 5, we reformulate the problems as a mixed integer programming

problem. In Section 6, we present an accelerated benders decomposition algorithm and our

scenario addition method. In Section 7, we do experiments on randomly generated instances.

We research the influence of the number of scenarios and facilities on the solution time and

compare the algorithms. In Section 8, we do a case study with data from the Dutch railways,

and show that our algorithms can be used in practice.

2 Literature Review

Facility location models have been studied extensively in the literature (Daskin, 1995; Drezner

and Hamacher, 2001). The combination with operational supply chain decisions (Melo et al.,

2009), vehicle routing (Nagy and Salhi, 2007), and uncertainty have also been studied in the

literature (Snyder, 2006). However, the combination of facility location with maintenance routing
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has only been studied in the context of aviation applications (Feo and Bard, 1989; Gopalan, 2014).

Furthermore, to the best of our knowledge, there are only three papers that combine maintenance

with facility location (Lieckens et al., 2013; Rappold and Van Roo, 2009; van Ommeren and

Bumb, 2006). However, the settings of these papers differ considerably from ours, and the

authors use heuristics while we seek optimal solutions. We first describe the maintenance routing

literature and we continue to the two-stage robust and stochastic facility location literature.

2.1 Maintenance Routing

Many papers have been written about maintenance routing for railway applications. Most papers

consider it to be part of the medium or long-term vehicle routing problem. Anderegg et al. (2003),

consider the situation in the German and Swiss Federal Railway and use a minimum cost flow

formulation that is often used for vehicle routing. Maintenance cannot be adapted into the flow

model and a heuristic modification is used to satisfy the maintenance constraints. If possible,

they use a local fix that makes it possible to do maintenance directly in the train unit rotation.

For the train units where this cannot be done, the train unit is interchanged with a train unit

that is already at the maintenance location and continues the routing of the train unit that

requires maintenance such that the routing cycle remains intact. The authors’ goal is to use as

few spare train units as possible.

Maróti and Kroon (2005, 2007) consider maintenance routing for the Dutch railways, where

maintenance routing is not part of the medium or long-term vehicle scheduling problem. They

use a two to five days time window during which the train unit is routed to the maintenance

facility. The main reason for this, is that timetables and rolling stock schedules are dense,

and that there are many disturbances. Consequently, long term models cannot take shunting

issues and disturbances into account. The author model this problem with multicommodity flow

models, and they solve the NP-hard models with CPLEX. Other papers consider variants of the

locomotive planning problem (LPP). The locomotive planning problem assigns locomotives to a

set of train units in such a way that it minimizes the cost and satisfies a number of business and

operational constraints. For a recent survey on the locomotive assignment problem, that also

includes variants with some maintenance constraints, see Piu and Speranza (2014). Furthermore,

there are many papers about maintenance routing for aviation such as Clarke et al. (1997), Talluri

(1998), and Sarac et al. (2006).

2.2 Two-stage Robust and Stochastic Facility Location

Uncertainty for facility location models can be classified in three categories (Shen et al., 2011):

receiver-side uncertainty, in-between uncertainty, and provider-side uncertainty. Like most stochas-

tic facility location models (see the references in Snyder (2006) and Swamy and Shmoys (2006)),

our paper focuses on the first two uncertainties. These uncertainties are related to customer

uncertainty (for example customer demand, customer location) and incomplete knowledge about

4



the transportation network topology, transportation times or costs between facilities and cus-

tomers.

A common feature of the receiver-side and in-between uncertainties is that the uncertainty

does not change the topology of the provider-receiver network once the facilities have been built.

Our problem does not share this feature as our scenarios do change the topology of the provider-

receiver network; a different line planning changes the network over which rolling stock is routed

to a maintenance facility. Consequently, the routing and assignment of maintenance visits to the

facilities is different for every scenario.

The SMLRP has a lot of similarity with supply chain network design under uncertainty, which

includes the location of facilities within a supply chain. In Santoso et al. (2005) a supply chain

network consisting of suppliers, processing facilities and customers has to be designed under cost,

demand, supply and capacity uncertainty. A sample average approximation is used to generate

a discrete set of scenarios and the model is solved with Benders decomposition. Santoso et al.

(2005) describe and test many acceleration techniques, that we also implement in this paper. The

accelerated Benders decomposition method works well for their problem, but is less successful

for our model as compared to the IMIP. Other examples of Benders decomposition for supply

chain network design include Costa (2005) (fixed charge network design survey), Üster and

Agrahari (2011) (freight-forwarding network design), Santibanez-Gonzalez and Diabat (2013)

(reverse supply chain design), and Khatami et al. (2015) (closed loop supply chain network

design).

Two type of methods are generally used for two-stage robust problems. The first method is

similar to Benders decomposition and uses constraint generation based on the dual information

of the slave problem. Álvarez-Miranda et al. (2015), use Benders decomposition accelerated

with additional cuts and a primal heuristic on a two-stage robust facility location problem with

a discrete set of scenarios. An important difference with our paper is that their allocation of

customers to facilities does not include the routing of customers (rolling stock) to (maintenance)

facilities. Another difference is the considered uncertainty and recoverability of the model. In our

model, we open facilities in the first stage and allocate customers to these facilities in the second

stage. Álvarez-Miranda et al. (2015) open facilities and assign customers in the first stage and

the second stage is used to recover the facilities and customer assignment to the revealed scenario.

Gabrel et al. (2014) solve a non-linear convex two-stage robust location transportation problem.

In this problem a commodity has to be transported from each of the m potential sources to

each of the n destinations. The demand of the destinies is uncertain. The authors use a cutting

plane algorithm based on Benders decomposition, where the slave problem is already NP-hard.

Furthermore, Benders decomposition has been applied to two-stage robust unit commitment

problems (Bertsimas et al., 2013; Jiang et al., 2011).

The second method consist of row-and-column generation procedures, also known as column

and constraint generation. Zeng and Zhao (2013) shows that a row-and-column generation

procedure performs an order of magnitude faster than benders decomposition for a two-stage
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robust location transportation problem with demand levels in a polyhedral uncertainty set. Chan

et al. (2015) apply a row-and-column generation procedure to a robust facility location problem

where the demand points are uncertain and An et al. (2014) apply it to the reliable p-median

facility location problem. The strategy is also used for two-stage robust unit commitment (An and

Zeng, 2015; Zhao and Zeng, 2012) and a two-stage robust distribution network reconfiguration

problem (Lee et al., 2015).

3 Maintenance Routing

The goal of the maintenance routing problem is to find the optimal routing for train units to

enter given maintenance facilities with given capacities. A maintenance facility is a facility that

is responsible for the planned inspections and maintenance of rolling stock. The frequency of

inspections and maintenance is dependent on the rolling stock type and typically occurs once

every half year up to every month. The maintenance routing is influenced by the current line plan,

a set of routes (paths) in a network of rails, operated with a certain frequency by a specific rolling

stock type. The stations where a line starts or ends are called end stations, and all passengers

leave the train and the train unit drives back or continues on another line after a break. Between

the end stations, a line often has many other regular train stations where passengers can leave or

enter the train. The transport from the train lines to the maintenance facilities is done with help

of interchanges. An interchange is swapping the destinations of two train units of the same rolling

stock type which are at connecting train lines. Connecting train lines share an end station and at

that end station the train unit can be interchanged. The train units continue at each others train

line after such an interchange. A train that requires maintenance is interchanged with another

train unit until it reaches a train line connected to a maintenance facility. When a maintenance

facility cannot be reached by a specific train unit via these interchanges, dead heading is used

for the remaining trip. Dead heading is driving with an empty train (no passengers), and is

undesirable. Dead heading gives additional driving cost and the train unit is not available for

public transport, which can result in shorter trains and passengers discomfort.

The operational problem of routing specific train units to their maintenance facilities is stud-

ied in Maróti and Kroon (2005, 2007). In this section, we introduce a new maintenance routing

model that operates on an aggregate level. This enables us to combine this model with facility

location decisions later. Our objective is to minimize the average annual interchange and dead-

heading cost. Consequently, we do not consider separate train units, but work with the average

number of maintenance visits departing from each line per year.

3.1 Problem Description

Given is a physical rail network GP = (NP , EP ), consisting of rails EP , all stations NP , all end

stations S ⊆ NP and a set with opened facilities O ⊆ S, with for every opened facility a capacity,

that represents the maximum number of maintenance visits the location can handle per year.
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Furthermore, we are given a line plan, which consist of a set of lines L, with for each line the type

of rolling stock, the maintenance frequency per year, its end stations and the dead heading cost

to each maintenance facility. The line plan also specifies the set of possible interchanges, with

a coordination cost for each interchange, end station interchange capacities and an interchange

budget.

The annual number of interchanges in the network is restricted by a budget G. The in-

terchange capacity highly depends on the frequently changing rolling stock schedule and it is

possible to improve certain interchanges by making small changes to the rolling stock schedule.

Modelling this interchange budget allows us to gain insight into which interchanges should be

made possible or improved, while also constraining the number of interchanges that can be used.

Furthermore, we constrain the annual number of interchanges at each end station. The objective

is to minimize the average interchange and deadheading cost per year.

In Figure 1, we show a physical network graph on the left. In the physical network graph,

we exclude all stations that are not an end station in at least one of the shown line planning

possibilities for ease of exposition. The number of stations in a network of this size can easily

be 50 or more. In the middle and the right of Figure 1, we show line planning possibilities for

this network. For the MRP, only one line plan for the network GP is given. However in Section

4 the different line plan possibilities for network GP play an important role. Each line (edge)

connects one end station (node) to the other. There are two train types in this example. Train

type 0, is a regional train, stopping at every small station, while type 1 is an intercity train that

only stops at the large cities. An example of an interchange for the middle picture is line (U, V )

to line (V,W ), while an interchange from (U, V ) to line (U,W ) is not possible because the train

types do not match.

U V

W

XY

Z

U V
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XY

0

01

1 1

0

1

1 0

U V

XY
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1

1

1

0

00

0

Figure 1: The physical rail network on the left and two line planning possibilities

3.2 Maintenance Routing Model

We model the MRP as a flow model. We only allow interchanges followed by dead heading

directly to the maintenance facility. The reason for this is practical, and not a restriction of

the model. Routes with deadheading followed by interchanges are not often used in practice,

can be very expensive, and cause imbalances in the number of train units per line, which need
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to be solved. Consequently, we do not include these kind of routes in our model. We apply

the following transformations to the line planning graph, to create the maintenance routing flow

graph GF = (NF , AF ):

• For every line, we make a node, the set with these nodes is denoted by NL.

• We create one source S that is connected with a directed arc to each node in NL.

• We create an arc between lines where an interchange is possible, with as cost the interchange

coordination cost. The set of these interchange arcs is denoted AI .

• We create a node for every open facility and denote the set of open facilities by NO. Each

node in NO is connected with an arc to the sink T .

• For each node n ∈ NL, we make an arc to each facility. The cost of this arc is the dead

heading cost of the line to the facility. The cost of the arc is 0, when dead heading is not

necessary because the line associated with the node is connected to the facility. The set of

these incoming facility arcs is denoted by AO.

In Figure 2, we demonstrate how to apply this transformation to make a graph for the first

line planning graph (the middle one in Figure 1). We assume that facilities NO = {U,W, Y } are

opened. The left figure depicts the line planning graph, with the name of the lines and the end

stations, the right figure depicts the flow network that is used as input for the MRP.
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XY
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02

3 4
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Figure 2: Left a line planning possibility and right the resulting flow graph. The arcs from and

to the source and sink are dashed blue, the interchange arcs solid red and the arcs to the facilities

are dotted.
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The aforementioned additional combinations of interchanges and deadheading can easily be

allowed by creating an additional arc from every line node to every line node, which represents

the dead heading from one line to another.

Proposition 1. The number of nodes and arcs in the flow graph is polynomial in the number of

lines and end stations.

Proof. The number of nodes in the flow graph is equal to |L| + |NO| + 2. The number of arcs

is equal to |L|+ |L||NO|+ |AI |+ |NO|, where |AI | is bounded by |L|2.

The flow through arc a ∈ AF associated with the yearly maintenance frequency originating

from line l ∈ L, is represented by the decision variable zl(a). For example z4(2, 7) represents

the frequency of interchanges from line 2 to line 7 for a maintenance visit originating from line

4, and z1(8, y) represents the frequency of maintenance visits originating from line 1, that reach

maintenance facility y via line 8. We define δin(n) and δout(n) as the set of ingoing and outgoing

arcs of node n ∈ NF . The cost of arc a of type l is cl(a), which is only defined for arcs in the set

AI ∪AO. Node nl is the node associated with line l, and the maintenance frequency per year for

this node is ml. The end station interchange capacity gs, is a capacity on the number interchanges

at end station s ∈ S. The set of arcs representing the interchanges going through end station

s is defined as As. Furthermore, G is the interchange budget. For the facilities, qn ∀n ∈ NO
denotes the capacity of facility n in terms of the possible yearly frequency of maintenance visits

to this facility. We formulate the following linear programming model:

MRP = min
∑

a∈AI∪AO

∑
l∈L

cl(a)zl(a)

Subject to: ∑
a∈δin(n)

∑
l∈L

zl(a) ≤ qn ∀n ∈ NO, (1)

∑
a∈δin(n)

zl(a) =
∑

a∈δout(n)

zl(a) ∀n ∈ NF \ {S, T }, ∀l ∈ L, (2)

zl(a) = ml ∀l ∈ L, a ∈ δin(nl), (3)∑
a∈δin(T )

∑
l∈L

zl(a) =
∑
l∈L

ml, (4)

∑
a∈As

∑
l∈L

zl(a) ≤ gs ∀s ∈ S, (5)

∑
a∈AI

∑
l∈L

zl(a) ≤ G, (6)

zl(a) ≥ 0 ∀a ∈ AF , ∀l ∈ L. (7)

We can solve the MRP in polynomial time because it is a linear program. Constraints (1)

restrict the number of yearly maintenance visits that can be assigned to opened facility n to its
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capacity. Constraints (2) are the flow conservation constraints, while Constraints (3) and (4)

guarantee that every maintenance visit is assigned to a facility. Constraints (4) is necessary to

exclude alternative solutions with more flow than the number of yearly maintenance visits; these

solutions are possible because some of the routes to the facilities have zero costs. Constraints

(5) and (6) are the end station and budget interchange capacity constraints.

The problem is similar to the minimum cost flow problem with the exception of the multiple

commodities l ∈ L and Constraints (1), (5) and (6). We show that even with these additional

constraints the MRP has an integer solution zl(a) if gs (∀s ∈ S), G, ml (∀l ∈ L) and qn (∀n ∈ NF )

are integer.

Proposition 2. If gs (∀s ∈ S), G, ml (∀l ∈ L) and qn (∀n ∈ NF ) are integer, then for any

basic feasible solution of the MRP each flow zl(a) (∀a ∈ AF ,∀l ∈ L) is integer.

The proof of Proposition 2 can be found in Appendix A.

4 Maintenance Location Routing

In this section we introduce the stochastic and robust maintenance location routing problem

(SMRLP and RMRLP). We model both problems as two-stage models. We use a discrete scenario

set D, in which every scenario defines a line planning (see also Figure 1 from Section 3). The

first-stage decision is the decision to open or close a facility, given a set of candidate facilities,

deterministic facility costs and a discrete set of scenarios. The second-stage decision is taken

once a scenario is realized, and corresponds with the maintenance routing problem discussed

in Section 3. The RMLRP optimizes the cost for the worst scenario d ∈ D, and the SMLRP

optimizes the cost for the average case.

The R/SMLRP are NP-hard because the capacitated facility location problem (CFLP) is

a special case of these problems. In the CFLP, a set of demand points, a set of facilities, the

capacities of the locations and their cost, and the cost of assigning a demand point to a facility

are given. The objective is to open a set of facilities and to assign each demand point to a facility,

while not exceeding the capacity and minimizing the cost. Our model extends the CFLP, by

including multiple discrete scenarios and a maintenance routing problem. When our model has

only one scenario and the interchange budget for this scenario is 0, then only dead heading from

the lines to the locations is possible. When we interpret the lines as demand points, with as

demand the required maintenance visit frequency, then the deadheading cost is exactly the same

as the assignment cost, and the S/RMLRP can be used to solve the CFLP.

4.1 The Models

As in Section 3, we are given a physical rail network G = (NP , EP ), consisting of rails EP and

all possible stations NP . Furthermore, we are given a set of discrete scenarios d ∈ D, in which

each scenario defines a line system: a set of lines Ld ∀d ∈ D, with for each line the type of
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rolling stock and the maintenance frequency per year, the end stations Sd ⊆ NP ∀d ∈ D, and

their location in the physical rail network. A line plan for a scenario specifies the set of possible

interchanges, with a coordination cost for each interchange, the dead heading cost from each

line to each facility, the end station interchange capacities and the interchange budget. Finally

we are given a set of candidate facilities C ⊆
⋃
d∈D S

d ⊆ NP , with for every candidate facility

a capacity, that represents the maximum yearly maintenance visit frequency the location can

handle. The first stage decision is represented by the binary decision variable y ∈ {0, 1}C , which

is 1 when a facility is opened and 0 otherwise.

For every first stage decision y ∈ {0, 1}C and scenario d ∈ D, there is a maintenance flow

routing graph GdyF = (Ndy
F , AdyF ). The notation of the variables and parameters is similar to

those in Section 3. The flow through arc a associated with the yearly maintenance frequency

from line l ∈ Ld, in scenario d ∈ D, is represented by the decision variable zdl (a). We define

δdin(n) and δdout(n) as the set of ingoing and outgoing arcs of node n for scenario d. The cost

of arc a for line l and scenario d is cdl (a). The arc costs are only defined for the arcs in the

set
⋃
d∈D(AdI ∪ AdC). AdI is the set of interchange arcs, and AdC =

⋃
n∈NC

δdin(n), the set of arcs

going to the candidate facilities. Node ndl is the node associated with line l for scenario d, and

the maintenance frequency per year for this node is md
l . The end station interchange capacity

gds , is a capacity on the interchange frequency at end station s ∈ Sd for scenario d ∈ D. The

set of arcs representing the interchanges going through end station s for scenario d is defined as

Ads . Furthermore, we have Gd, which is the interchange budget in scenario d. For the facilities,

we define qn ∀n ∈ NC as the capacity of facility n in terms of the possible yearly frequency of

maintenance visits at this facility. The probability that scenario d ∈ D occurs, pd, is only defined

and used for the SMLRP. We formulate the following two-stage models:

(RMLRP-2SRO) min
∑
n∈NC

cnyn + max
d∈D

MRPd(y)

(SMLRP-2SSO) min
∑
n∈NC

cnyn +
∑
d∈D

pdMRPd(y)

Subject to: ∑
n∈NF

ynqn ≥ max
d∈D

∑
l∈Ld

md
l , (8)

yn ∈ {0, 1} ∀n ∈ NC , (9)

where

MRPd(y) = min
∑

a∈Ad
I∪Ad

C

∑
l∈Ld

cdl (a)zdl (a)
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s.t.
∑

a∈δdin(n)

∑
l∈Ld

zdl (a) ≤ ynqn ∀n ∈ NC , (10)

∑
a∈δdin(n)

zdl (a) =
∑

a∈δdout(n)

zdl (a) ∀n ∈ Ndy
F \ {S, T }, ∀l ∈ Ld, (11)

zdl (a) = md
l ∀l ∈ Ld, a ∈ δdin(ndl ), (12)∑

a∈δdin(T )

∑
l∈Ld

zdl (a) =
∑
l∈L

md
l , (13)

∑
a∈Ad

s

∑
l∈Ld

zdl (a) ≤ gds ∀s ∈ Sd, (14)

∑
a∈Ad

I

∑
l∈Ld

zdl (a) ≤ Gd, (15)

zdl (a) ≥ 0 ∀a ∈ AdyF , ∀l ∈ Ld. (16)

In the above formulation (RMLRP-2SRO) and (SMLRP-2SSO) optimize the worst/expected

case cost, under Constraint (8). Constraint (8) guarantee that the opened facilities have enough

combined capacity to handle all maintenance visits, so that the second stage problem has a feasi-

ble solution. MRPd(y) optimizes the maintenance routing as second stage decision. Constraints

(10) guarantee that maintenance visits can only be assigned to opened facilities and no more

than its capacity. Constraints (11) are the flow conservation constraints, while Constraints (12)

and (13) guarantee that every maintenance visit is assigned to a facility. Constraints (14) and

(15) are the end station and budget interchange capacity constraints.

5 Mixed Integer Formulation

The two-stage formulations of Section 4 are not practical in terms of computation. In this section

we reformulate these problems into a mixed integer programming formulation. Then we provide

an improved mixed integer programming formulation that is equivalent in terms of the optimal

objective and optimal facility decisions, but that not with respect to the second-stage decisions.

This improved formulation is very efficient to find optimal facility decisions, after which the

optimal second-stage decisions can easily be computed if needed.

The first step to reformulate the two-stage models (RMLRP-2SRO) and (SMLRP-2SSO) to

mixed integer models is to make one large maintenance routing flow graph. This graph contains

all scenarios, instead of one graph for every scenario. The steps used in Section 3 are adapted

to generate the graph GM = (NM , AM ):

• For every scenario and line, we make a node. The set with all line nodes belonging to a

scenario d ∈ D is denoted as Nd
L.

• We have one source S that is shared for all scenarios. The source is connected with an arc

to each node in
⋃
d∈DN

d
L.
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• We have an arc between every line where an interchange is possible (connected, same rolling

stock type, same scenario), with as cost the interchange coordination cost.

• We make a node for every candidate facility, and each of these nodes is connected with an

arc to the sink T . The set of candidate facility nodes is denoted by NC .

• For each node n ∈
⋃
d∈DN

d
L, we make an arc to each facility. The cost of this arc is the

dead heading cost of the line to the facility. The cost of the arc is zero when dead heading

is not necessary because the line associated with the node is connected to the facility.

The sets Nd
M and AdM contain all nodes or arcs that can be reached by flow from scenario

d ∈ D.

The two-stage models (RMLRP-2SRO) and (SMLRP-2SSO) can be reformulated to the fol-

lowing mixed integer programming formulations:

(RMLRP-MIP) min
∑
n∈NC

cnyn + zmax

(SMLRP-MIP) min
∑
n∈NC

cnyn +
∑
d∈D

pd
∑

a∈Ad
I∪Ad

C

∑
l∈Ld

cdl (a)zdl (a)

Subject to:∑
a∈δdin(n)

∑
l∈Ld

zdl (a) ≤ ynqn ∀n ∈ NC , ∀d ∈ D, (17)

∑
a∈δdin(n)

zdl (a) =
∑

a∈δout(n)

zdl (a) ∀d ∈ D, ∀n ∈ Nd
M \ {S, T }, ∀l ∈ Ld, (18)

zdl (a) = md
l ∀d ∈ D, ∀l ∈ Ld, ∀a ∈ δdin(ndl ), (19)∑

d∈D

∑
a∈δdin(T )

∑
l∈Ld

zdl (a) =
∑
d∈D

∑
l∈Ld

md
l , (20)

∑
a∈Ad

s

∑
l∈Ld

zdl (a) ≤ gds ∀d ∈ D, ∀s ∈ Sd, (21)

∑
a∈Ad

I

∑
l∈Ld

zdl (a) ≤ Gd ∀d ∈ D, (22)

zdl (a) ≥ 0 ∀d ∈ D, ∀a ∈ AdM , ∀l ∈ Ld, (23)

yn ∈ {0, 1} ∀n ∈ NC , (24)

with as additional Constraints for the RMLRP-MIP:

zmax ≥
∑

a∈Ad
I∪Ad

F

∑
l∈Ld

cdl (a)zdl (a) ∀d ∈ D. (25)

Constraints (17) to (23) are comparable to (10) to (16) from Section 4, however now defined

for the graph GM = (NM , AM ) and for all scenarios. Note that in the maintenance location
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routing graph GM , all arcs besides those going to the sink can only be traversed by flow from

one scenario. Consequently, by the use of AdM and Nd
M in place of AM and NM , we removed many

unnecessary constraints in Constraints (18) and (23). Constraints (25), which are only used for

the RMLRP-MIP, guarantee that zmax equals the routing cost of the worst case scenario. The

SMLRP-2SSO and SMLRP-MIP are equivalent. However, for the RMLRP-2SRO and RMLRP-

MIP only the opened and closed facilities y∗ and the objective value are equivalent. The routings

for the non binding scenarios, can be different from those of the RMLRP-2SRO, because only

the binding scenario is restricted by zmax. However, if necessary, the equivalent routing for the

(non binding) scenarios can be found in polynomial time by solving MRPd(y
∗) ∀d ∈ D for the

optimal RMLRP-MIP solution y∗.

5.1 Improved Mixed Integer Model

The mixed integer formulations can be improved by using two observations. The first observation

is that we do not need to distinguish the scenario for each flow. Without the index d, we can

still determine to which scenario a flow belongs based on the incoming arcs of the facility nodes

as they always belong to only one scenario. The second observation is that the index l can be

dropped as well. Without the index l, we cannot be determine from which line a flow originates

and the route it has taken. However, the incoming flow per facility will be the same, resulting

in the same facilities opened and the same objective value. Removing these variables results in

a much more efficient formulation. However, to find the routes and the originating lines for a

scenario d ∈ D, we have to solve the maintenance routing problem MRPd(y
∗) from Section 3,

where y∗ is the optimal R/SMLRP-IMIP solution. This can be done in polynomial time.

Furthermore, Constraints (20) can be omitted, because without the l indices, all flow is already

restricted by Constraints (19). Additionally, in Constraints (17) qn can be a lot higher than the

total number of maintenance visits (
∑
l∈Ld md

l ) for a scenario d ∈ D. Tightening Constraints

(17), by replacing qn by q̂dn = min(qn,
∑
l∈Ld md

l ) for every scenario d can improve the initial LP

bound. When the d index of a set is dropped, we take the union of the sets for all scenarios.

This gives the following improved mixed integer programming (IMIP) formulations:

(RMLRP-IMIP) min
∑
n∈NC

cnyn + zmax

(SMLRP-IMIP) min
∑
n∈NC

cnyn +
∑
d∈D

pd
∑

a∈Ad
I∪Ad

C

c(a)z(a)
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Subject to: ∑
a∈δdin(n)

z(a) ≤ ynq̂n ∀n ∈ NC , ∀d ∈ D, (26)

∑
a∈δin(n)

z(a) =
∑

a∈δout(n)

z(a) ∀n ∈ NM \ {S, T }, (27)

z(a) = md
l ∀d ∈ D, ∀l ∈ Ld, ∀a ∈ δdin(ndl ), (28)∑

a∈Ad
s

z(a) ≤ gds ∀d ∈ D, ∀s ∈ Sd, (29)

∑
a∈Ad

I

z(a) ≤ Gd ∀d ∈ D, (30)

z(a) ≥ 0 ∀a ∈ AM , (31)

yn ∈ {0, 1} ∀n ∈ NC , (32)

with as additional Constraints for the (RLMRP-IMIP):

zmax ≥
∑

a∈Ad
I∪Ad

C

c(a)z(a) ∀d ∈ D. (33)

Theorem 1. The R/SMLRP-IMIP has an identical optimal cost and facility decision y∗ as the

R/SMLRP-MIP.

Proof. For every a ∈ δout(S), zdl (a) ≥ 0 for only one scenario d and line l, and for all other

scenarios and lines zdl (a) = 0. This is the case because of Constraint (19) and (20) which

guarantee that every line node receives only md
l flow for one l and d and 0 for all other lines

and scenarios. These line nodes are only connected to the line nodes of the same scenario and

the facility nodes. Consequently, the line nodes can only receive flow of one scenario type, and

the scenario of the incoming flow of the facilities, is equal to the scenario to which the line node

from which the incoming facility flow originates from belongs to. Furthermore, dropping the

indices will not influence the amount of flow for every arc, as z(a) will automatically be equal

to
∑
d∈D

∑
l∈Ld zdl (a). Consequently, the same facilities will be opened and the objective value

will be the same.

Theorem 2. The R/SMLRP-IMIP reduces the number of variables by Θ(
∑
d∈D

(
|Ld|2|NC |+ |Ld||AdI |

)
)

compared to the R/SMLRP-MIP.

Proof. Note that |AF | =
∑
d∈D(|Ld| + |Ld||NC | + |AdI |) + |NC | and |AdF | = |Ld| + |Ld||NC | +

|AdI |+ |NC |.
We subtract the number of variables in the IMIP from the number of MIP variables.
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The number of removed variables is:∑
d∈D

(
|Ld||AdF |

)
− |AF |

=
∑
d∈D

(
|Ld|(|Ld|+ |Ld||NC |+ |AdI |+ |NC |)

)
−
∑
d∈D

(|Ld|+ |Ld||NC |+ |AdI |)− |NC |

=
∑
d∈D

(
|Ld|2 + |Ld|2|NC |+ |Ld||AdI |+ |Ld||NC |

)
−
∑
d∈D

(|Ld|+ |Ld||NC |+ |AdI |)− |NC |

=
∑
d∈D

(
|Ld|2 + |Ld|2|NC |+ |Ld||AdI |+ |Ld||NC | − |Ld| − |Ld||NC | − |AdI |

)
− |NC |

=
∑
d∈D

(
|Ld|2 + |Ld|2|NC |+ |Ld||AdI | − |Ld| − |AdI |

)
− |NC |

Consequently, the number of variables removed is of order Θ(
∑
d∈D

(
|Ld|2|NC |+ |Ld||AdI |

)
).

6 Scenario Addition Method and Benders Decomposition

We design a row-and-column generation algorithm (similar to Zeng and Zhao, 2013), also called

column-and-constraint generation, for the RMLRP. Our method, called Scenario Addition (SA),

solves the IMIP with a subset of scenarios and adds an additional scenario each iteration. The

algorithm reaches optimality in a finite number of iterations. The SA algorithm uses the fact

that for the RMLRP only the facility solution y∗ and the worst case scenario are relevant.

Furthermore, we apply Benders decomposition (Benders, 1962), also known as the L-shaped

decomposition method in the stochastic programming literature (van Slyke and Wets, 1969)

to both the RMLRP as the SMLRP. Benders decomposition is a well know procedure where

an optimization problem is solved by defining it in terms of a master and a slave problem. It

effectiveness relies on the possibility of adding good optimality cuts to the master problem, ruling

out many of the trial values for the master problem. We accelerate the Benders decomposition

by making use of several different accelerating heuristics.

6.1 Improved Maintenance Routing Model

It is necessary to solve the second stage problem (MRP) from Section 4 many times for both

SA and Benders decomposition. The MRP can be improved by using Theorem 1 from Section

5. This theorem allows us to drop the l indices. Although the MRP is a polynomial problem,

it still gives a very substantial reduction in solution time. For larger instances (100 facilities,

64 scenarios) the difference in solution time is from multiple seconds per scenario, to solving all

scenarios in approximately a second. Furthermore, similar to Section 5, the capacity qn, can be

replaced by q̂dn.

The second stage problem becomes:
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IMRPd(y) = min
∑

a∈Ad
I∪Ad

C

c(a)z(a)

Subject to: ∑
a∈δin(n)

z(a) ≤ ynq̂dn ∀n ∈ NC , (µ)

∑
a∈δin(n)

z(a) =
∑

a∈δout(n)

z(a) ∀n ∈ Ndy
F \ {S, T }, (ν)

z(a) = md
l ∀l ∈ Ld, a ∈ δdin(ndl ), (π)∑

a∈Ad
s

z(a) ≤ gds ∀s ∈ Sd, (φ)

∑
a∈Ad

I

z(a) ≤ Gd, (ω)

z(a) ≥ 0 ∀a ∈ AdyF .

The Greek symbols next to the constraints are the corresponding dual variables, which we

need for the Benders decomposition algorithm described in Section 6.3.

6.2 Scenario Addition Method

For the RMLRP, only the opened facilities and the worst case scenario are relevant. This method

makes use of that fact, and can consequently not be used for the SMLRP where all scenarios

contribute to the objective function.

The method works as follows: Set the iteration counter i at 0 and let Di denote the scenario

set belonging to iteration i. The set D0 contains one randomly chosen scenario d ∈ D. Because

the scenarios differ in the total number of maintenance visits, the following feasibility constraint

is added to the RMLRP-IMIP: ∑
n∈NC

ynq̂n ≥ max
d∈D

∑
l∈Ld

md
l . (34)

The scenario addition algorithm consists of the following steps:

1. Compute the solution to the RMLRP-IMIP with D replaced by Di, and add Constraint

(34) to the formulation. Denote the optimal objective of this problem as LBi and the

solution of iteration i as yi.

2. Calculate for each scenario d ∈ D, IMRPd(y
i) separately. Set UBi = cT yi+maxd∈D IMRPd(y

i).

3. If UBi = LBi stop and return yi as the optimal solution and UB as the optimal objective

value. Otherwise the algorithm proceeds to the next step.
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4. The scenario wi is the scenario with the worst IMRPd(y
i) from the set D \ Di. The set

Di+1 = {wi} ∪Di. Update i = i+ 1 and go back to Step 1.

These steps give a very diverse set of scenarios as it always adds the worst case scenario.

Because of this, the algorithm generally converges quickly, with only a small number of scenarios

in Di.

6.3 Benders Decomposition

Benders decomposition can be used for both the RMLRP as the SMLRP. The algorithm itera-

tively solves a master and a slave problem. The master problem gives a lower approximation of

the optimal objective value and provides a lower bound, LB. We define yi as the optimal solu-

tion of the master problem for iteration i. The slave problem is equal to improved second stage

problem described in Section 6.1. The slave problem calculates the actual objective value of the

R/SMLRP given facility set yi, and provides an upper bound UB. When the lower and upper

bound are sufficiently close to each other, we conclude optimality. Otherwise we use information

from the duals of our slave problem to add additional optimality cuts to the master problem.

The optimality cuts serve to improve the estimation of the optimal value of the master problem.

It increases the lower bound, changes the solution yi, and consequently can also increase the

upper bound.

The lower bound LB is set initially at −∞ and the upper bound UB at ∞. The iteration

counter is set at i = 0, and we let ŷ be the incumbent solution. The Benders decomposition

method consists of the following steps:

1. Solve the master problem. The master problem is the first stage problem from Section 4

with optimality cuts representing input from the second stage.

LB = min
y,θ

∑
n∈NC

cnyn + θ

Subject to: ∑
n∈NC

ynqn ≥ max
d∈D

∑
l∈Ld

md
l , (35)

yn ∈ {0, 1} ∀n ∈ NC , (36)

θ ≥
∑
n∈NC

aknyn + bk k = 1, . . . , i, (37)

θ ≥ 0. (38)

The variable θ represent the maintenance routing costs, and Constraints (37) approximate

the constraints θ ≥ maxd∈D IMRPd(y) for the RMLRP and θ ≥
∑
d∈D pdIMRPd(y) for the

SMLRP. Optimality Constraints (37) are only added to the master problem from iteration

1, and will be ignored the first time that it is solved. The coefficients ai+1,n and bi+1 are
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determined from the duals from the IMRPd(y
i) in such a way that

∑
n∈NC

ai+1,ny
i
n+bi+1 =

maxd∈D IMRPd(y
i), and

∑
d∈D pdIMRPd(y

i), for the RMLRP and SMLRP respectively.

In Step 4, it is explained in detail how the variables ai+1,n and bi+1 are generated.

2. Calculate the objective value: SMLRP(yi) = cT yi+
∑
d∈D pdIMRP(yi, d), or RMLRP(yi) =

cT yi+maxd∈D IMRP(yi, d). If SMLRP(yi) or RMLRP(yi) is smaller than the upper bound,

we update the upper bound with the new objective value and set the incumbent solution

at ŷ = yi.

3. If UB − LB < δ, where δ > 0 is a pre-specified tolerance, the algorithm stops and returns

ŷ as the optimal solution and UB as the optimal objective value. Otherwise the algorithm

proceeds to Step 4.

4. Let µdin, ν
d
inl, π

d
il, φ

d
is and ωdi be the dual variables for IMRP(yi, d) (see Section 6.1). The

cut coefficients for the RMLRP are:

ai+1,n = µdmax
in q̂dn ∀n ∈ NC

and

bi+1 =
∑
l∈L

πdilm
d
l +

∑
s∈Sd

φdmax
is gdmax

s + ωdmax
i Gdmax,

where dmax = arg maxd∈D MRP(yi, d).

For the SMLRP the cut coefficients are:

ai+1,n =
∑
d∈D

pdµ
d
inq̂

d
n ∀n ∈ NC

and

bi+1 =
∑
d∈D

pd

∑
l∈L

πdilm
d
l +

∑
s∈Sd

φdisg
d
s + ωdiG

d

 .

Update i = i+ 1 and go back to Step 1.

6.3.1 Acceleration Techniques

Although Benders decomposition terminates in a finite number of iterations, it still can take an

exponential number of iterations. The following accelerating techniques improve the convergence

behaviour of the standard Benders decomposition.

Upper Bound Heuristics. The R/SMLRP-IMIP from Section 5.1 with a subset of the sce-

narios can be used to get a good UB. Note that not all scenarios have the same number of

maintenance visits, consequently to guarantee feasibility we need to add Constraint (34), from

Section 6.2. Let y0, be the optimal solution of the R/SMLRP-IMIP with a subset of the scenarios

and feasibility constraints (34). Then the upper bound can be calculated by solving Step 2 of
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the Benders decomposition with y0 as input: UB = SMLRP(y0) = cT y0 +
∑
d∈D pdIMRPd(y

0)

or RMLRP(y0) = cT y0 + maxd∈D IMRPd(y
0). Use Step 3 and 4 to generate and add the cut

coefficients. Update i = i+ 1 and go back to Step 1.

With a good UB and starting y0, good cuts are directly added to the master problem, which

avoids the algorithm from exploring inferior parts of the feasible region. For the SMLRP it

makes sense to order the scenarios at decreasing probabilities and to add the scenarios with the

highest probability to the subset. Because the probabilities do not sum up to 1 anymore, it is

best to renormalise them such that the sum of the scenarios in the subset becomes 1. The more

scenarios the subset uses, the better the UB becomes, however the more time it costs to solve

the IMIP.

Trust Regions. A trust region helps the algorithm avoid oscillating wildly from one region of

the feasible set to another in the early iterations, and consequently accelerates convergence. For

the same reasons as Santoso et al. (2005), we use a trust region based on the Hamming distance

of the current master problem from the previous. Let Y i be {j : yij = 1}, then the trust region

constraint for iteration i+ 1 is: ∑
j∈Y i

(1− yj) +
∑
j /∈Y i

yj ≤ ∆i+1
H , (39)

where ∆i+1
H ≤ |NC | is the trust region size at iteration i+ 1. ∆i+1

H can be constant or dependent

on the iteration. Because convergence of the algorithm cannot be ensured with a trust region, it

is best to only add the trust region in the initial iterations, and drop it when the iterations have

stabilized.

We also introduce a new trust region, where we use the incumbent solution ŷ instead of yi.

Like before, we solve the master problem, however now we also solve it a second time with an

additional constraint: ∑
n∈NC

ŷn −
∑
n∈NC

yn ≤ ∆i+1
I , (40)

where ∆i+1
I ≤ |NC | can be constant or dependent on the iteration. This constraint can be

useful, because in the initial iterations of the MLRP, far too few facilities are opened. The

master problem combined with Constraint (40) gives solutions which are closer to the optimal

number of opened facilities, while also using essential information from the master problem. It

gives an additional heuristic solution, for which additional optimality cuts can be added or which

can replace the regular optimality cuts when the solution value calculated in Step 2 is better.

When the regular master problem solution already satisfies the constraint, the two solutions will

be the same, and it is not necessary to solve the master problem twice. It is best to combine

this trust region, with upper bound heuristics, so that the initial incumbent solution is already

decent. A benefit of this trust region is that convergence is guaranteed so Constraint (40) does

not have to be dropped after some number of iterations.
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Knapsack Inequalities. We use the knapsack inequalities described in Santoso et al. (2005).

With a good upper bound, knapsack inequalities can accelerate the Benders decomposition. Let

θ ≥
∑
n∈NC

ainyn + bi be the optimality cut from the ith iteration. Furthermore, we know that

the current best known upper bound, UB ≥
∑
n∈NC

cnyn + θ. These two facts together give the

following inequality for the master problem in iteration i+ 1:∑
n∈Nc

(bcn + ainc)yn ≤ bUB− bic.

Cut Disaggregation. Cut disaggregation can only be used for the SMLRP. Instead of one cut

per iteration that approximate the average second-stage value, D cuts are added to approximate

the individual second-stage value corresponding to each of the scenarios. Cut disaggregation

(also called multi cut framework) can provide a better estimation of the average of the second-

stage value, and thereby improve performance. Birge and Louveaux (1988) show that such a

framework can greatly increase convergence. The trade-off lies in the fewer iterations of the

Benders decomposition and the larger master problem. The master problem now becomes:

LB= min
y,θ

∑
n∈NC

cnyn +
∑
d∈D

pdθd

Subject to: ∑
n∈NC

ynq̂n ≥
∑
l∈Ld

md
l ∀d ∈ D, (41)

yn ∈ {0, 1} ∀n ∈ NC , (42)

θd ≥
∑
n∈NC

adknyn + bdk k = 1, . . . , i, d ∈ D, (43)

θd ≥ 0 ∀d ∈ D, (44)

and the coefficients can be calculated with:

adi+1,n = µdinq̂
d
n ∀n ∈ NF , ∀d ∈ D

and

bdi+1 =
∑
l∈L

πdilm
d
l +

∑
s∈Sd

φdisg
d
s + ωdiG

d ∀d ∈ D.

Cut Strengthening. We also tested cut strengthening as proposed by Magnanti and Wong

(1981). When (à,b̀) and (á,b́) are both optimality cut coefficients at yi corresponding to distinct

dual optimal solutions, then àT yi + b̀ = áT yi + b́. Suppose that y∗ is the optimal solution then

cut (à,b̀) dominates cut (á, b́) if àT y∗ + b̀ > áT y∗ + b́. Clearly cut (à,b̀) is preferable in iteration

i since it will typically lead to better lower bounds and expedite convergence. Finding stronger

cuts can be done, however it takes time. In our case, we are seldom able to find iterations were

the algorithm can find better cuts than those of the original Benders decomposition. We expect
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that this is because or our improvements from Section 6.1, which removed a lot of degeneracy.

Consequently, for our problem, cut strengthening increases the solution time, as it takes time to

try to strengthen the cuts, while we seldom benefit from it.

7 Computational Experiments

In this section, we report computational experiments on randomly generated instances to test

the computational performance of our developed algorithms. We are particularly interested in

the size of instances that can be solved by the IMIP, SA and Benders decomposition. Although

we generate instances randomly, the fixed and random parameters are based on those found

in practice to create reasonable instances. All experiments are programmed in Java with the

CPLEX library version 12.6.3, and run on a laptop with an Intel Core i7-4710MQ Quad Core

2.5 GHz processor with 8GB of RAM. All mentioned solution times include the time necessary

to build the model and for all settings (preprocessing, branching, accuracy tolerance etcetera)

CPLEX standard settings are used.

7.1 Test Bed Generation

We generate instances with 5, 10, 25, 50 and 100 candidate facilities. We start with 15 instances

with only 1 scenario, for each number of candidate facilities. These 15 instances consist of 5

instances of each of the three sizes which will be described in Section 7.1.1. In each next set we

double the number of scenarios, until the instances within the set can not be solved anymore.

7.1.1 Physical Railway Network and Basic Line Planning Generation

We create random instances by first generating graphs of physical railway networks in the carte-

sian plane. We do this by manually generating five archetypical graphs on a one by one plane

with respectively 5, 10, 25, 50, and 100 nodes as shown in Figure 3. Each node is an end station

and candidate facility location, while each edge is a set of rails between end stations. For each

archetypical graph, we also manually designed “basic line planning” scenarios. A basic line plan

consists only of origin-destination pairs and the route between them. We also determine for

each basic line whether the corresponding rolling stock type will be regional or intercity. Note

however, that there may be several regional and intercity rolling stock types, and that the actual

rolling stock type will be assigned in Section 7.1.2.

We create physical railway networks by perturbing and scaling these archetypical networks.

We perturb these archetypical graphs by relocating each node uniformly at random within a

square around that node. The square is centered around the original node except at the bound-

aries of the 1×1 plane where the square is relocated to fit within the 1×1 plane. The dimension

of this square decreases with the number of nodes in the network. Next the obtained graph is

scaled to either a (1) 200×400 km, (2) 750×1000 km, or (3) 3000×3000 km rectangle to model
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different railway network sizes. The distances between nodes in this graph is then determined

by multiplying the Euclidian distance by a number drawn uniformly between 1.0 and 1.2. Note

that at this point the length in kilometers of each basic line is fixed. A graph thus obtained is

called GP = (NP , EP ).

0 1

0

1

(a) 5 nodes

0 1

0

1

(b) 10 nodes

0 1

0

1

(c) 25 nodes

0 1

0

1

(d) 50 nodes

0 1

0

1

(e) 100 nodes

Figure 3: The five archetypical graphs.

7.1.2 Line Plan Generation

Recall that a train line consist of a rolling stock type, the maintenance frequency per year and

the deadheading cost to each facility. Before we can generate the line plan, we first need to

generate the different types of rolling stock that we can use. We differentiate between regional

and intercity trains (the pre-defined type in the basic line planning), and generate the number of

different rolling stock types for each material type randomly. This number is generated uniformly

between 1 and the number of edges |NP | divided by 8. Per rolling stock type dependent if its

regional or intercity, all necessary data to calculate the dead heading cost per kilometer (fuel,

driver, unavailability cost etc) is generated randomly. Furthermore, to be able to calculate the

number of maintenance visits for a line later on, we need to know the average number of yearly

maintenance visits per rolling stock type, this number is generated uniformly between 1 and 12.

Then we generate line planning scenarios until we have reached the fixed number of scenarios

for the instance. We start with generating a line planning, by taking uniformly at random a line

planning possibility from the fixed basic line planning set. For each line of the chosen basic line

planning set, we generate the rolling stock type and maintenance visit frequency. The rolling
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stock type is generated based on the pre-defined material type. The rolling stock type is the

same as that of a connecting line of the same basic type with a probability of 0.5 for each line.

When there are no defined lines yet, or when the rolling stock type is not going to be the same

as an already defined connecting line, we choose uniformly at random from the set with rolling

stock types for the basic rolling stock type of the line.

The yearly maintenance frequency is the average number of train units on that line times

the yearly maintenance frequency of the rolling stock type used for that line. An estimation

for the average number of train units for a train line is made based on its length in kilometers,

the average speed of the trains and the hourly train frequency of the line, which is generated

uniformly at random between 1 and 8. The deadheading cost for a line to a facility is the

deadheading cost per kilometer of the rolling stock type times the number of kilometers for the

shortest path in GP from one of the end stations nodes to the facility node. For example when

one of the end stations is the candidate facility, the shortest path is 0 kilometers and the cost is

0.

7.1.3 Interchange Capacities, Budgets and Candidate Facilities

All interchange coordination cost between lines are set at 10 euro. The interchange capacity of

an end station, gds , are based on the sum of maintenance visits of all lines with end station s

in scenario d. With a probability of 5%, no interchanges are possible, and with a probability

of 20% the capacity is uniformly distributed between 0 and 1 times the sum of maintenance

visits. With a probability of 65% it is uniformly distributed between 1 and 3 times the sum of

maintenance visits, only a restriction when there are many interchanges originating from non

connecting lines, and with a probability of 10%, there is no restriction at all. The interchange

budget Gd is with a probability of 25% between 0 and 1 times the total yearly maintenance visit

frequency for scenario d, with a probability of 65% between one and three times the total yearly

maintenance visit frequency and with a probability of 10% it is infinite.

The fixed facility costs are generated uniformly at random between 1/5th and 5 times the

estimated average fixed facility cost for the Dutch Railways. The maintenance facility capacities

are with a probability of 0.1 uniformly distributed between 0 and 0.5 times the maximum total

yearly number of maintenance visits over all scenarios, with 0.4 between 0.5 and 1 and with a

probability of 0.5 there is no capacity restriction.

For the SMLRP, we also have to generate the probabilities pd. These probabilities are uni-

formly generated between 0 and 1, followed by scaling the probabilities such that they sum up

to 1.

7.2 IMIP Experiments

We used the instances with 5, 10, 25, 50 and 100 candidate facilities from the randomly generated

instance sets. For each number of facilities, we start with the set with just one scenario. When
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more than 80% (13 or more out of 15) of the instances can be solved within an hour, we continue

to the next set where the number of scenarios is doubled. When an instance can not be solved

within an hour, a fail is registered and a solution time of 3600 seconds is used for the average

time calculations. The average time in seconds for each set for the R/SMLRP can be found in

Table 1. The top row shows the number of candidate facilities per set and the first column the

number of scenarios.

RMLRP - IMIP SMLRP - IMIP

Scenarios 5 10 25 50 100 5 10 25 50 100

1 < 0.1 < 0.1 0.1 0.7 13.4 < 0.1 < 0.1 0.1 1.1 19.4

2 < 0.1 < 0.1 0.2 1.8 103.4 < 0.1 < 0.1 0.2 1.7 110

4 < 0.1 0.1 0.6 9.1 175.5 < 0.1 < 0.1 0.3 8.6 94.2

8 0.1 0.1 2.2 35.2 874.3 < 0.1 0.1 0.6 20.6 202.6

16 0.2 0.2 2.8 67.6 fails 0.1 0.2 2.5 33.2 956.6

32 0.2 0.3 5.3 231.0 0.1 0.3 5.7 112.5 fails

64 0.3 0.6 13.5 715.4 0.2 0.5 10.4 296.7

128 0.5 1.7 71.4 1259.3 0.4 1.4 37.6 785.8

256 1.6 4.2 140.1 fails 1.1 3.0 112.9 fails

512 5.0 15.2 452 2.9 11.8 507.4

1024 16.3 44.9 1259.8 10.1 36.0 1076.8

2048 54.7 178.5 fails 31.1 154.8 fails

4096 214.4 531.2 126.8 653.4

8192 733.2 1978.1 556.7 fails

16384 fails fails 2428.3

32768 fails

Table 1: Solution time in seconds for the RMLRP and SMLRP, while varying the number of

scenarios and facilities.

For up to 50 facilities the IMIP solved with CPLEX works well. Note that these instances are

already large. An instance with 25 facilities and 1024 scenarios has for the RMLRP on average

36 k (35765.5) nodes and a million (1007822.6) edges in the flow graph. Furthermore, the

CPLEX model has a million (1007848.6) columns and 100k (100123.1) rows. For 100 candidate

facilities, we can only solve the instances with a limited number of scenarios within an hour.

For these instances, we extended the solution time to 48 hours (2880 minutes), to explore the

computationally feasible boundary. Because of time considerations, we limit the instances of the

sets to the first 6 instances, 2 instances from each size. These results are depicted in Table 2,

where RAM is used for instances where an out of memory error occurred.

Instances up to 64 scenarios can generally be solved. Furthermore, the SMLRP-IMIP seems
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RMLRP-IMIP SMLRP-IMIP

Scenarios Min Average Max Failed Min Average Max Failed

16 17.4 105.6 252.6 0 0.4 12.1 56.2 0

32 22.8 429.6 791.4 0 1.5 72.3 331.5 0

64 123.0 631.8 2541.0 0 4.6 209.2 892.7 0

128 168.7 2337.7 > 2880.0 4 6.6 595.9 > 2880.0 2

256 RAM RAM RAM 6 18.5 774.5 > 2880.0 1

512 RAM RAM RAM 6 RAM RAM RAM 6

Table 2: Minimum, average and maximum solution time in minutes for instances with 100

facilities and the number of instances which were not solved within 2880 minutes.

to be computationally faster than the RMLRP-IMIP. A possible explanation for this are Con-

straints (33) from Section 5.1, which are only used for the RMLRP-IMIP. These constraints

create degeneracy, because with them only one scenario contributes to the transportation cost,

giving many solutions with the same objective value.

Furthermore, we noticed that the IMIP (solved with CPLEX standard branch and cut algo-

rithm) uses many cuts and few nodes in the branch and bound tree. Some of the instances can

be solved without branching. For example, the average number of nodes for the SMLRP with

50 candidate facilities is 72, while it uses 4226 cuts on average. The number of nodes increases

with the number of candidate facilities, while the number of cuts increases by both the number

of facilities and scenarios. CPLEX mainly uses flow and MIP rounding cuts, followed by implied

bound cuts, and to a lesser extend clique, Gomory, zero-half and lift and project cuts.

7.3 Scenario Addition

We compared the scenario addition algorithm with the IMIP. We used the instances with 25,

50 and 100 candidate facilities from the randomly generated instance set. The instances with 5

and 10 facilities are excluded because the IMIP can already solve instances up to 8192 scenarios

within an hour. Again more than 80% (13 or more out of 15) of the instances have to be solved

within an hour to go to the next set. The average time in seconds for each set for the RMLRP-

IMIP and SA can be found in Table 3; the top row shows the number of candidate facilities per

set and the first column the number of scenarios.

For the instances with 25 and 50 candidate facilities, it can be seen in Table 3 that the SA

algorithm can solve instances with more scenarios within the hour. For the instances with 25

candidate facilities, we stopped the test after 32384 scenarios, although they still can easily be

solved within the hour. There is no difference between SA and IMIP for the instances with 100

facilities. This can be explained by the fact that we can only solve instances with a limited

number of scenarios for instances with 100 facilities. Consequently, a SA iteration with fewer
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IMIP SA

Scenarios 25 50 100 25 50 100

1 0.1 0.7 13.4 0.1 0.7 13.5

2 0.2 1.8 103.4 0.3 2.4 129.1

4 0.6 9.1 175.5 1.2 14.1 220.9

8 2.2 35.2 874.3 2.7 42.2 719.7

16 2.8 67.6 fails 4.4 76.4 fails

32 5.3 231.0 5.1 328.7

64 13.5 715.4 5.3 357.4

128 71.4 1259.3 8.4 267.9

256 140.1 fails 11.9 485.3

512 452 12.8 528.9

1024 1259.8 19.1 851.9

2048 fails 40.5 503.6

4096 54.9 1095.0

8192 75.3 1073.2

16384 144.3 fails

32768 288.8

Table 3: Solution time in seconds for the IMIP and SA, while varying the number of scenarios

and facilities.

scenarios added already takes a considerable amount of time.

When we extend the time from 1 hour to 48 hours (we limit the sets to the first 6 instances,

as explained in Section 7.2), the SA algorithm performs better in both the best and average case,

but its worst case performance is as expected worse. We show these results in Table 4.

The number of iterations (is equal to the number of added scenarios) that the SA algorithm

uses and the time in seconds is shown in Table 5. The number of iterations initially grows when

the number of scenarios increases, to become stable after some point. The maximum number

of iterations is really low compared to the total number of scenarios |D| of the instances. The

maximum number of scenarios for 25 facilities is 32384 while for the worst case, the scenario

set only contains 20 scenarios. When we increase the number of candidate facilities to 50, the

maximum number of scenarios is 8192, while the maximum number of iterations is 24.

7.4 Benders Decomposition

We use the instances with 25 candidate facilities and start with 128 scenarios. The upper bound

heuristic always uses a set with 64 scenarios, with an average solution time around 10 seconds.

The δ (absolute gap) is set at 0.0001. Just as for the IMIP experiments, we continue to the
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RMLRP-IMIP SA

Scenarios Min Average Max Failed Min Average Max Failed

16 17.4 105.6 252.6 0 1.2 74.4 198.0 0

32 22.8 429.6 791.4 0 5.4 560.4 2247.0 0

64 123.0 631.8 2541.0 0 8.4 511.2 > 2880.0 1

128 168.7 2337.7 > 2880.0 4 2.4 807.0 > 2880.0 2

256 RAM RAM RAM 6 66.0 1103.7 > 2880.0 2

Table 4: Minimum, average and maximum solution time in minutes for instances with 100

facilities and the number of instances which were not solved within 2880 minutes.

25 50 100

Scenarios Iterations Time Iterations Time Iterations Time

1 1.0 0.1 1.0 0.7 1 13.5

2 1.9 0.3 1.9 2.4 2 129.1

4 2.9 1.2 3.5 14.1 3.4 220.9

8 4.6 2.7 5.3 42.2 4.9 719.7

16 5.9 4.4 6.9 76.4

32 7.3 5.1 9.3 328.7

64 7.8 5.3 11.7 357.4

128 7.1 8.4 11.2 267.9

256 7.5 11.9 11.8 485.3

512 7.9 12.8 10.9 528.9

1024 7.9 19.1 10.9 851.9

2048 8.1 40.5 11.6 503.6

4096 8.3 54.9 12.5 1095.0

8192 7.0 75.3 12.1 1073.2

16384 6.7 144.3

32768 6.7 288.8

max 21 983.1 24 > 3600 8 > 3600

Table 5: The average and maximum number of iterations needed for the scenario addition method

next set when more than 80% (13 or more out of 15) of the instances are solved within an hour.

Benders without any accelerating strategies can not solve any of the instances within the hour.

All other accelerating techniques except for cut disaggregation (CD), are insufficient to speed-up

the convergence such that it can solve the set of instances with 128 scenarios. CD seem to be

necessary to have any potential success with Benders decomposition. We write down HTR, when
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we used a trust region based on the Hamming distance. We tested different trust regions, and

choose for a trust region where the Hamming distance is 1, for the first 5 iterations, 2 for iteration

6 to 10, and 3 up to iteration 25. Furthermore, we tested two versions of the incumbent trust

region heuristic. In the first version, ITR A, we always add the optimality cuts from the best

of the two solutions. In the second version, ITR B, we always add the regular optimality cuts

and we add the additional cuts too when its solution is better than the regular master problem

solution. We abbreviate the knapsack inequalities to KI.

Figure 6 depicts our results sorted in decreasing computational time (in seconds) for the

SMLRP. We removed the combinations which could not solve any set:

Techniques Iterations Constraints Time (sec.) Solved

CD, UB, HTS and ITR B 64.9 9515.2 1038.9 128

CD, HTS and KI 75.3 9713.7 1023.5 128

CD, UB and ITR B 64.9 9442.5 1011.7 128

CD, UB and HTS 73.3 9383.4 953.5 128

CD, UB, HTS and KI 72.9 9406.1 989.8 128

CD, UB, HTS, KI and ITR A 57.5 8294.7 875.1 128

CD, UB, KI and ITR B 48.3 10072.6 833.8 256

Table 6: Results Benders Decomposition for the SMLRP

Cut disaggregation combined with the upper bound heuristic, knapsack inequalities and the

incumbent B trust region accelerating techniques works the best. Furthermore, it is obvious that

the IMIP method works much better than Benders decomposition for medium sized instances.

Also for larger instances, Benders decomposition is outperformed by the SMLRP-IMIP. The

larger instances with 100 facilities and 16 scenarios cannot be solved within 48 hours with Benders

decomposition with CD, UB (8 scenarios), KI and the ITR B accelerating techniques. The slave

problem is solved in milliseconds, consequently the solution time is almost fully determined by

the master problem. The problem seems to lay in the convergence of the algorithm. To check

that the solution time cannot be drastically improved by increasing δ slightly, we increased δ to

10 for the CD, UB, KI and ITS B set. These instances are still solved with absolute gaps lower

than 0.0001 and consequently the same computational solution times.

For the RMLRP, we repeated the SMLRP experiments, but with the cut disaggregation

acceleration technique excluded, as that cannot be applied to the RMLPR. For the RMLRP none

of the combinations of the accelerating techniques can solve the 128 scenario and 25 facilities

instance set within the hour. The combination of UB, HTR and ITR A and the same combination

but with ITR B could solve 10 out of the 15 instances within the hour. This was followed by the

combination of UB and ITR B with 8 instances. All other combinations can solve 3 instances or

less. We conclude that accelerated Benders decomposition does not work well for the RMLRP.

29



7.5 Comparison and Discussion of Algorithms

Our IMIP formulation works very well and can solve instances with 50 candidate facilities and

more than 100 scenarios, easily within the hour. The SLMRP seems a bit easier to solve than

the RMLRP.

Although we use the most common accelerating strategies and add some of our own, Benders

decomposition is computationally slower than solving the IMIP with CPLEX. An advantage of

the Benders decomposition compared to the IMIP is that generally less memory is required, as

constraints are added iteratively. We expect that the success of our IMIP formulation compared

to the Benders decomposition can be explained by the following reasons:

• Our mixed integer formulation is very efficient and has Θ(
∑
d∈D

(
|Ld|2|NC |+ |Ld||AdI |

)
)

variables less than the more standard mixed integer formulation (see Theorem 1 and 2).

• 64 bits computer architectures are more and more common in recent years, increasing the

maximum possible random-access memory that can be used from 232 different values (3-4

GB) to 264 values (18 EB, one EB = 109 GB). Much research in the past has been done with

32 bit computer architectures (or even older computers), which cannot address sufficient

random-access memory to solve the IMIP for instances of practical size.

• Since the introduction of MIP solvers, there have been many improvements. According to

Bixby (2015), MIP solvers have improved with a factor of 800.000 since 1991.

As Bixby (2002) notes, “Three orders of magnitude in machine speed and three orders of

magnitude in algorithmic speed add up to six orders of magnitude in solving power. A model

that might have taken a year to solve 10 years ago can now solve in less than 30 seconds.” Because

of these kind of developments, it may be possible that a MIP formulation is computationally faster

for some problems for which Benders decomposition worked better in the past.

8 Case Study Dutch Railways

In this section, we use our algorithm on instances based on the Dutch Railways. We use a green

field approach, where existing facilities of the Dutch Railways are kept out of scope. The goal

of this section is not to advise the Dutch Railways or to compare our solution to the current

facilities, but to show that we can solve instances of practical size with our model.

We first describe, how these case study instances are generated, followed by our experiments.

We investigate the benefit of the interchanges, the stability of the solution as the number of

scenarios increases, the expected value of perfect information, and the value of the stochastic or

robust solution. Both measures are common measures within the stochastic programming liter-

ature (Birge and Louveaux, 1997). The expected value of perfect information is the value of the

S/RMLRP minus the wait and see solution. It is a measure that assesses how valuable perfect
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information about the future is. The value of the stochastic and robust solution, is the improve-

ment of adding future scenarios compared to only using the current situation. The expected

value for the current case can be evaluated by solving the second stage problem for all scenarios

while using the opened facilities of the current situation. The value of the robust/stochastic

solution is now the expected value of the current case minus the S/RMLRP optimal objective

value. Furthermore, we compare the solutions of the SMLRP and RMLRP with each other.

8.1 Dutch Railways Based Instances

The Dutch Railway instances each have 59 end stations and 55 candidate facilities. Four end

stations (Utrecht, Breukelen, Amsterdam and Schiphol) have been excluded, because a mainte-

nance facility cannot be built at these locations. The facility cost are an estimation of the average

yearly cost of land, the necessary infrastructure and the maintenance facility itself including all

side buildings. Furthermore, we altered the facility cost based on which province the end station

is located in. The cost are either decreased or increased dependent on the province average land

price. We assume unlimited capacity for the facilities and unlimited interchange capacities for

all end stations except Utrecht, Amsterdam and Schiphol, where interchanges are not possible.

The interchange budget has a different value for each experiment, and will be described in detail

for each experiment.

We used four basic line plans: the current situation (2015), an estimation of 2018, and two

possibilities for approximately 2025. These basic line planning contain all the lines (97,97,99 and

100 lines) the rolling stock serving the line and an estimate of the number of yearly maintenance

visits per line. The future scenarios, are based on the plan “Beter en Meer” (Prorail and NS,

2014), where the Dutch Railways intends to increase the frequency of the lines in the Randstad or

larger Randstad. The Randstad is a megalopolis in the Netherlands consisting of the four largest

cities and their surrounding areas. The larger Randstad also includes the cities Amersfoort,

’s-Hertogenbosch and Eindhoven.

The rolling stock consist of all current rolling stock and the future rolling stock types (FLIRT,

SNG and ICNG). For each rolling stock, a rough estimation is made for the deadheading cost per

kilometer. This estimation is based on many components such as driver cost, energy consumption,

an estimation on the average dead heading velocity and availability costs. The availability costs

are based on the life cycle cost of the rolling stock and the cost passenger dissatisfaction due to

the unavailability of the train. The cost of the interchanges are set at 10 euro per interchange.

Scenarios are made by picking a random basic line plan, and altering the number of main-

tenance visits and rolling stock type. For each line of the line planning a random number of

maintenance visits is chosen based on the triangular distribution. The number of maintenance

visits of the basic planning is the mode of this distribution. We assume that the number of

maintenance visits can decrease with 32.5% and increase with 75%, due to uncertainty in the

yearly number of maintenance visits of the train unit and the number of passengers using a

certain line. A maximum of 20% of the rolling stock types of the lines can be swapped with each

31



other. To do that, we generate for both regional and intercity trains a separated integer list,

with its rolling stock number in the list for every maintenance visit it makes. These lists and the

lines are shuffled. Then we go through all train lines and with a 10% probability, we change the

rolling stock type to the first different rolling stock type of the list, all previous items of the list

are removed. The maintenance frequency of the line is divided by the maintenance frequency of

the current rolling stock type and multiplied by those of the new rolling stock type. We stop

when there are no more lines or the limit of 20% has been reached.

For the SMLRP, we also have to generate the probabilities pd. These probabilities are gener-

ated uniformly at random between 0 and 1, followed by scaling the probabilities such that they

sum up to 1.

8.2 Experiments

In this subsection, we do three kinds of experiments. We test the influence of the interchange

budget, the influence of the number of scenarios and we determine the expected value of perfect

information and the stochastic/robust solution. Before we can test the the influence of the inter-

change budget, we need to know how many scenarios those instances should have. Consequently,

we start with some initial computational experiments.

We do those experiments with sets of 10 instances, increasing the number of scenarios by a

factor 2 for each set. We fixed the interchange budget for every scenario at 0.75M , where M =∑
l∈L2015 m2015

l , which is the number of maintenance visits in the current (2015) scenario. For

the RMLRP instances, the most often opened facilities are Eindhoven and Almere Oostvaarders

(below 32 scenarios), Eindhoven and Hilversum (64 up to 4096 scenarios) and ’s-Hertogenbosch

and Hoofddorp for 8192 or more scenarios. However, for each number of scenarios, there are

always other solutions. We evaluated the mentioned three solutions, with 10 instances that

have 65536 scenarios, the difference between the optimal solution values is at most 2%. This

small difference explains why we get different solutions, even if we include many scenarios. We

show these solutions in Figure 4, within the first black circle are the stations in the north

Randstad (Hilversum, Hoofddorp, Almere Oostvaarders) and the stations in the south of the

larger Randstad (Eindhoven, ’s-Hertogenbosch) are in the second black circle. For the interchange

budget experiment (Section 8.2.1) we use instances with 8192 scenarios which can be solved in

approximately ten minutes.

For the SMLRP instances, the average cost is always the same independent of the number

of scenarios, and Eindhoven and Almere Oostvaarders is opened the most often. From 8 sce-

narios onwards, Eindhoven and Almere Oostvaarders are opened for all 10 instances. However,

increasing the scenarios still decreases the standard deviation of the optimal objective values.

Because of time and stability reasons we use instances with 16 scenarios for the interchange

budget experiments (Section 8.2.1), these instances can be solved in approximately 20 minutes.
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Figure 4: Railway map with all Dutch stations. The larger black circles are the best locations to

open a maintenance facility. The small circles are the larger intercity stations and the tiny circles

are the smaller regional stations. This picture is adapted from https://upload.wikimedia.

org/wikipedia/commons/6/6a/Spoorkaart_Nederland%2C_IC_stations.png.

8.2.1 Influence of the Interchange Budget

We make 10 instances with 8192 (RMLRP) or 16 (SMLRP) scenarios according to the plan de-

scribed in Section 8.1. For each of these instances, the budget isGd = 0, 0.25M, 0.5M, 0.75M,M, 2M

and ∞ for all scenarios. Furthermore, we include 10 instances where the station interchange

restrictions gs are removed, while having an infinite interchange budget. These instances demon-

strate the maximum gain that can be achieved by improving the stations interchange capacities.

Table 7 shows the influence of the interchange budget for the RMLRP. #sols, shows the

number of different solutions while the opened facilities show the facilities which are opened the

most often out of the 10 instances, followed by the number of times that they are opened. The

average costs (optimal objective value) are shown in million euro’s per year.

Two of the three earlier mentioned solutions come back in Table 7. ’s-Hertogenbosch and

Hoofddorp may be preferable for instances with a low budget, while Eindhoven and Hilversum

may be preferable for instances with a high budget. In almost all cases, two facilities are opened,

one in the north of the Randstad and one at the south of the large Randstad. The cost decrease

with 15.7%, which is already reached with a budget of only 0.75M . When we remove the station

interchange restrictions, we can decrease the cost with another 10.2%.
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Budget #sols Opened facilities Cost (millions)

0 2 ’s-Hertogenbosch and Hoofddorp (8/10) 7.0

0.25M 4 ’s-Hertogenbosch and Hoofddorp (6/10) 6.3

0.50M 4 Eindhoven and Hilversum (5/10) 6.0

0.75M 3 ’s-Hertogenbosch and Hoofddorp (6/10) 5.9

M 7 Eindhoven and Hilversum (4/10) 5.9

2M 6 Eindhoven and Hilversum (4/10) 5.9

∞ 6 Eindhoven and Hilversum (4/10) 5.9

No gs 4 ’s-Hertogenbosch and The Hague (8/10) 5.3

Table 7: Budget interchange results for the RMLRP.

Table 8 shows the influence of the interchange budget for the SMLRP. Again all solutions

consist of one maintenance facility in the south of the large Randstad and one in the north.

From an interchange budget of 0.50M the solution is almost always Eindhoven and Almere

Oostvaarders. The cost decreases with 25.4 %, already reached at M . Removing the interchange

station capacity decreases the cost with another 13.6%. Furthermore, it can be seen that the

SMLRP solution value is lower than the solution value of the RMLRP solutions.

Budget #sols Opened facilities Cost (millions)

0 2 ’s-Hertogenbosch and Hoofddorp (6/10) 5.9

0.25M 3 Eindhoven and Hilversum (5/10) 5.2

0.50M 2 Eindhoven and Almere Oostvaarders (9/10) 4.7

0.75M 1 Eindhoven and Almere Oostvaarders (10/10) 4.5

M 1 Eindhoven and Almere Oostvaarders (10/10) 4.4

2M 1 Eindhoven and Almere Oostvaarders (10/10) 4.4

∞ 1 Eindhoven and Almere Oostvaarders (10/10) 4.4

No gs 3 Eindhoven and Almere Oostvaarders (8/10) 3.8

Table 8: Budget interchange results for the SMLRP.

8.2.2 Influence of the Number of Scenarios

We make sets of 10 instances with an interchange budget uniformly distributed between 0.25M

and M , where we double the scenario for every set. Table 9 shows the influence of the number

of scenarios for the RMLRP. Because the number of scenarios in Table 9 are very large, we only

show the results in steps of factor 4 between 4 and 16384 scenarios; in all those cases the most

common solution is Eindhoven and Hilversum.
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Scenarios #sols Opened facilities Cost (millions) time

1 4 Eindhoven and Almere Oostvaarders (7/10) 4.5 0.1

2 5 Eindhoven and Almere Oostvaarders (5/10) 4.8 0.7

4 5 Eindhoven and Hilversum (5/10) 5.2 1.7

16 4 Eindhoven and Hilversum (7/10) 5.3 1.9

64 4 Eindhoven and Hilversum (7/10) 5.5 4.5

256 2 Eindhoven and Hilversum (8/10) 5.7 4.4

1024 4 Multiple solutions* 5.9 5.9

4096 3 Eindhoven and Hilversum (5/10) 6.0 6.5

16384 4 Eindhoven and Hilversum (5/10) 6.2 12.0

32768 3 ’s-Hertogenbosch and Hoofddorp (5/10) 6.3 9.7

65536 3 ’s-Hertogenbosch and Hoofddorp (7/10) 6.3 18.3

Table 9: Number of solutions, most common solution, cost in millions, and average time in
minutes for different number of scenarios for the RMLRP.
*Both Eindhoven and Hilversum, and Hoofddorp and s-Hertogenbosch are chosen 4 times out of 10 as the solution.

For the RMLRP the solution remains somewhat chaotic, even for a high number of scenarios.

As indicated in Section 8.2, this is probably because the solutions north of the Randstad in

combination with Eindhoven and ’s-Hertogenbosch are close to each other costwise. The cost

increases with the number of scenarios, this is a property that generally holds for robust problems,

as we always evaluate the cost of the worst scenario. The more scenarios we add, the higher

the probability that an expensive scenario is added. The most common best robust solution is

Eindhoven and Hilversum, but from 32768 scenarios onwards ’s-Hertogenbosch and Hoofddorp

is the most common solution. Furthermore, we can solve the RMLRP with SA extremely fast

with only a 18.3 minute average solution time for instances with more than 65k scenarios.

Table 10 shows the influence of the number of scenarios for the SMLRP. The SMLRP solution

becomes stable after 16 scenarios. Eindhoven and Almere Oostvaarders seems to be the best

average case solution.

8.2.3 Expected value of Perfect Information and Stochastic/Robust Solution

The optimal objective for the wait and see solution (8192 scenarios), a solution for which the

best facilities are opened for each scenario separately, is 6.1 million for the robust (minimax)

objective and 4.6 million for the stochastic (average case) objective. This gives an expected

value of perfect information of 3.2% for the RMLRP and 2.1% for the SMLRP.

The current case situation with a budget of 0.75M, has an optimal objective of 3.3 million

euro per year. We evaluate this solution by solving the MRP for an instance with 65536 scenarios.

In this case, the objective becomes 7.7 million euro per year for the robust objective and 5.4

million euro per year for the average case situation. Consequently, the expected value of the
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Scenarios #sols Opened facilities Cost (millions) time

1 4 Eindhoven and Hilversum (5/10) 4.8 0.2

2 3 Eindhoven and Almere Oostvaarders (7/10) 4.6 0.4

4 2 Eindhoven and Almere Oostvaarders (7/10) 4.6 1.4

8 2 Eindhoven and Almere Oostvaarders (8/10) 4.7 4.4

16 1 Eindhoven and Almere Oostvaarders (10/10) 4.7 22.1

32 1 Eindhoven and Almere Oostvaarders (10/10) 4.6 79.8

64 1 Eindhoven and Almere Oostvaarders (10/10) 4.7 309.4

Table 10: Number of solutions, most common solution, cost in millions, and average time in

minutes for different number of scenarios for the SMLRP.

robust solution is 18.2 % and 9.3 % for the stochastic solution.

We expect that the expected value of perfect information is low, because the combination of

opening a maintenance facility in the north and south Randstad (see Figure 4) is a good solution

for all scenarios . When the solution is not optimal, it is generally about 2% from optimality.

Consequently, we know that we have found a solution which is robust for all scenarios, and that

investing in better predictions in this case can only lead to small improvements. The value of

the robust and stochastic solution shows that although there is a set of solutions which is good

for all scenarios, just solving a scenario and using that solution is a bad idea. Consequently, we

need the scenarios to find and verify good solutions for the R/SMLRP.

9 Conclusion

We formulated two novel models for the maintenance location routing problem and used different

algorithms to solve them. Our IMIP formulation and the scenario addition method, work quite

well and outperform Benders decomposition computationally. The SA method performs compu-

tationally better than the IMIP for the RMLRP and requires less memory as it only has to con-

sider a subset of the scenarios. An advantage of the Benders decomposition compared to the IMIP

is that generally less memory is required, as constraints are added iteratively. We expect that

the success of our IMIP formulation compared to the Benders decomposition can be explained

by the fact that it is a very efficient formulation which requires Θ(
∑
d∈D

(
|Ld|2|NC |+ |Ld||AdI |

)
)

variables less than a standard mixed integer formulation (see Theorem 1 and 2), by using a 64

bits computer architecture and by the MIP solver improvements in recent years.

The case study indicates that we can solve instances of practical size, and that including

scenarios can save 18.2% for the RMLRP and 9.3% for the SLMPR relative to using only the

current line planning scenario. Including future scenarios will become even more important

when facility capacity is a binding constraint. The current model includes a maximum capacity
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for locations, but this has been set at infinity for the case study as the maximum capacity

of a location is hard to estimate. Furthermore, the cost of a facility is only dependent on its

maximum capacity in the current model. An interesting future direction is to make the price of

the facilities dependent on the provided capacity. In such a case, solutions with (approximately)

the same facility costs, can consist of many small facilities or a few larger facilities. Furthermore,

there should be enough capacity for all scenarios, and ignoring some of the scenarios can lead

to infeasible solutions. As it is costly to have enough capacity for all possible scenarios, even

unlikely ones, we can also allow some recoverability. This recoverability can consist of building

additional facilities, selling facilities or upgrading them to a higher capacity.
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A Proof Proposition 2

We show that the MRP has an integer solution zl(a) if gs (∀s ∈ S), G, ml (∀l ∈ L) and qn

(∀n ∈ NF ) are integer. The proofs are by contradiction. We show that every feasible fractional

solution is a convex combination of feasible integer solutions, while we know from LP theory

(Bertsimas and Tsitsiklis, 1997), that a basic feasible solution can never be a convex combination

of two other feasible solutions.

Lemma 1. If gs (∀s ∈ S), G, ml (∀l ∈ L) and qn (∀n ∈ NO) are integer, then
∑
l∈L zl(a)

(∀a ∈ AF ) will be integer for any basic feasible solution.

Proof. Because the total flow departing from the source,
∑
l∈Lml, is integer and because of flow

conservation,
∑
l∈L zl(a) is integral or there are multiple fractional sum flows. In the case there

are multiple fractional sum flows, constraints (1), (5) or (6) can only be binding when there

are multiple fractional sum flows within the same set associated with the constraints: δin(n)

(∀n ∈ NO), AI or As (∀s ∈ S). Without a binding constraint, we can always apply rounding to

the fractional sum flows. When we have multiple fractional values, within the same set, we can

round the values to integers without changing the number of flow within the set. This rounding

is done by rounding the individual zl(a), in such a way that
∑
l∈L zl(a) ∀a ∈ AF stays the same

and
∑
a∈AF

zl(a) ∀l ∈ L as well. This is possible because of flow conservation and proves that

any fractional sum flow is a convex combination of the rounding possibilities.

Lemma 2. If gs (∀s ∈ S), G, ml (∀l ∈ L) and qn (∀n ∈ NF ) are integer, then zl(a) (∀a ∈ AF )

will be integer for any basic feasible solution where
∑
l∈L zl(a) is integer.

Proof. When
∑
l∈L zl(a) is integer, then all zl(a) are integer or multiple zl(a) are fractional.

When there are multiple fractional zl(a), we can round some up and some down to an integer

value, in such a way that
∑
l∈L zl(a) does not change. Because ml is an integer, and we have

flow conservation, we know that there is another arc, where the same type of flow is fractional.

At this node we can do the opposite rounding, guaranteeing that also the amount of flow for
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every type (
∑
a∈AF

zl(a) ∀l ∈ L) does not change. The rounding proves that every fractional

solution is a convex combination of the rounding possibilities.

Combining these lemma’s give us Theorem 2.
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