

Solving Routing Problems by Exploiting the Dual of a master LP Formulation

M. Firat, N.P. Dellaert and W.P.M. Nuijten

Beta Working Paper series 514

BETA publicatie	WP 514 (working paper)
ISBN ISSN	P ~ P ~ .)
NUR	
Eindhoven	September 2016

Solving Routing Problems by Exploiting the Dual of a master LP Formulation

Murat Fırat * Nico Dellaert [†] Wim Nuijten [‡]

September 23, 2016

Abstract

This paper introduces a duality analysis of a master Linear Programming (MLP) formulation of the Vehicle Routing Problem with Time Windows (VRPTW). The considered MLP model is the slightly modified version of the relaxation of the Dantzig-Wolfe decomposition by expressing a VRPTW solution as a non-negative convex combination of constructed routes. The MLP model is basically the so-called reformulation of the VRPTW used in many Branch-and-Price (BP) algorithms. Our dual analysis shows that a pricing competition occurs in the dual model and the dual values of decision variables can guide us in making certain decision like customer grouping and introducing a new vehicle to an existing (incomplete) solution. By using our dual interpretation, we propose a heuristic algorithm that greedily constructs a routing plan by iteratively solving the MLP model as a central optimization mechanism. The objects to select in the MLP model are routes that are constructed by using a Dynamic Programming (DP) based method. We keep total number of routes bounded by a constant number, hence the size of the MLP model is fixed. A complete routing plan, i.e. an integer solution to the MLP model, is obtained by making the aforementioned decisions. We provide further details of the algorithm and show its efficiency by means of a computational study.

Keywords: Vehicle Routing with Time Windows, Linear Programming, Primal-Dual Method, LP Duality, Dynamic Programming.

1 Introduction

The Vehicle Routing Problem with Time Windows (VRPTW) is one of the basic benchmark problems in optimization. It is a generalization of the Vehicle Routing Problem (VRP) that was firstly introduced by Dantzig et al. (1959). The NP-hardness of the VRPTW is rooted from the Traveling Salesman Problem (TSP). Many exact solution methods to the VRPTW use a reformulation

^{*}m.firat@tue.nl.Department of Mathematics and Computer Science, TU Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands.

[†]n.p.dellaert@tue.nl.Faculty of Industrial Engineering & Innovation Sciences, TU Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands.

[‡]w.p.m.nuijten@tue.nl.Department of Mathematics and Computer Science, TU Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands.

with set packing structure and employ Column Generation (CG) method in a Branch-and-Bound search, for example (Desrochers et al. 1992). Although a remarkable progress is obtained in the size of solved instances, exact algorithms suffer from long running times in solving real-life instances. The main issue is that the pricing sub-problem is NP-hard and requires either long time or large amount of memory to solve optimally. Some researchers worked on developing heuristics based on Branch-and-Bound methods whose termination criterion is either time or solution quality or a mix of both.

The basic idea of our approach is to express the customer visits as decision variables, so not enforcing the requirement that every customer should be by exactly one vehicle. Initially, we have an incomplete VRPTW solution when solved the MLP model, and then we greedily assign certain customers to used vehicles and reach a complete routing solution. The decision of assigning customers to used vehicles is based on the evidence obtained from the solutions of the MLP model and its dual. Relaxing the requirement of visiting customers exactly once is not a new idea, for example (Kohl and Madsen 1997) and (Kallehauge et al. 2006) worked on exact algorithms based on Lagrangian relaxation in which the relaxed constraints of the VRPTW are the aforementioned ones.

In this work, the proposed heuristic approach makes use of the information given by LP-duality in order to find good-quality solutions to the VRPTW. Our approach has important similarities to exact algorithms. It uses the master LP model with set packing structure that is used by many Branch-and-Price algorithms. Our algorithm does not backtrack during its course, and it makes greedy decisions in this sense. As customers are assigned to used vehicles, fixedsize path sets are revised in order to update the information obtained from dual solutions.

Our contribution. The contribution of this paper is two-fold. Firstly, we provide a dual interpretation of the MLP formulation of the VRPTW. Our dual interpretation shows that a competition happens among customers in the dual model, and the values of dual decision variables provide us some information about the customer competition. As the second contribution of this paper, we propose a heuristic approach to solve the VRPTW that makes use of the information provided by our dual interpretation. Our computational experimentation shows that our heuristic has short running time and it is promising to find good quality solutions.

The paper is organized as follows. Related work in the literature is mentioned in Section 2. Basic concepts and necessary notation is introduced in Section 3. The dual analysis by using primal-dual method of a master LP model of the VRPTW is provided in Section 4. Section 5 presents our proposed heuristic algorithm to the VRPTW by firstly outlining its important properties in an overview. Computational results are reported in Section 6. Finally, conclusions and possible research directions are discussed in Section 7.

2 Related Work

There is an extensive literature for the VRPTW that contains a wide range of algorithms like priority rule based simple heuristics, (adaptive) large neighborhood search, and exact algorithms. A good summary of the literature of the VRPTW till 1990s can be found in the review of Desrochers et al. (1988). In

this survey, the authors mention that the literature lacks (at that time) an exact approach to the VRPTW, and few years later Desrochers et al. (1992) proposed one of the first exact solution methods to the VRPTW. Authors' method solves a reformulation of the VRPTW with a set packing structure and employs the CG technique in order to do bounding in a Branch-and-Bound search. The corresponding sub-problem amounts to finding the shortest path in a modified network with time windows and capacity constraints, and it is solved by using the Dynamic Programming method. The largest instances size that is solved optimally was with 14 customers till that time, and the results of Desrochers et al. (1992) showed that a high ratio of 25-customer instances are solved optimally within 10 minutes by using the computation power of 1990s. Some years later, Fisher et al. (1997) proposed two optimization algorithms to the VRPTW, namely a Lagrangian Relaxation/Variable splitting approach and a K-tree approach. In the former, two sub-problems (a semi-assignment problem and shortest path problem with time windows and capacity constraints) are solved. The authors report that 100-customer benchmark instances with clustered and randomly located customers to optimality with varying solution times are between 10 and 70 minutes. The conclusion is that both optimization algorithms perform best especially on the instances with clustered customers.

Customer grouping or fixing decision variables in a VRPTW formulation is a general trick researchers used, for example Cacchiani et al. (2014) propose a heuristic approach to the Periodic Vehicle Routing Problem (PVRP). The proposed algorithm solves a master LP model by fixing binary variables to 1 whose solution values are 1, and fixing the value of the variable that has the highest fractional value. After the fixing, the authors find new columns by taking into account the changed dual values of the master LP model. In another paper, Huang and Hsu (2011) introduce binary variables to allow not visiting/outsourcing some customers, and minimize weighted sum of these variable in the objective. The authors propose a Lagrangian heuristic to the Vehicle Routing Problems with the Private Fleet and the Common Carrier (VRPPC).

In the paper of Günlük et al. (2006) multi-depot VRPTW is studied. The authors propose so-called Fix-Price Heuristic that works in a similar manner of our heuristic algorithm. In their follow-on fixing procedure, the columns with solution values not smaller than 0.95 are fixed to 1. Then all columns are updated in order respect the fixing decisions. Next, the LP model is solved, and fixing decisions are made as long as variables with convenient solution values are found. When no variable with desired solution value is found, the threshold value is decreased to 0.85. The procedure is terminated if no variables having solution values greater than or equal to the reduced threshold value. Besides this fixing procedures, the proposed heuristic approach of Günlük et al. (2006) has other components to solve the studied problem efficiently.

One of the recent works on the VRPTW is conducted by Nagata and Bräysy (2009). The authors propose a sophisticated approach for reducing the number of routes, and it is based on the ejection pool that is combined with a concept reminiscent of the Guided Local Search. The benchmark instances described by Gehring and Homberger (2001) are used in experimentation of the proposed approach. By limiting the solution time to multiples of 10 minutes (maximum 5 hours), the authors were able to find new best known solutions for several instance sizes between 400 and 1000 customers. To the best of our knowledge, Nagata and Bräysy (2009) have currently the best solutions for the instances of

large size in the literature. We refer to surveys by Bräysy and Gendreau (2005a), and Bräysy and Gendreau (2005b) for more recent exact heuristic algorithms for the VRPTW.

3 Preliminaries

This section briefly describes the VRPTW, and defines several concepts that are necessary for a formal description of our heuristic method.

3.1 Problem description

An instance of the VRPTW consists of a set $N = \{0, 1, \ldots, n\}$ of locations on a plane, where 0 is the depot and others are customer locations, a set V of homogenous vehicles of capacity $Q \in \mathbb{Z}_+$. Every customer $i \in N \setminus \{0\}$, also denoted by N', requires a service of length $sv_i \in \mathbb{Q}$ time units for a demand of amount $q_i \in \mathbb{Q}$. The service at customer i can only start in time interval $[e_i, l_i]$ where $e_i, l_i \in \mathbb{Z}_+$ are called earliest time (or release date), and latest arrival time (or due date) respectively. Hence, arriving earlier than e_i requires waiting till e_i , but later than l_i implies violation of the feasibility. The planning horizon of the problem is defined by the time window of the depot and it is denoted by $[e_0, l_0]$. The distance between customers i and i' is denoted by $d_{i,i'}$, and is equal to the Euclidean distance of the arc $[i, i'] \in N \times N$ on a plane where customer locations are specified as x- and y-coordinates. We assume that a unit distance is traveled in a unit time, i.e. the distance of an arc is equal to the travel time on it.

PROBLEM: VEHICLE ROUTING PROBLEM WITH TIME WINDOWS (VRPTW)

INSTANCE AND FEASIBILITY:

Set N of customers with demands and time windows and the depot, set V of homogenous vehicles with capacities.

A feasible route of a vehicle is a sequence of visited customers such that total demand does not exceed the vehicle capacity, and that every visited customer is serviced within its time window, and depot departure and depot arrival stay within the planning horizon. A feasible routing solution is a set of feasible routes such that every customer is serviced exactly by one vehicle, and the number of used vehicles does not exceed the number of available vehicles in the depot.

QUESTION: Does there exist an routing plan with number of vehicles less than k and for k vehicles with a smaller total travel distance less than D?

3.2 Preprocessing

Given an instance of the VRPTW, we conduct preprocessing steps. Firstly, we adapt the time windows as follows

$$e_i = \max\{e_i, e_0 + d_{0,i}\}, l_i = \min\{l_i, l_0 - d_{i,0}\}, \quad c \in N$$
(1)

Having found adapted time windows, incoming and outgoing arcs around customers are ranked with respect to their adapted lengths. An adapted length of an arc is a the sum of its own distance and a ratio of the minimum waiting time occuring due to using that arc. It is found as

$$w_{[i,i']} = d_{i,i'} + \alpha \left(\max\{e_{i'} - (e_i + s_i + d_{i,i'}), 0\} \right)$$
(2)

where $\alpha \in (0, 1)$, and we use $\alpha = 0.1$ in our implementation. Incoming and outgoing arc lists of customers are non-decreasingly ordered and the indices of arcs in these lists become their ranking. Clearly, an arc has a tail (head) ranking, i.e. the index of it in the outgoing (incoming) arc list of its tail (head). Let $tr_{[i,i']}$ ($hr_{[i,i']}$) denote the tail (head) ranking of arc [i, i'].

Definition 1. (Incompatible customers) Two customers that cannot be served in a feasible route due to their conflicting time windows or total demand exceeding vehicle capacity are called incompatible.

3.2.1 Simple lower bounds on the number of used vehicles

Let L_{Veh} denote the lower bound on the number of vehicles in all feasible routing solutions for a given VRPTW instance.

Using total demand. Trivially, We can find minimum number of vehicles to serve all customers by the total customer demand as

$$L_{Veh} \ge L_P = \left\lceil \frac{\sum_{i \in N'} q_i}{Q} \right\rceil \tag{3}$$

Using incompatible customers. A customer set in which every pair of customers is incompatible also gives us a lower bound on the number of vehicles in a feasible routing solution. The maximum cardinality of aforementioned customer set can be found by solving the maximum independent set problem in customer network. Unfortunately, this problem is NP-Hard in strong sense. Therefore, we settle to a heuristic for finding a maximal independent set. In this heuristic, an independent set of customer is constructed greedily. Having chosen a customer to add to the independent set, all customers in the network that are connected by an arc to the chosen customer are deleted. This continues until no customer is left to chose. The decision of selecting the first customer to start the independent set can be made by checking several criteria like number of incoming and outgoing arcs and service demand.

Let IND denote the set of maximal independent set found by using the heuristic described above. Then we define L_{Veh} as follows

$$L_{Veh} = \max\{L_P, |IND|\}$$

$$\tag{4}$$

3.3 Route centers, routes and route sets

We attach a used vehicle initially to a certain customer that is called the "route center" of that vehicle. Let RC denote the set of route center, and in the initialization of our algorithm the customers in a maximal independent set in the customer network are assigned as route centers

$$RC = IND \tag{5}$$

If we have $L_{Veh} > |IND|$, then the set of route centers should be extended to reach a feasible route solution. Extending the set of route centers may also be necessary in case $L_{Veh} = |IND|$, since we initialize the algorithm with the minimum number of vehicles (or router centers). During the course of the algorithm, we construct a fixed-size route set for every route center. In the following subsection we describe routes and explain our DP based route construction method.

Ì

In our solution approach routes are the building blocks, since the master LP model that we solve iteratively during the course of our algorithm selects routes to find a routing plan. The sequence $r = (r(1), r(2), \ldots, r(|r|))$ of customers is called a "route". Routes are simple, i.e. visiting every customer at most once, and visit exactly one route center. The route center can be in any place of the sequence of visited customers. We do not explicitly show depot in the expression of a route.

Definition 2. (Transition quality of a route) Let r denote a route visiting its route center in k^{th} position. Then the transition quality of r is the sum of the head ranking of arcs before the route center and the tail ranking of arc after the route center. It is given by

$$tq_r = \sum_{i=1}^{k-1} hr_{[r(i),r(i+1)]} + \sum_{j=k}^{|r|-1} tr_{[r(j),r(j+1)]}$$
(6)

Note that the transition quality of a route is a quality measure with respect to the route center, and it is flat since there may be a high number of route having the same transition quality value.

Route sets. Let the set \mathcal{R}_{rc} denote all routes visiting the route center $rc \in RC$, and let the set of routes in \mathcal{R}_{rc} of length l are denoted by $\mathcal{R}_{rc,l}$. It is easy to see that $\mathcal{R}_{rc,1} = \{(rc)\}$, and $|\mathcal{R}_{rc,2}| \leq 2|N|$. However route sets $\mathcal{R}_{rc,l}$ for $l \geq 3$ may have huge size in general. Hence in order to keep our algorithm to halt in polynomial time we require that $|\mathcal{R}'_{rc,l}| \leq L_l$ for $l \geq 3$ where L_l is a constant number. So \mathcal{R}'_{rc} becomes a fixed-size route set of the route center rc.

4 Master LP model and its dual analysis

Our master LP model allows us to start with a partial feasible solution that serves a subset of customers initially. It contains customer assignment variables to decide which customers are to be served by available vehicles introduced so far. The objective has primary goal "maximizing" the number of selected customers and secondary "minimizing" the total distance traveled in the selected paths. A big coefficient is used to have the hierarchy in two aforementioned goals. Note that our master LP finds a routing plan for a given number of vehicles, that is |RC|. Next, we give the formulation of our master LP model. Table 1 explains the parameters and decision variables. The formulation of the master IP model is given in (29)-(10).

Table 1: Sets, parameters, and variables

Sets N' set customer locations, $N' = N \setminus \{0\}$

 \mathcal{R} set of all constructed routes,

Parameters

M the objective coefficient of primary goal variables

- $c_r \quad \text{cost (traveled distance) of route } r \in \mathcal{R}$
- $\delta^i_r \quad \text{ indicates if route } r \in \mathcal{R} \text{ visits customer } i \in N'$
- Decision Variables

 x_r selection variable of path $r \in \mathcal{R}$

 y_i selection variable of customer $i \in N'$,

$$(SP) \quad \text{Max} \quad M\left(\sum_{i\in N'} y_i\right) - \sum_{r\in\mathcal{R}} c_r x_r \tag{7}$$

subject to:

$$\sum_{r \in \mathcal{R}} \delta_r^i x_r - y_i = 0, \qquad i \in N'$$
(8)

$$y_i \in \{0, 1\}, \quad i \in N'$$
 (9)

$$x_r \in \{0, 1\}, \quad r \in \mathcal{R} \tag{10}$$

Constraints (8) couple selections of a customer and the routes visiting that customer. Note that in standard IP reformulations in the literature, for example Desrochers et al. (1992), all y_c variables are fixed to the value 1 as the right hand side of (8). Next, we relax all binary variables in (9)-(10) and we obtain the master LP model as

(P) Max
$$M\left(\sum_{i\in N'} y_i\right) - \sum_{r\in\mathcal{R}} c_r x_r$$
 (11)

subject to:

$$\sum_{r \in \mathcal{R}} \delta_r^i x_r - y_i = 0, \quad i \in N'$$
(12)

$$y_i \le 1, \quad i \in N' \tag{13}$$

 $y_i \ge 0, \quad i \in N' \tag{14}$

 $x_r \ge 0, \quad r \in \mathcal{R}$ (15)

In the following section we use the primal-dual method in order to analyze how an optimal solution in the dual model is obtained which will enable us to interpret the values of dual variables in optimal solutions.

4.1 Dual analysis via primal-dual method

In this section, we show how the dual of the master LP model in (11)-(15) is solved optimally by incorporating the primal-dual method. After the explanations, numerical examples will also be given in the end of this section. The primal-dual method was proposed by Dantzig et al. (1956), and it has been used to design approximation algorithms for many problems in graph theory. In mathematical programming, it is known that many ideas of the exact algorithms to a number of network design problems are implicit in the primal-dual algorithms. Interested reader is referred to Goemans and Williamson (1996) for an extensive analysis of the primal-dual method in network design problems.

To start our analysis, we give the dual of our master LP model by letting $\lambda_i, \gamma_i, \kappa_i$ be the dual variables corresponding to the constraints (12)-(14).

(D) Min
$$\sum_{i \in N'} \gamma_i$$
 (16)

subject to:

$$(\gamma_i + \kappa_i) - \lambda_i \ge M, \quad i \in N'$$
 (17)

$$\sum_{i \in C_r} \lambda_i \ge -c_r, \quad r \in \mathcal{R}$$
(18)

$$\gamma_i \ge 0, \quad i \in N' \tag{19}$$

$$\kappa_i \le 0, \quad i \in N' \tag{20}$$

Complementary slackness condition. By the Complementary Slackness (CS) theorem, given primal and dual feasible solutions $(y, x; \lambda, \gamma)$ are optimal if and only if the following equalities are satisfied

$$x_r\left(\sum_{i\in C_r}\lambda_i+c_r\right)=0, \quad P\in\mathcal{P}$$
 (21)

$$y_i \Big(\gamma_i + \kappa_i - \lambda_i - M \big) = 0, \quad c \in N'$$
(22)

$$(1 - y_i)\gamma_i = 0, \quad c \in N' \tag{23}$$

$$(y_i)\kappa_i = 0, \quad c \in N' \tag{24}$$

For the detailed analysis of the CS conditions and an extensive analysis of the linear optimization, we refer to the the book of (Bertsimas and Tsitsiklis 1997). In primal-dual method, a given dual feasible solution is improved towards the optimal solution by using "restricted primal" model which minimizes the violations from CS conditions. The basic idea is that the satisfaction of CS conditions is greedily increased till full satisfaction is reached. In order give the formal definition of the restricted primal model, we need to define several sets related to CS conditions as

$$K = \{ r \in \mathcal{R} \mid \sum_{i \in C_r} \lambda_i + c_r = 0 \}$$

$$(25)$$

$$J = \{i \in N' \mid \gamma_i + \kappa_i - \lambda_i = M\}$$
(26)

$$I = \{i \in N' \mid \gamma_i = 0\}$$

$$\tag{27}$$

$$L = \{i \in N' \mid \kappa_i = 0\}$$

$$\tag{28}$$

The set K is said to contain all routes in price balance in the dual solution. Note that only route in K can have positive x_r values by CS condition (21). Similarly, only customers in J can have positive selection values. Finally, we define the slack variable s_i for the customers not in the set I to quantify the violation from the CS condition. The violation of CS condition (22) due to customers not in set J is simply the value of y_i .

Restricted primal model For a given a dual feasible solution (λ, γ) with sets K, J, I; we can formulate a restricted primal problem that minimizes the violation of CS conditions as

$$(RP) \qquad \text{Min} \qquad z_{RP} = \sum_{i \notin I} s_i + \sum_{r \notin K} x_r + \sum_{i \notin (J \cup L)} y_i \tag{29}$$

subject to:

$$\sum_{r \in \mathcal{R}} \delta_r^i x_r - y_i = 0, \quad i \in N'$$
(30)

$$y_i \le 1, \quad i \in I \tag{31}$$

$$y_i \ge 0, \quad i \in N' \tag{32}$$

$$y_i + s_i = 1, \quad i \notin I \tag{33}$$

 $x_r \ge 0,$ $r \in \mathcal{R}$ (34)(35)

$$s_i \ge 0, \quad i \not\in I$$
 (33)

By constraints (31), customers in I can have any y value, and the violation of CS condition (23) of those not in I amounts to the value of slack variable sin constraints (33).

Case $z_{RP}^* = 0$: Master LP is solved to optimality, i.e. all CS conditions are satisfied.

Case $z_{RP}^* > 0$: Dual feasible solution $(\lambda, \gamma, \kappa)$ is improved to another dual feasible solution $(\lambda'', \gamma'', \kappa'')$ with smaller objective value. To explain how this improvement is achieved, we first need to consider the dual of the (RP) model.

$$(DRP) \qquad \text{Max } \sum_{i \in N'} \gamma'_i \tag{36}$$

subject to:

$$\gamma'_i + \kappa'_i - \lambda'_i \le 1, \quad i \notin (J \cup L) \tag{37}$$

$$\gamma'_i + \kappa'_i - \lambda'_i \le 0, \quad i \in (J \cup L) \tag{38}$$

$$\sum_{i \in C_P} \lambda'_i \le 1, \quad r \notin K \tag{39}$$

$$\sum_{i \in C_P} \lambda'_i \le 0, \quad r \in K \tag{40}$$

$$\gamma_i' \le 1, \quad i \notin I \tag{41}$$

$$\kappa_i' \ge 0, \quad i \in I \tag{42}$$

$$\gamma_i' \le 0, \quad i \in I \tag{43}$$

For the sake of simplicity in the notation, decision variables γ' are used in (DRP) model. They are different from γ dual variables in the dual of the MLP model. In case $z_{RP}^* > 0$, we have $\sum_{i \in N'} \gamma'_i = z_{RP}^* > 0$ by strong duality. The improved dual solution is found as

$$(\lambda'', \gamma'', \kappa'') = (\lambda, \gamma, \kappa) - \Delta(\lambda', \gamma', \kappa')$$
(44)

where $\Delta > 0$ is called dual improvement step value. Then we have

$$\sum_{i \in N'} \gamma_i'' = \sum_{i \in N'} \gamma_i - \Delta \sum_{i \in N'} \gamma_i' < \sum_{i \in N'} \gamma_i$$
(45)

Preserving dual feasibility gives us the maximum value of Δ . This is done by checking constraints (17)-(19) as

$$\gamma_i'' + \kappa_i'' - \lambda_i'' \ge M \Rightarrow \Delta \le \min_{i \notin (J \cup L), \gamma_i' + \kappa_i' - \lambda_i' > 0} \left\{ \frac{\gamma_i + \kappa_i - \lambda_i - M}{\gamma_i' + \kappa_i' - \lambda_i'} \right\}$$
(46)

$$\sum_{r \in C_r} (\lambda_i - \Delta \lambda'_i) + c_r \ge 0 \Rightarrow \Delta \le \min_{r \notin K, \sum_{i \in C_r} \lambda'_i > 0} \left\{ \frac{\sum_{i \in C_r} \lambda_i + c_r}{\sum_{i \in C_r} \lambda'_i} \right\}$$
(47)

$$\gamma_i'' = \gamma_i - \Delta \gamma_i' \ge 0 \Rightarrow \Delta \le \min_{i \notin I, \gamma_i' > 0} \left\{ \frac{\gamma_i}{\gamma_i'} \right\}$$
(48)

Sets J, K, I and L are updated according to solution values. This dual improvement procedure is repeated, by iteratively solving the (DRP) model, till we obtain objective value $\sum_{i \in N'} \gamma'_i = 0$ that implies the optimal dual solution is obtained.

Interpreting dual problem. In the dual model, γ (κ) variables represent positive (negative) budget. If one of γ and κ variables is non-zero, then the other must be zero by CS conditions (21)-(24). Hence, ($\gamma + \kappa$) is the "budget" of customers in the dual solution. Dual improvement step Δ is the "price" paid/collected in a dual improvement iteration. In dual iterations there are some price-collecting customers and some price-paying customers. The decision variable γ' (κ') in the (*DRP*) model tells us if a customer is a price collector (payer). The value of variable γ'_i (κ'_i) is the portion of the collected (paid) price for customer *i*.

A route constraints the total value of the budgets of visited customers. Dual constraints (18) enforce that the total budget of customers visited by route $r \in \mathcal{R}$ can have the smallest value $-c_r$, and routes with a minimum total budget are said to be in price balance. Once a route reaches to price balance, it is added to set K, and total budget should not change in the next dual iteration (constraints (40)). A route may leave price balance by increasing its total customer budget. In a dual iteration, constraints (39) enforce that routes not in price balance can have at most one dual improvement price drop in total

Table 2: Dual pricing rounds of the illustrative example

	Instance Data						
$N' = \{i_1, i_2, i_3, $	$i_4, i_5\}, RC$	$=\{i_2,i_4\}, \mathcal{R}$	$\mathcal{L}'_{i_2} = \{r_1, r_2, r_3\}$	\mathcal{R}_3 , $\mathcal{R}'_{i_4} = \{r_4\}$	}		
$r_1 = (i_1, i_2, i_3),$	$r_2 = (i_2, i_3)$	$), r_3 = (i_2, i_5)$	$(\bar{r}_4 = (i_4, i_5))$	*			
$c_{r_1} = 75, c_{r_2} =$	50, $c_{r_3} = 8$	$c_{r_4} = 60$					
		Dual F	Pricing Solution	n			
Initial dual feas	ible solutio	n: $\gamma_{i_k} = 1.5M$	$M, \kappa_{i_k} = 0, \lambda_{i_k}$	$= 0.5M, i_k \in$	N'		
Dual iteration	Payers	Collectors	Δ	K	Ι	$\sum \gamma'$	
1	i_3, i_5	i_2	M + 50	Ø	Ø	6.5M - 50	
2	i_2, i_4	i_5	M + 50	$\{r_2\}$	Ø	5.5M - 100	
3	3 i_{3}, i_{5} i_{2} 10 $\{r_{2}, r_{4}\}$ \emptyset 5.5M - 110						
4							
5	5 i_1, i_3 i_2 85 $\{r_1, r_2, r_4\}$ $\{i_3\}$ 5M - 135						
Final budgets:	$\gamma_{i_1} = M -$	$25, \gamma_{i_2} = 2M$	$-50, \gamma_{i_3} = 0$	$\gamma_{i_4} = M - 11$	$0, \gamma_{i_5} =$	= M + 50	

budget. A *necessary condition* for a route to be selected in the optimal primal solution is to be in price balance. In light of our dual understanding, we have the following observation.

Observation 3. A route center with a high γ value experiences high competition among customers to get serviced by one of its routes in the primal solution. Hence, the route center with smallest γ value in the dual solution is the most convenient for making customer grouping decisions.

In the remainder of this section we give an illustrative example in order to show how dual pricing rounds occur, and present computational results of some initial master LP model due to Solomon benchmark instances.

An illustrative example Let us consider a simple problem instance that is given in Table 2. Clearly the only feasible, hence optimal, solution to the corresponding master LP model is $x_{r_1}^* = x_{r_4}^* = 1$, and $x_{r_2}^* = x_{r_3}^* = 0$ with objective value 5M - 135.

Table 2 also the dual pricing solution after five dual iterations. Initially all customers have a budget of amount $\gamma = 1.5M$ which results in the dual objective value 7.5M.

In the first iteration, customers i_5 and i_3 compete for being serviced in a route of route center i_2 . In the second iteration, route center i_4 involves a competition with route center i_2 to service customer i_5 in its route. The competition in the first iteration repeated with a different price in third iteration. In the last two iterations, the prices are only for appearing in routes and price values tend to decrease.

Solomon benchmark instances. To solve the master LP model of the Solomon benchmark instances, the primal-dual algorithm is implemented in Java and DRP model is solved by using CPLEX 12.6.1. The optimal dual solutions found after dual improvement/pricing rounds are verified by the dual solution of the MLP model that has also found by using CPLEX 12.6.1. Numerical results and the number of dual rounds for corresponding instances are given in Table 3. We do not report the solution times, since our main concern here is

Ins.	$ RC ^*$	z_D^*	#Rounds
C101	10	99171.06	58
C102	8	87245.36	131
C103	7	77336.33	68
C104	4	48652.58	27
C105	5	55488.42	29
C106	4	45130.29	31
C107	1	11853.27	69
C108	1	11853.27	60
C109	1	11867.77	39
R101	17	91559.96	328
R102	16	92059.64	222
R103	13	90859.44	278
R104	7	74808.94	164
R105	7	61133.50	76
R106	6	60989.03	65
R107	5	57724.92	87
R108	5	59987.25	70
R109	4	43079.24	21
R110	3	35690.76	20
R111	5	57181.50	61
* Initia	al set of r	oute centers	

Table 3: Computational results of primal-dual method

to show the equality of the solutions values found by directly solving the MLP model and by solving its dual with pricing rounds.

5 Heuristic Algorithm to solve the VRPTW

In this section we explain an heuristic algorithm to solve the VRPTW. Note that this heuristic is a special way of using the dual understanding of the MLP models. The heuristic algorithm utilizes the dual understanding that was the topic of the previous section. The algorithm has three phases; initialization, route center finding phase, and customer grouping phase. Before going into details, we shall explain basic properties of the route construction method, and provide an overview of the algorithm by means of its flowchart.

5.1 An overview of the approach

The heuristic algorithm starts constructing a routing plan by initializing the set of route centers which is done by finding a maximal independent set of (incompatible) customers. As shown in Figure 1, route sets of route centers are constructed by DP based route construction method. Then MLP model is solved by using CPLEX 12.6. Then primal and the dual solutions of the MLP are ready to proceed further.

The heuristic first checks if the number of route centers |RC| is less than the lower bound on the number of vehicles L_{veh} . If this is true, then we can confidently find a new route center and extend the set |RC|. Next, a new route center evidence in the MLP solution is checked. If the evidence is found, finding a new route center procedure starts in which a fixed number of candidates are

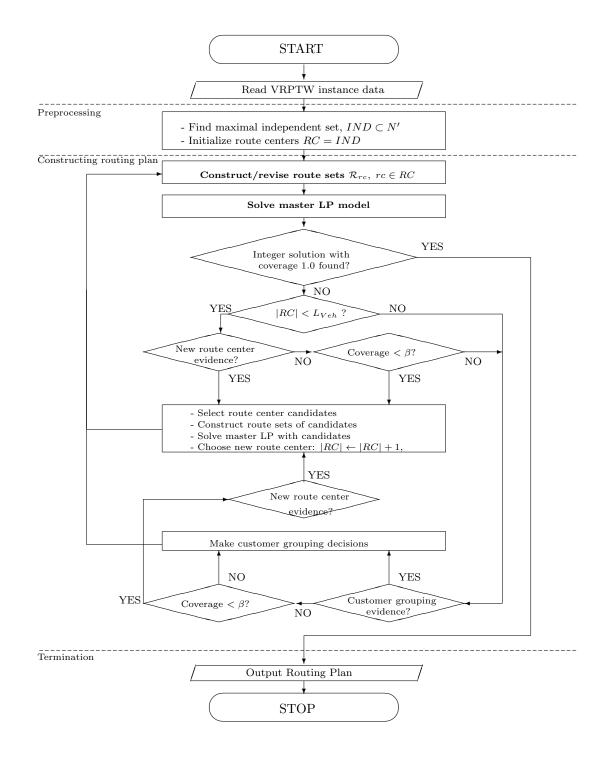


Figure 1: Flowchart of the heuristic algorithm to the VRPTW

determined whose route sets are constructed and MLP model with candidate routes are solved to determine the new route center. In case the evidence of a new route center is not clear, this could be a sign for the need to make some customer grouping decision in order to obtain a soon new route center evidence.

"Customer grouping" mainly helps the algorithm in reducing the problem size by attaching a customer to a route center. This is done gradually; first *linking* is decided requiring that a customer will always be in the routes of a certain route center. Second *siding* is decided which specifies if a customer will be visited before the linked route center or after. Finally, *fixing* results in making certain that an arc will be always used in all routes of a route center.

The dual solution of MLP model is used in both finding a new route center customer grouping. The subset of the route center candidates are selected from the customers that have highly negative γ values, and that are visited by the routes in dual price balance, in set K, with low transition quality. Moreover, customer grouping decisions are firstly made for route centers that have low γ values, which indicates that a weak competition happened in the dual solution of those ones by Observation 3.

An important property of MLP solution is the coverage which denotes the ratio of the selection of customers. If the coverage is low, then it strengthens the new route center evidence. Otherwise, we usually have strong customer grouping evidence. The parameter β Figure 1 is the threshold value for the coverage. Below that threshold value, we assume that the coverage cannot be increased to 1 by only making customer grouping decisions. In our implementation, we use 0.85 for β . Preliminary testing results of the heuristic algorithm showed that the results do not change significantly for β values from 0.5 to 0.90. Finally, an integer MLP solution with coverage value 1 gives us a complete routing plan, resulting in the termination of the algorithm.

5.2 Route construction.

Our route construction method has certain similarities to the one proposed by Kok et al. (2010). In the proposed DP heuristic, the number of states is bounded in every iteration. Moreover, the state expansions is also limited by a constant number. The authors tackle an extension of the VRPTW in which driving hour regulations are to be respected. In our route construction method, we also limit the number of routes of every length, and the number of routes that can be obtained by extending a given route is limited as well.

As explained in Section 3, given a route center $rc \in RC$, we have $\mathcal{R}_{rc,1} = \{(rc)\}$. The route set $\mathcal{R}'_{rc,l}$ for l > 1 is constructed by extending the routes in the set $\mathcal{R}'_{rc,l-1}$. Extending the routes is done by inserting convenient customers between to visits of existing routes. Feasible insertions are found by checking temporal constraints, and the vehicle capacity. We do not consider all possible insertion, but the ones that are efficient in terms of occurring detour cost. A constant number of such insertions are found in the preprocessing of the algorithm, and further insertion are checked when the necessity is seen during the course of the algorithm.

The route set $\mathcal{R}_{rc,2}$ is fully enumerated in order to be able to get dual solutions with as much as information possible. As mentioned before, route sets $\mathcal{R}_{rc,l}$ for $l \geq 3$ may have huge size in general. Hence we require that $|\mathcal{R}'_{rc,l}| \leq L_l$ for $l \geq 3$ where L_l is a constant number. So \mathcal{R}'_{rc} becomes a fixed-size route set

of the route center rc which results in a fixed size MLP model containing the selection variables of routes in sets $\mathcal{R}'_{rc,l}$, for all $l \geq 1$, and $rc \in RC$.

When finding the set $\mathcal{R}_{rc,l}$ by using insertions into routes in the set $\mathcal{R}_{rc,l-1}$, we use two criterion as quality measure: travel distance and transition quality.

5.3 Customer grouping

In Section 2, we mention several studies using variable fixing to reduce the problem size. To the best of our knowledge, the main criterion to choose which variables to fix is their primal values. In this work, we exploit the structure of the dual model, and observe that a binary decision variable with high primal selection value, i.e. close to 1, may not be convenient to be fixed.

The sample set of routes that is found by DP based route construction is usually very small compared to all possible routes for a given VRPTW instance. However, this sampling is strong in connections around route centers, since all routes are constructed by inserting further customers around route centers. Therefore, the heuristic algorithm checks customer grouping firstly for the customers visited before and after route centers. If such visits found that are strongly selected in primal solution and do not involve in high dual competition, then we say that a customer grouping evidence is obtained.

Definition 4. (Central Path) The subsequence of customers in a route that contains only "fixed" arcs is called central path of that route.

In fact, we check incoming to the central paths and outgoing arcs from the central paths are checked for customer grouping during the course of the algorithm. Once collected such arcs in a list, they are ordered with respect to their primal solution values. Ties are broken by checking the γ values of the corresponding central path customers.

So the arc to consider first for customer grouping becomes the one with highest primal selection value which is entering or leaving the central path with smallest γ value among all arcs in tie. The type of the grouping decision depends on the state of the adjacent customer to the central path. If it is not linked to a route center at all, we first link that customer to the route center of the central path. If it is already linked, then we decide if the customer should be visited before if the arc is entering into central path or after otherwise. The customer is said the be sided with respect to the central path. Finally, if the adjacent customer is already sided, then it is added to the central path.

5.4 Introducing a new vehicle

Note that the MLP model finds a routing solution for a given number of vehicles, that is the number of route centers |RC|. In general, optimal solutions of the VRPTW instances contain more vehicles than the minimum value L_{veh} that we find in the preprocessing phase. Another point is that the found maximal independent set of customers may even have smaller cardinality than L_{veh} . In this case, the algorithm extends the set of route centers RC more confidently till L_{veh} is reached. Then a route center evidence in the dual solution is expected to trigger new route center selection procedure. Fortunately, further customer grouping decisions lead to an evidence of new route center, if the available number of route centers is not sufficient to serve all customers. The procedure of selecting a new route center starts with determining "route center candidates". Three properties of customers play important roles in finding good candidates. They are for customer $i \in N$; primal selection value y_i^* , dual variable γ_i^* value, and transition quality that is found by

$$\nu_i = \min_{r \in RC} \{ \max_{r \in \mathcal{R}'_{rc} \cap K} \{ tq_r \} \}$$

$$\tag{49}$$

Note that the higher ν_i value of a customer, the worse connection quality of that customer to all route centers in the solution. We rank the customers in non-increasing order of y^* values, and select a fixed number of best ranked customers from the y^* -ordered list. Then we rank the in non-decreasing order of γ^* values, and select a fixed number of best ranked customers from the γ^* -ordered list. Similarly, last part of candidates are chosen by ordering all customers non-increasingly in transition quality ν_i values.

Let the set of route center candidates is denoted by *CAND*. Once candidate selection is completed, route sets of candidates are constructed by respecting all grouping decisions made previously. Then we include all selection variables of candidate routes in the MLP model by adding an extra constraint type enforcinf that as most one of them can be selected.

$$\sum_{r \in \mathcal{R}_c: c \in CAND} x_r \le 1 \tag{50}$$

In the fractional solution, we declare the customer as the new route center that has the highest primal selection value in the candidate routes. Ties are broken by the number of candidate routes in K visiting a certain customer. Further ties are broken by γ^* values of customers. Once the new route center is found, all paths of candidates, including the ones of new route center, are removed and the path set of the new route center is constructed. Note that in most cases a new route center is usually chosen among candidates, however a customer that is not a candidate can be chosen a new route center in the solution of the modified MLP model hints so.

6 Computational Experimentation

We implemented the proposed heuristic algorithm in Java coding environment. During the course of the algorithm, all MLP models are solved by using CPLEX 12.6.1. The results that are presented in this section are obtained by using a personel computer with Intel is 1.6 GHz Processor, and 8GB capacity of RAM.

100-customer instances of Solomon (1987) are used in our experimentation as benchmark instances. Table 4 gives preprocessing values of the instances. For example, C101 has initially the number of route centers equal to the lower bound on the number of vehicles. In instances C107-C109 and C204-C208 there is only one route center in the beginning. The high number of MLP iterations for these instances are due to runs of the model to find new route centers.

Table 5 shows the results found by our implementation. In a group of instances, the columns show the names of instances, solution properties of our heuristic; first number of vehicles and second traveled distance, and the percentage gap between the best known solution in travel distances. Finally, we

Table 4: Maximal Independent Sets, lower bound of number of vehicles

	1		,		
Instance	IND	L_{veh}	Instance	IND	L_{veh}
C101	10	10	C201	2	3
C102	8	10	C202	2	3
C103	7	10	C203	2	3
C104	4	10	C204	1	3
C105	5	10	C205	1	3
C106	4	10	C206	1	3
C107	1	10	C207	1	3
C108	1	10	C208	1	3
C109	1	10			

Table 5: 100-customer Solomon benchmark instances

	LP Heuri	stic	Time*	Iter		LP Heur	istic	Time*	Iter
Ins.	V./D.	d(%)			Ins.	V./D.	d(%)		
C101	10/828.94	0.0	1.2	1	C201	3/591.56	0.0	2.0	3
C102	10/828.94	0.0	2.4	5	C202	3/591.56	0.0	1.9	3
C103	10/828.06	0.0	2.5	7	C203	3/591.17	0.0	2.8	4
C104	10/824.78	0.0	4.2	13	C204	3/630.43	6.7	2.7	5
C105	10/828.94	0.0	3.0	11	C205	3/589.72	0.1	2.4	5
C106	10/828.94	0.0	3.4	13	C206	3/592.21	0.6	2.4	5
C107	10/828.94	0.0	3.6	19	C207	3/589.27	0.1	2.8	5
C108	10/828.94	0.0	3.9	19	C208	3/591.89	0.6	2.3	5
C109	10/828.94	0.0	3.8	19					
*:	1					•		-	

*in seconds.

list number of MLP solving iterations for the instances in the last column of an instance.

The results of C10X and C20X instances are obtained in less than 5 seconds per instance. Our Heuristic has less than no gap between the best know solutions in the instance set C10X. The maximum gap becomes 6.7% for the instance set C20X in only one instance, and less than 1% in all other instances. We note that the solution of our algorithm is the first integer solution found, hence we do not have any improvement attempts on the constructed solution. Another important point to mention is that the solution times of our heuristic do not increase significantly as the route length in the solution of the instance increases. Especially, the instances with mixed customer time windows, e.g. C204, the number of feasible routes becomes quickly huge as the route length increases. Then route sets become important input for the MLP model in order to have high solution quality.

7 Conclusions and further directions

This paper has two main contributions. Firstly, it provides a dual analysis of a master LP formulation of the VRPTW by using primal-dual method. Secondly, a heuristic algorithm of the VRPTW is proposed by using the understanding from the dual analysis. In the dual analysis it is observed that the dual solution is the final state of a pricing competition among customers to appears in primal

route of route centers. The most popular route center has high dual decision variable which means that the primal solution of that route center is not reliable to make customer grouping decisions. On the other hand, the existence of desperate customers in the dual solution, i.e. customers with highly negative dual variables, provides us an evidence for increasing the number of used vehicles. We underline the fact that all conclusions we present in this paper depend on the quality/size of the fixed-size route sets.

The proposed heuristic algorithm uses a master LP model of the VRPTW as a central optimization mechanism. It finds a complete routing solution by making customer grouping decisions by checking the evidence by not only using the primal selection values, but also the dual solution properties of the master LP model. To the best of our knowledge, this work is the first one incorporating the properties of the dual solution in solving routing problems. We believe that several issues in the proposed heuristic algorithm can be improved. For example, we make customer siding decision as soon as a linked customer is encountered. This can be done in different ways, for example a delay in number of iterations may be introduced in order to handle long-route VRPTW instances.

The master LP model under consideration of this paper can be used for several extensions of the VRPTW that involve real-life aspects like time-dependent travel times, stochastic travel times, and driving time regulations. These aspects of the problem will be considered in the route construction routine of the heuristic. In fact, a follow-up work of this paper has started that will focus on the VRPTW with stochastic travel times.

Finally, our dual analysis can be used to analyze other Operations Research problems that can be formulated as a master LP model. Then the dual interpretation will be useful in understanding the underlying processes resulting in the dual solution. This may give an opportunity to develop similar heuristic approaches for these problems.

Acknowledgments This research has been conducted under the DAIPEX Project Dinalog (2012-5-111-R) with reference number 10017416.

References

- Bertsimas, D., Tsitsiklis, J., 1997, "Introduction to Linear Optimization", Athena Scientific, Belmont, Massachusetts.
- Bräysy, O., Gendreau, M., 2005, "Vehicle routing problem with time windows, Part I: Route construction and local search algorithms", *Transportation Science* Vol.39, pp. 104-118.
- Bräysy, O., Gendreau, M., 2005, "Vehicle routing problem with time windows, Part II: Metaheuristics", *Transportation Science* Vol.39, pp. 119-139.
- Cacchiani V., Hemmelmayr, V.C., Tricoire, F., 2014. "A set-covering based heuristic algorithm for the periodic vehicle routing problem", *Discrete Applied Mathematics*, 163, pp. 53-64.
- Dantzig, George Bernard, Ramser, John Hubert, 1959. "The Truck Dispatching Problem", Management Science, 6, pp. 80-91.

- Dantzig, G., B., Ford, L., R., Fulkerson, D., R, 1956. "A primal-dual algorithm for linear programs", *Linear Inequalities and Related Systems*, Editors: H.W. Kuhn and A.W. Tucker, Princeton University Press, Princeton, NJ, pp. 171-181.
- Desrochers, M., Lenstra, J.,K., Savelsbergh, W.,P., 1988. "Vehicle Routing With Time Windows: Optimization and Approximation, Vehicle Routing: Methods and Studies, pp. 65-84.
- Desrochers M., Desrosiers J., Solomon M., 1992. "A new optimization algorithm for the vehicle routing problem with time windows., *Operations Research*, pp. 342-354.
- Fisher, M., L., Jornsten, K.,O., Madsen, O.,B.,G., 1997. "Vehicle routing with tine windows: Two optimization algorithms, *Operations Research*, pp. 488-492.
- Gehring, H., Homberger, J., 2001, "A Parallel Two-phase Metaheuristic for Routing Problems with Time Windows", Asia-Pacific Journal of Operational Research, Vol. 18, pp. 35-47.
- Goemans, M., X., Williamson, D. P., 1996, "The primal-dual method for approximation algorithms and its application to network design problems", In D. S. Hochbaum, editor, Approximation Algorithms for NP-Hard Problems, PWS Publishing Company, 1996.
- Günlük, O., Kimbrel, T., Ladanyi, L., Schieber, B., Sorkin, G. B., 2006, "Vehicle Routing and Staffing for Sedan Service", *Transportation Science*, Vol. 40, pp. 313-326.
- Huang, K., Hsu, C-P., 2011, "A Lagrangian Heuristic for the Vehicle Routing Problems with the Private Fleet and the Common Carrier", *Journal of the Eastern Asia Society for Transportation Studies*, Vol. 9, pp. 644-659.
- Kallehauge, B., Larsen, J., Madsen, Oli B.G., 2006, "Lagrangian duality applied to the vehicle routing problem with time windows", *Computers & Operations Research*, Vol.33, pp. 1464–1487.
- Kohl, N., Madsen, Oli B.G., 1997, "An Optimization Algorithm for the Vehicle Routing Problem with Time Windows Based on Lagrangian Relaxation", *Computers & Operations Research*, Vol.45, pp. 395–406.
- Kok, A.L, Meyer, C. M., Kopfer, H., Schutten, J. M. J., 2010, "A Dynamic Programming Heuristic for the Vehicle Routing Problem with Time Windows and European Community Social Legislation", *Transportation Sci*ence, Vol.44, pp. 442-454.
- Laporte, G., 1992, "The Vehicle Routing Problem: An overview of exact and approximate algorithms", *European Journal of Operational Research* Vol.59, pp. 345-358.
- Nagata, Y., Bräysy, O., 2009, "A powerful route minimization heuristic for the vehicle routing problem with time windows", *Operations Research Letters* Vol.37, pp. 333–338.

Solomon, M., 1987. "Algorithms for the vehicle routing and scheduling problem with time window constraints", *Operations Research*, 35, pp. 254-265.

Nr.	Year	Title	Author(s)
514	2016	Solving Routing Problems by Exploiting the Dual of a master LP	M. Firat, N.P. Dellaert and W.P.M. Nuijten
		Formulation	
513	2016	Single-Item Models with Minimal Repair for Multi-Item Maintenance	J.J. Arts, R.J.I. Basten
		Optimization	
512	2016	Using Imperfect Advance Demand Information in Lost-Sales Inventory	E.Topan, T. Tan, G.J.J.A.N. Van Houtum, R.Dekker
		Systems	
511	2016	Integrated Resource Planning in Maintenance Logistics with Spare	S. Rahimi Ghahroodi, A. Al Hanbali, W.H.M. Zijm,
		Parts Emergency Shipment and Service Engineers Backlogging	J.K.W. van Ommeren, A. Sleptchenko
510	2016	A note on Maximal Covering Location Games	L.P.J. Schlicher, M. Slikker, G.J.J.A.N. van Houtum
509	2016	Spare parts pooling games under a critical level policy	LP.J. Schlicher, M. Slikker, G.J.J.A.N van Houtum
508	2016	A note on "Linear programming models for a stochastic dynamic	T.D. van Pelt, J. C. Fransoo
		capacitated lot sizing problem"	
507	2016	Multi-hop driver-parcel matching problem with time windows	W.Chen, M.K.R. Mes, J.M.J. Schutten
506	2016	Constrained maintenance optimization under non-constant	J.P.C. Driessen, H. Peng, G.J.J.A.N. van Houtum
000	2010	probabilities of imperfect inspections	
505	2016	Awareness Initiative for Agile Business Models in the Dutch Mobility	P.W.P.J. Grefen, O.Turetken, M. Razavian
000	2010	Sector: An Experience Report	
504	2016	Service and transfer selection for freights in a synchromodal network	A.S. Pérez Rivera, M.K.R. Mes
<i>7</i> 04	2010	Service and transfer selection for freights in a synchronioual fielwork	
503	2016	Simulation of a multi-agent system for autonomous trailer docking	B Gerrits MKR Mas BC Schuur
503	2016	Integral optimization of spare parts inventories in systems with	B. Gerrits, M.K.R. Mes, P.C. Schuur A. Sleptchenko, M.C. van der Heijden
502	2010	redundancies	A. Sleptchenko, W.C. van der Heijden
501	2016		W/LA van Haanviik NAKD Naa LNAL Sebutton
501	2010	An agent-based simulation framework to evaluate urban logistics	W.J.A. van Heeswijk, M.K.R. Mes, J.M.J. Schutten
-00	2016	scheme	
500	2016	Integrated Maintenance and Spare Part Optimization for Moving	A.S. Eruguz, T. Tan, G.J.J.A.N. van Houtum
	2016	Assets	
499	2016	A Condition-Based Maintenance Model for a Single Component in a	Q. Zhu, H. Peng, B. Timmermans, G.J.J.A.N. van
		System with Scheduled and Unscheduled Downs	Houtum
498	2016	An age-based maintenance policy using the opportunities of	Q. Zhu, H. Peng, G.J.J.A.N. van Houtum
		scheduled and unscheduled system downs	· · · · · ·
497	2016	Dynamism in Inter-Organizational Service Orchestration - An Analysis	P.W.P.J. Grefen, S. Rinderle-Ma
		of the State of the Art	
496	2016	Service-Dominant Business Modeling in Transport Logistics	O.Turetken, P.W.P.J. Grefen
495	2016	Approximate Dynamic Programming by Practical Examples	M.K.R. Mes, A.S. Pérez Rivera
494	2016	Design of a near-optimal generalized ABC classi [®] cation for a multi-	E. Van Wingerden, T. Tan, G.J.J.A.N. Van Houtum
		item inventory control problem	
493	2015	The delivery dispatching problem with time windows for urban	W.J.A. van Heeswijk, M.R.K. Mes, J.M.J Schutten
		consolidation centers	
492	2015	Anticipatory Freight Selection in Intermodal Long-haul Round-trips	A.E. Pérez Rivera, M.R.K. Mes
491	2015	Base-stock policies for lost-sales models: Aggregation and asymptotics	J.J. Arts, R. Levi, G.J.J.A.N. van Houtum, A.P. Zwart
490	2015	The Time-Dependent Pro_table Pickup and Delivery	P. Sun, S. Dabia, L.P. Veelenturf, T. Van Woensel
		Traveling Salesman Problem with Time Windows	
489	2015	A survey of maintenance and service logistics management:	A.S.Eruguz, T.Tan, G.J.J.A.N. van Houtum
		Classification and research agenda from a maritime sector perspective	
488	2015	Structuring AHP-based maintenance policy selection	A.J.M. Goossens, R.J.I. Basten, J.M. Hummel, L.L.M.
	_		van der Wegen
187	2015	Pooling of critical, low-utilization resources with unavailability	L.P.J. Schlicher, M. Slikker, G.J.J.A.N. van Houtum
186	2015	Business Process Management Technology for Discrete Manufacturing	
485	2015	Towards an Architecture for Cooperative-Intelligent Transport System	M. van Sambeek, F. Ophelders, T. Bijlsma, B. van de
105	2013	(C-ITS) Applications in the Netherlands	Kluit, O. Turetken, H. Eshuis, K. Traganos, P.W.P.J.
			Grefen
484	2015	Proceeding About Property Procession in Adaptive Case Management	
+04	2015	Reasoning About Property Preservation in Adaptive Case Management	n. Estiuis, K. Hull, IVI. YI

Nr.	Year	Title	Author(s)
483	2015	An Adaptive Large Neighborhood Search Heuristic for the Pickup and	V. Ghilas, E. Demir, T. Van Woensel
		Delivery Problem with Time Windows and Scheduled Lines	
482	2015	Inventory Dynamics in the Financial Crisis: An Empirical Analysis of Firm Responsiveness and its Effect on Financial Performance	K. Hoberg, M. Udenio, J.C. Fransoo
481	2015	The extended gate problem: Intermodal hub location with multiple actors	Y. Bouchery, J.C. Fransoo, M. Slikker
480	2015	Inventory Management with Two Demand Streams: A Maintenance	R.J.I. Basten, J.K. Ryan
470	2015	Application	B. Hezarkhani
479 478	2015 2015	Optimal Design of Uptime-Guarantee Contracts	
478	2015	Collaborative Replenishment in the Presence of Intermediaries	B.Hezarkhani, M. Slikker, T. Van Woensel
477	2015	Reference Architecture for Mobility-Related Services A reference architecture based on GET Service and SIMPLI-CITY Project architectures	A. Husak, M. Politis, V. Shah, R. Eshuis, P. Grefen
476	2015	A Multi-Item Approach to Repairable Stocking and Expediting in a Fluctuating Demand Environment	J.J. Arts
475	2015	An Adaptive Large Neighborhood Search Heuristic for the Share-a-Ride Problem	B. Li, D. Krushinsky, T. Van Woensel, H.A. Reijers
474	2015	An approximate dynamic programming approach to urban freight distribution with batch arrivals	W.J.A. van Heeswijk, M.R.K. Mes, J.M.J. Schutten
473	2015	Dynamic Multi-period Freight Consolidation	A.E. Pérez Rivera, M.R.K. Mes
472	2015	Maintenance policy selection for ships: finding the most important criteria and considerations	A.J.M. Goossens, R.J.I. Basten
471	2015	Using Twitter to Predict Sales: A Case Study	R.M. Dijkman, P.G. Ipeirotis, F. Aertsen, R. van Helden
470	2015	The Effect of Exceptions in Business Processes	R.M. Dijkman, G. van IJzendoorn, O. Türetken, M. de Vries
469	2015	Business Model Prototyping for Intelligent Transport Systems. A Service-Dominant Approach	K.Traganos, P.W.P.J. Grefen, A. den Hollander, O. Turetken, H. Eshuis
468	2015	How suitable is the RePro technique for rethinking care processes?	R.J.B. Vanwersch, L. Pufahl, I.T.P. Vanderfeesten, J. Mendling, H.A. Reijers
467	2014	Where to exert abatement effort for sustainable operations considering supply chain interactions?	Tarkan Tan, Astrid Koomen
466	2014	An Exact Algorithm for the Vehicle Routing Problem with Time Windows and Shifts	Said Dabia, Stefan Ropke, Tom Van Woensel
465	2014	The RePro technique: a new, systematic technique for rethinking care	Rob J.B. Vanwersch, Luise Pufahl, Irene
464	2014	processes Exploring maintenance policy selection using the Analytic Hierarchy Process: an application for naval ships	Vanderfeesten, Hajo A. Reijers A.J.M. Goossens, R.J.I. Basten
463	2014	Allocating service parts in two-echelon networks at a utility company	D. van den Berg, M.C. van der Heijden, P.C. Schuur
462	2014	Freight consolidation in networks with transshipments	W.J.A. van Heeswijk, M.R.K. Mes, J.M.J. Schutten, W.H.M. Zijm
461	2014	A Software Architecture for a Transportation Control Tower	Anne Baumgrass, Remco Dijkman, Paul Grefen, Shaya Pourmirza, Hagen Völzer, Mathias Weske
460	2014	Small traditional retailers in emerging markets	Youssef Boulaksil, Jan C. Fransoo, Edgar E. Blanco, Sallem Koubida
459	2014	Defining line replaceable units	J.E. Parada Puig, R.J.I. Basten
458	2014	Inventories and the Credit Crisis: A Chicken and Egg Situation	Maximiliano Udenio, Vishal Gaur, Jan C. Fransoo
457	2014	An Exact Approach for the Pollution-Routing Problem	Said Dabia, Emrah Demir, Tom Van Woensel
456	2014	Fleet readiness: stocking spare parts and high-tech assets	Rob J.I. Basten, Joachim J. Arts
455	2014	Competitive Solutions for Cooperating Logistics Providers	Behzad Hezarkhani, Marco Slikker, Tom Van Woensel
454	2014	Simulation Framework to Analyse Operating Room Release Mechanisms	Rimmert van der Kooij, Martijn Mes, Erwin Hans
453	2014	A Unified Race Algorithm for Offline Parameter Tuning	Tim van Dijk, Martijn Mes, Marco Schutten, Joaquim Gromicho

Nr.	Year	Title	Author(s)
452	2014	Cost, carbon emissions and modal shift in intermodal network design decisions	Yann Bouchery, Jan Fransoo
451	2014	Transportation Cost and CO2 Emissions in Location Decision Models	Josue C. Vélazquez-Martínez, Jan C. Fransoo, Edgar E. Blanco, Jaime Mora-Vargas
450	2014	Tracebook: A Dynamic Checklist Support System	Shan Nan, Pieter Van Gorp, Hendrikus H.M. Korsten,
430	2014	Tracebook. A Dynamic Checkiist Support System	Richard Vdovjak, Uzay Kaymak
449	2014	Intermodal hinterland network design with multiple actors	Yann Bouchery, Jan Fransoo
448	2014	The Share-a-Ride Problem: People and Parcels Sharing Taxis	Baoxiang Li, Dmitry Krushinsky, Hajo A. Reijers, Tom
0++	2014	The Share's fille Froblem. Feople and Farcels Sharing Taxis	Van Woensel
447	2014	Stochastic inventory models for a single item at a single location	K.H. van Donselaar, R.A.C.M. Broekmeulen
446	2014	Optimal and heuristic repairable stocking and expediting in a	Joachim Arts, Rob Basten, Geert-Jan van Houtum
		fluctuating demand environment	
445	2014	Connecting inventory control and repair shop control: a differentiated	M.A. Driessen, W.D. Rustenburg, G.J. van Houtum,
L		control structure for repairable spare parts	V.C.S. Wiers
444	2014	A survey on design and usage of Software Reference Architectures	Samuil Angelov, Jos Trienekens, Rob Kusters
443	2014	Extending and Adapting the Architecture Tradeoff Analysis Method for	Samuil Angelov, Jos J.M. Trienekens, Paul Grefen
L		the Evaluation of Software Reference Architectures	
442	2014	A multimodal network flow problem with product quality	Maryam SteadieSeifi, Nico Dellaert, Tom Van
		preservation, transshipment, and asset management	Woensel
441	2013	Integrating passenger and freight transportation: Model formulation	Veaceslav Ghilas, Emrah Demir, Tom Van Woensel
440	2013	and insights	K van der Vliet M.L. Deindern, J.C. Fransee
440	2013	The Price of Payment Delay	K. van der Vliet, M.J. Reindorp, J.C. Fransoo Behzad Hezarkhani, Marco Slikker, Tom van Woensel
437	2013	On Characterization of the Core of Lane Covering Games via Dual Solutions	
438	2013	Destocking, the Bullwhip Effect, and the Credit Crisis: Empirical	Maximiliano Udenio, Jan C. Fransoo, Robert Peels
		Modeling of Supply Chain Dynamics	
437	2013	Methodological support for business process redesign in healthcare: a	Rob J.B. Vanwersch, Khurram Shahzad, Irene
		systematic literature review	Vanderfeesten, Kris Vanhaecht, Paul Grefen, Liliane
			Pintelon, Jan Mendling, Geofridus G. van Merode, Haio A. Reiiers
436	2013	Dynamics and equilibria under incremental horizontal differentiation on the Salop circle	B. Vermeulen, J.A. La Poutré, A.G. de Kok
435	2013	Analyzing Conformance to Clinical Protocols Involving Advanced	Hui Yan, Pieter Van Gorp, Uzay Kaymak, Xudong Lu,
		Synchronizations	Richard Vdovjak, Hendriks H.M. Korsten, Huilong Duan
434	2013	Models for Ambulance Planning on the Strategic and the Tactical Level	J. Theresia van Essen, Johann L. Hurink, Stefan Nickel, Melanie Reuter
433	2013	Mode Allocation and Scheduling of Inland Container Transportation: A	Stefano Fazi, Tom Van Woensel, Jan C. Fransoo
		Case-Study in the Netherlands	
432	2013	Socially responsible transportation and lot sizing: Insights from	Yann Bouchery, Asma Ghaffari, Zied Jemai, Jan
		multiobjective optimization	Fransoo
431	2013	Inventory routing for dynamic waste collection	Martijn Mes, Marco Schutten, Arturo Pérez Rivera
431 430	2013 2013	Inventory routing for dynamic waste collection Simulation and Logistics Optimization of an Integrated Emergency Post	Martijn Mes, Marco Schutten, Arturo Pérez Rivera N.J. Borgman, M.R.K. Mes, I.M.H. Vliegen, E.W.
		Inventory routing for dynamic waste collection Simulation and Logistics Optimization of an Integrated Emergency Post	-
			N.J. Borgman, M.R.K. Mes, I.M.H. Vliegen, E.W. Hans S. Behfard, M.C. van der Heijden, A. Al Hanbali,
430	2013	Simulation and Logistics Optimization of an Integrated Emergency Post	N.J. Borgman, M.R.K. Mes, I.M.H. Vliegen, E.W. Hans
430 429 428	2013 2013 2013	Simulation and Logistics Optimization of an Integrated Emergency Post Last Time Buy and Repair Decisions for Spare Parts A Review of Recent Research on Green Road Freight Transportation	N.J. Borgman, M.R.K. Mes, I.M.H. Vliegen, E.W. Hans S. Behfard, M.C. van der Heijden, A. Al Hanbali, W.H.M. Zijm Emrah Demir, Tolga Bektas, Gilbert Laporte
430 429 428 427	2013 2013 2013 2013 2013	Simulation and Logistics Optimization of an Integrated Emergency Post Last Time Buy and Repair Decisions for Spare Parts A Review of Recent Research on Green Road Freight Transportation Typology of Repair Shops for Maintenance Spare Parts	N.J. Borgman, M.R.K. Mes, I.M.H. Vliegen, E.W. Hans S. Behfard, M.C. van der Heijden, A. Al Hanbali, W.H.M. Zijm Emrah Demir, Tolga Bektas, Gilbert Laporte M.A. Driessen, V.C.S. Wiers, G.J. van Houtum, W.D. Rustenburg
430 429 428	2013 2013 2013	Simulation and Logistics Optimization of an Integrated Emergency Post Last Time Buy and Repair Decisions for Spare Parts A Review of Recent Research on Green Road Freight Transportation Typology of Repair Shops for Maintenance Spare Parts A value network development model and implications for innovation	N.J. Borgman, M.R.K. Mes, I.M.H. Vliegen, E.W. Hans S. Behfard, M.C. van der Heijden, A. Al Hanbali, W.H.M. Zijm Emrah Demir, Tolga Bektas, Gilbert Laporte M.A. Driessen, V.C.S. Wiers, G.J. van Houtum, W.D.
 430 429 428 427 426 	2013 2013 2013 2013 2013 2013	Simulation and Logistics Optimization of an Integrated Emergency Post Last Time Buy and Repair Decisions for Spare Parts A Review of Recent Research on Green Road Freight Transportation Typology of Repair Shops for Maintenance Spare Parts A value network development model and implications for innovation and production network management	N.J. Borgman, M.R.K. Mes, I.M.H. Vliegen, E.W. Hans S. Behfard, M.C. van der Heijden, A. Al Hanbali, W.H.M. Zijm Emrah Demir, Tolga Bektas, Gilbert Laporte M.A. Driessen, V.C.S. Wiers, G.J. van Houtum, W.D. Rustenburg B. Vermeulen, A.G. de Kok
430 429 428 427	2013 2013 2013 2013 2013	Simulation and Logistics Optimization of an Integrated Emergency Post Last Time Buy and Repair Decisions for Spare Parts A Review of Recent Research on Green Road Freight Transportation Typology of Repair Shops for Maintenance Spare Parts A value network development model and implications for innovation and production network management Single Vehicle Routing with Stochastic Demands: Approximate	N.J. Borgman, M.R.K. Mes, I.M.H. Vliegen, E.W. Hans S. Behfard, M.C. van der Heijden, A. Al Hanbali, W.H.M. Zijm Emrah Demir, Tolga Bektas, Gilbert Laporte M.A. Driessen, V.C.S. Wiers, G.J. van Houtum, W.D. Rustenburg
 430 429 428 427 426 425 	2013 2013 2013 2013 2013 2013 2013	Simulation and Logistics Optimization of an Integrated Emergency Post Last Time Buy and Repair Decisions for Spare Parts A Review of Recent Research on Green Road Freight Transportation Typology of Repair Shops for Maintenance Spare Parts A value network development model and implications for innovation and production network management Single Vehicle Routing with Stochastic Demands: Approximate Dynamic Programming	N.J. Borgman, M.R.K. Mes, I.M.H. Vliegen, E.W. Hans S. Behfard, M.C. van der Heijden, A. Al Hanbali, W.H.M. Zijm Emrah Demir, Tolga Bektas, Gilbert Laporte M.A. Driessen, V.C.S. Wiers, G.J. van Houtum, W.D. Rustenburg B. Vermeulen, A.G. de Kok C. Zhang, N.P. Dellaert, L. Zhao, T. Van Woensel, D. Sever
 430 429 428 427 426 	2013 2013 2013 2013 2013 2013	Simulation and Logistics Optimization of an Integrated Emergency Post Last Time Buy and Repair Decisions for Spare Parts A Review of Recent Research on Green Road Freight Transportation Typology of Repair Shops for Maintenance Spare Parts A value network development model and implications for innovation and production network management Single Vehicle Routing with Stochastic Demands: Approximate Dynamic Programming Influence of Spillback Effect on Dynamic Shortest Path Problems with	N.J. Borgman, M.R.K. Mes, I.M.H. Vliegen, E.W. Hans S. Behfard, M.C. van der Heijden, A. Al Hanbali, W.H.M. Zijm Emrah Demir, Tolga Bektas, Gilbert Laporte M.A. Driessen, V.C.S. Wiers, G.J. van Houtum, W.D. Rustenburg B. Vermeulen, A.G. de Kok C. Zhang, N.P. Dellaert, L. Zhao, T. Van Woensel, D. Sever Derya Sever, Nico Dellaert, Tom Van Woensel, Ton de
 430 429 428 427 426 425 424 	2013 2013 2013 2013 2013 2013 2013 2013	Simulation and Logistics Optimization of an Integrated Emergency Post Last Time Buy and Repair Decisions for Spare Parts A Review of Recent Research on Green Road Freight Transportation Typology of Repair Shops for Maintenance Spare Parts A value network development model and implications for innovation and production network management Single Vehicle Routing with Stochastic Demands: Approximate Dynamic Programming Influence of Spillback Effect on Dynamic Shortest Path Problems with Travel-Time-Dependent Network Disruptions	 N.J. Borgman, M.R.K. Mes, I.M.H. Vliegen, E.W. Hans S. Behfard, M.C. van der Heijden, A. Al Hanbali, W.H.M. Zijm Emrah Demir, Tolga Bektas, Gilbert Laporte M.A. Driessen, V.C.S. Wiers, G.J. van Houtum, W.D. Rustenburg B. Vermeulen, A.G. de Kok C. Zhang, N.P. Dellaert, L. Zhao, T. Van Woensel, D. Sever Derya Sever, Nico Dellaert, Tom Van Woensel, Ton de Kok
 430 429 428 427 426 425 	2013 2013 2013 2013 2013 2013 2013	Simulation and Logistics Optimization of an Integrated Emergency Post Last Time Buy and Repair Decisions for Spare Parts A Review of Recent Research on Green Road Freight Transportation Typology of Repair Shops for Maintenance Spare Parts A value network development model and implications for innovation and production network management Single Vehicle Routing with Stochastic Demands: Approximate Dynamic Programming Influence of Spillback Effect on Dynamic Shortest Path Problems with Travel-Time-Dependent Network Disruptions Dynamic Shortest Path Problem with Travel-Time-Dependent	N.J. Borgman, M.R.K. Mes, I.M.H. Vliegen, E.W. Hans S. Behfard, M.C. van der Heijden, A. Al Hanbali, W.H.M. Zijm Emrah Demir, Tolga Bektas, Gilbert Laporte M.A. Driessen, V.C.S. Wiers, G.J. van Houtum, W.D. Rustenburg B. Vermeulen, A.G. de Kok C. Zhang, N.P. Dellaert, L. Zhao, T. Van Woensel, D. Sever Derya Sever, Nico Dellaert, Tom Van Woensel, Ton de Kok Derya Sever, Lei Zhao, Nico Dellaert, Tom Van
 430 429 428 427 426 425 424 	2013 2013 2013 2013 2013 2013 2013 2013	Simulation and Logistics Optimization of an Integrated Emergency Post Last Time Buy and Repair Decisions for Spare Parts A Review of Recent Research on Green Road Freight Transportation Typology of Repair Shops for Maintenance Spare Parts A value network development model and implications for innovation and production network management Single Vehicle Routing with Stochastic Demands: Approximate Dynamic Programming Influence of Spillback Effect on Dynamic Shortest Path Problems with Travel-Time-Dependent Network Disruptions	 N.J. Borgman, M.R.K. Mes, I.M.H. Vliegen, E.W. Hans S. Behfard, M.C. van der Heijden, A. Al Hanbali, W.H.M. Zijm Emrah Demir, Tolga Bektas, Gilbert Laporte M.A. Driessen, V.C.S. Wiers, G.J. van Houtum, W.D. Rustenburg B. Vermeulen, A.G. de Kok C. Zhang, N.P. Dellaert, L. Zhao, T. Van Woensel, D. Sever Derya Sever, Nico Dellaert, Tom Van Woensel, Ton de Kok

Nr.	Year	Title	Author(s)
421	2013	Lost Sales Inventory Models with Batch Ordering and Handling Costs	T. Van Woensel, N. Erkip, A. Curseu, J.C. Fransoo
420	2013	Response speed and the bullwhip	Maximiliano Udenio, Jan C. Fransoo, Eleni Vatamidou, Nico Dellaert
419	2013	Anticipatory Routing of Police Helicopters	Rick van Urk, Martijn R.K. Mes, Erwin W. Hans
418	2013	Supply Chain Finance: research challenges ahead	Kasper van der Vliet, Matthew J. Reindorp, Jan C. Fransoo
417	2013	Improving the Performance of Sorter Systems by Scheduling Inbound Containers	S.W.A. Haneyah, J.M.J. Schutten, K. Fikse
416	2013	Regional logistics land allocation policies: Stimulating spatial concentration of logistics firms	Frank P. van den Heuvel, Peter W. de Langen, Karel H. van Donselaar, Jan C. Fransoo
415	2013	The development of measures of process harmonization	Heidi L. Romero, Remco M. Dijkman, Paul W.P.J. Grefen, Arjan van Weele
414	2013	BASE/X. Business Agility through Cross-Organizational Service Engineering. The Business and Service Design Approach developed in the CoProFind Project	Paul Grefen, Egon Lüftenegger, Eric van der Linden, Caren Weisleder
413	2013	The Time-Dependent Vehicle Routing Problem with Soft Time Windows and Stochastic Travel Times	Duygu Tas, Nico Dellaert, Tom van Woensel, Ton de Kok
412	2013	Clearing the Sky - Understanding SLA Elements in Cloud Computing	Marco Comuzzi, Guus Jacobs, Paul Grefen
411	2013	Approximations for the waiting time distribution in an M/G/c priority queue	A. Al Hanbali, E.M. Alvarez, M.C. van der Heijden
410	2013	To co-locate or not? Location decisions and logistics concentration areas	Frank P. van den Heuvel, Karel H. van Donselaar, Rob A.C.M. Broekmeulen, Jan C. Fransoo, Peter W. de Langen
409	2013	The Time-Dependent Pollution-Routing Problem	Anna Franceschetti, Dorothée Honhon, Tom van Woensel, Tolga Bektas, Gilbert Laporte
408	2013	Scheduling the scheduling task: A time management perspective on scheduling	J.A. Larco, V. Wiers, J. Fransoo
407	2013	Clustering Clinical Departments for Wards to Achieve a Prespecified Blocking Probability	J. Theresia van Essen, Mark van Houdenhoven, Johann L. Hurink
406	2013	MyPHRMachines: Personal Health Desktops in the Cloud	Pieter Van Gorp, Marco Comuzzi
405	2013	Maximising the Value of Supply Chain Finance	Kasper van der Vliet, Matthew J. Reindorp, Jan C. Fransoo
404	2013	Reaching 50 million nanostores: retail distribution in emerging megacities	Edgar E. Blanco, Jan C. Fransoo
403	2013	A Vehicle Routing Problem with Flexible Time Windows	Duygu Tas, Ola Jabali, Tom van Woensel
402	2013	The Service Dominant Business Model: A Service Focused Conceptualization	Egon Lüftenegger, Marco Comuzzi, Paul Grefen, Caren Weisleder
401	2013	Relationship between freight accessibility and logistics employment in US counties	Frank P. van den Heuvel, Liliana Rivera, Karel H. van Donselaar, Ad de Jong, Yossi Sheffi, Peter W. de Langen, Jan C. Fransoo
400	2012	A Condition-Based Maintenance Policy for Multi-Component Systems with a High Maintenance Setup Cost	Qiushi Zhu, Hao Peng, Geert-Jan van Houtum
399	2012	A flexible iterative improvement heuristic to support creation of feasible shift rosters in self-rostering	E. van der Veen, J.L. Hurink, J.M.J. Schutten, S.T. Uijland
398	2012	Scheduled Service Network Design with Synchronization and Transshipment Constraints for Intermodal Container Transportation Networks	K. Sharypova, T.G. Crainic, T. van Woensel, J.C. Fransoo
397	2012	Destocking, the bullwhip effect, and the credit crisis: empirical modeling of supply chain dynamics	Maximiliano Udenio, Jan C. Fransoo, Robert Peels
396	2012	Vehicle routing with restricted loading capacities	J. Gromicho, J.J. van Hoorn, A.L. Kok, J.M.J. Schutten
395	2012	Service differentiation through selective lateral transshipments	E.M. Alvarez, M.C. van der Heijden, I.M.H. Vliegen, W.H.M. Zijm
394	2012	A Generalized Simulation Model of an Integrated Emergency Post	Martijn Mes, Manon Bruens
393	2012	Business Process Technology and the Cloud: defining a Business Process Cloud Platform	Vassil Stoitsev, Paul Grefen

Nr.	Year	Title	Author(s)
392	2012	Vehicle Routing with Soft Time Windows and Stochastic Travel Times:	D. Tas, M. Gendreau, N. Dellaert, T. van Woensel, A.G.
		A Column Generation and Branch-and-Price Solution Approach	de Kok
391	2012	Improve OR-Schedule to Reduce Number of Required Beds	J. Theresia van Essen, Joël M. Bosch, Erwin W. Hans, Mark van Houdenhoven, Johann L. Hurink
390	2012	How does development lead time affect performance over the ramp-	Andreas Pufall, Jan C. Fransoo, Ad de Jong, A.G. (Ton)
		up lifecycle? Evidence from the consumer electronics industry	de Kok
389	2012	The Impact of Product Complexity on Ramp-Up Performance	Andreas Pufall, Jan C. Fransoo, Ad de Jong, A.G. (Ton) de Kok
388	2012	Co-location synergies: specialized versus diverse logistics concentration areas	Frank P. van den Heuvel, Peter W. de Langen, Karel H. van Donselaar, Jan C. Fransoo
387	2012	Proximity matters: Synergies through co-location of logistics	Frank P. van den Heuvel, Peter W. de Langen, Karel H.
		establishments	van Donselaar, Jan C. Fransoo
386	2012	Spatial concentration and location dynamics in logistics: the case of a	Frank P. van den Heuvel, Peter W. de Langen, Karel H.
		Dutch province	van Donselaar, Jan C. Fransoo
385	2012	FNet: An Index for Advanced Business Process Querying	Zhiqiang Yan, Remco Dijkman, Paul Grefen
384	2012	Defining Various Pathway Terms	W.R. Dalinghaus, P.M.E. Van Gorp
383	2012	The Service Dominant Strategy Canvas: Defining and Visualizing a	Egon Lüftenegger, Paul Grefen, Caren Weisleder
		Service Dominant Strategy through the Traditional Strategic Lens	
382	2012	A Stochastic Variable Size Bin Packing Problem with Time Constraints	Stefano Fazi, Tom van Woensel, Jan C. Fransoo
381	2012	Coordination and Analysis of Barge Container Hinterland Networks	K. Sharypova, T. van Woensel, J.C. Fransoo
380	2012	Proximity matters: Synergies through co-location of logistics	Frank P. van den Heuvel, Peter W. de Langen, Karel H.
		establishments	van Donselaar, Jan C. Fransoo
379	2012	A literature review in process harmonization: a conceptual framework	
			Weele
378	2012	A Generic Material Flow Control Model for Two Different Industries	S.W.A. Haneyah, J.M.J. Schutten, P.C. Schuur, W.H.M.
			Zijm
377	2012	Dynamic demand fulfillment in spare parts networks with multiple customer classes	H.G.H. Tiemessen, M. Fleischmann, G.J. van Houtum, J.A.E.E. van Nunen, E. Pratsini
376	2012	Paper has been replaced by wp 417	K. Fikse, S.W.A. Haneyah, J.M.J. Schutten
375	2012	Strategies for dynamic appointment making by container terminals	Albert Douma, Martijn Mes
374	2012	MyPHRMachines: Lifelong Personal Health Records in the Cloud	Pieter van Gorp, Marco Comuzzi
373	2012	Service differentiation in spare parts supply through dedicated stocks	
372	2012	Spare parts inventory pooling: how to share the benefits?	Frank Karsten, Rob Basten
371	2012	Condition based spare parts supply	X. Lin, R.J.I. Basten, A.A. Kranenburg, G.J. van Houtum
370	2012	Using Simulation to Assess the Opportunities of Dynamic Waste Collection	Martijn Mes
369	2012	Aggregate overhaul and supply chain planning for rotables	J. Arts, S.D. Flapper, K. Vernooij
368	2012	Operating Room Rescheduling	J.T. van Essen, J.L. Hurink, W. Hartholt, B.J. van den Akker
367	2011	Switching Transport Modes to Meet Voluntary Carbon Emission	Kristel M.R. Hoen, Tarkan Tan, Jan C. Fransoo, Geert-
260	2011	Targets	Jan van Houtum Elisa Alvarez, Matthieu van der Heijden
366	2011	On two-echelon inventory systems with Poisson demand and lost sales	Elisa Alvarez, Matthieu van der Heijden
365	2011	Minimizing the Waiting Time for Emergency Surgery	J.T. van Essen, E.W. Hans, J.L. Hurink, A. Oversberg
364	2012	Vehicle Routing Problem with Stochastic Travel Times Including Soft Time Windows and Service Costs	Duygu Tas, Nico Dellaert, Tom van Woensel, Ton de Kok
363	2011	A New Approximate Evaluation Method for Two-Echelon Inventory	Erhun Özkan, Geert-Jan van Houtum, Yasemin Serin
505	2011	Systems with Emergency Shipments	
362	2011	Approximating Multi-Objective Time-Dependent Optimization	Said Dabia, El-Ghazali Talbi, Tom Van Woensel, Ton de
201	2014	Problems	Kok
361	2011	Branch and Cut and Price for the Time Dependent Vehicle Routing	Said Dabia, Stefan Röpke, Tom Van Woensel, Ton de
		Problem with Time Windows	Kok

Nr.	Year	Title	Author(s)
360	2011	Analysis of an Assemble-to-Order System with Different Review	A.G. Karaarslan, G.P. Kiesmüller, A.G. de Kok
		Periods	
359	2011	Interval Availability Analysis of a Two-Echelon, Multi-Item System	Ahmad Al Hanbali, Matthieu van der Heijden
358	2011	Carbon-Optimal and Carbon-Neutral Supply Chains	Felipe Caro, Charles J. Corbett, Tarkan Tan, Rob
			Zuidwijk
357	2011	Generic Planning and Control of Automated Material Handling	Sameh Haneyah, Henk Zijm, Marco Schutten, Peter
		Systems: Practical Requirements Versus Existing Theory	Schuur
356	2011	Last time buy decisions for products sold under warranty	Matthieu van der Heijden, Bermawi Iskandar
355	2011	Spatial concentration and location dynamics in logistics: the case of a	Frank P. van den Heuvel, Peter W. de Langen, Karel H.
254	2011	Dutch province	van Donselaar, Jan C. Fransoo
354	2011	Identification of Employment Concentration Areas	Frank P. van den Heuvel, Peter W. de Langen, Karel H.
252	2011	DDMM 2.0 Evention Convertion Formalized on Control Devents Dular	van Donselaar, Jan C. Fransoo
353	2011	BPMN 2.0 Execution Semantics Formalized as Graph Rewrite Rules:	Pieter van Gorp, Remco Dijkman
252	2011	extended version	Frenk Konsten, Marco Slikker, Coest Jan van Heuturg
352	2011	Resource pooling and cost allocation among independent service providers	Frank Karsten, Marco Slikker, Geert-Jan van Houtum
351	2011	A Framework for Business Innovation Directions	E. Lüftenegger, S. Angelov, P. Grefen
350	2011	The Road to a Business Process Architecture: An Overview of	Remco Dijkman, Irene Vanderfeesten, Hajo A. Reijers
		Approaches and their Use	
349	2011	Effect of carbon emission regulations on transport mode selection	K.M.R. Hoen, T. Tan, J.C. Fransoo, G.J. van Houtum
		under stochastic demand	,,,
348	2011	An improved MIP-based combinatorial approach for a multi-skill	Murat Firat, Cor Hurkens
		workforce scheduling problem	
347	2011	An approximate approach for the joint problem of level of repair	R.J.I. Basten, M.C. van der Heijden, J.M.J. Schutten
		analysis and spare parts stocking	
346	2011	Joint optimization of level of repair analysis and spare parts stocks	R.J.I. Basten, M.C. van der Heijden, J.M.J. Schutten
345	2011	Inventory control with manufacturing lead time flexibility	Ton G. de Kok
344	2011	Analysis of resource pooling games via a new extension of the Erlang	Frank Karsten, Marco Slikker, Geert-Jan van Houtum
		loss function	
343	2011	Vehicle refueling with limited resources	Murat Firat, C.A.J. Hurkens, Gerhard J. Woeginger
342	2011	Optimal Inventory Policies with Non-stationary Supply Disruptions and	Bilge Atasoy, Refik Güllü, Tarkan Tan
		Advance Supply Information	
341	2011	Redundancy Optimization for Critical Components in High-Availability	Kurtulus Baris Öner, Alan Scheller-Wolf, Geert-Jan van
		Capital Goods	Houtum
340	2011	Making Decision Process Knowledge Explicit Using the Product Data	Razvan Petrusel, Irene Vanderfeesten, Cristina Claudia
		Model	Dolean, Daniel Mican
339	2010	Analysis of a two-echelon inventory system with two supply modes	Joachim Arts, Gudrun Kiesmüller
338	2010	Analysis of the dial-a-ride problem of Hunsaker and Savelsbergh	Murat Firat, Gerhard J. Woeginger
335	2010	Attaining stability in multi-skill workforce scheduling	Murat Firat, Cor Hurkens
334	2010	Flexible Heuristics Miner (FHM)	A.J.M.M. Weijters, J.T.S. Ribeiro
333	2010		P.T. Vanberkel, R.J. Boucherie, E.W. Hans, J.L. Hurink,
222	2010	the master surgical schedule	W.A.M. van Lent, W.H. van Harten
332	2010	Efficiency evaluation for pooling resources in health care	Peter T. Vanberkel, Richard J. Boucherie, Erwin W.
224	2010	The Effect of Mendeed Constructions Moth consticut Decomposition	Hans, Johann L. Hurink, Nelly Litvak
331	2010	The Effect of Workload Constraints in Mathematical Programming	M.M. Jansen, A.G. de Kok, I.J.B.F. Adan
220	2010	Models for Production Planning Using pipeline information in a multi-echelon spare parts inventory	Christian Howard Ingrid Doilnon, Johan Marklund
330	2010		Christian Howard, Ingrid Reijnen, Johan Marklund, Tarkan Tan
329	2010	system Reducing costs of repairable spare parts supply systems via dynamic	H.G.H. Tiemessen, G.J. van Houtum
329	2010	scheduling	
328	2010	-	Frank P. van den Heuvel, Peter W. de Langen, Karel H.
		Theory and Application	van Donselaar, Jan C. Fransoo
327	2010	A combinatorial approach to multi-skill workforce scheduling	M. Firat, C. Hurkens
326	2010	Stability in multi-skill workforce scheduling	M. Firat, C. Hurkens, A. Laugier
325	2010	Maintenance spare parts planning and control: A framework for	M.A. Driessen, J.J. Arts, G.J. van Houtum, W.D.
	1	control and agenda for future research	Rustenburg, B. Huisman

Nr.	Year	Title	Author(s)
324	2010	Near-optimal heuristics to set base stock levels in a two-echelon	R.J.I. Basten, G.J. van Houtum
		distribution network	
323	2010	Inventory reduction in spare part networks by selective throughput	M.C. van der Heijden, E.M. Alvarez, J.M.J. Schutten
		time reduction	
322	2010	The selective use of emergency shipments for service-contract	E.M. Alvarez, M.C. van der Heijden, W.H.M. Zijm
		differentiation	
321	2010	Heuristics for Multi-Item Two-Echelon Spare Parts Inventory Control	Engin Topan, Z. Pelin Bayindir, Tarkan Tan
		Problem with Batch Ordering in the Central Warehouse	
320	2010	Preventing or escaping the suppression mechanism: intervention	Bob Walrave, Kim E. van Oorschot, A. Georges L.
		conditions	Romme
319	2010	Hospital admission planning to optimize major resources utilization	Nico Dellaert, Jully Jeunet
		under uncertainty	
318	2010	Minimal Protocol Adaptors for Interacting Services	R. Seguel, R. Eshuis, P. Grefen
317	2010	Teaching Retail Operations in Business and Engineering Schools	Tom Van Woensel, Marshall L. Fisher, Jan C. Fransoo
316	2010	Design for Availability: Creating Value for Manufacturers and	Lydie P.M. Smets, Geert-Jan van Houtum, Fred
		Customers	Langerak
315	2010	Transforming Process Models: executable rewrite rules versus a	Pieter van Gorp, Rik Eshuis
		formalized Java program	
314	2010	Working paper 314 is no longer available	
313	2010	A Dynamic Programming Approach to Multi-Objective Time-	S. Dabia, T. van Woensel, A.G. de Kok
		Dependent Capacitated Single Vehicle Routing Problems with Time	
		Windows	
312	2010	Tales of a So(u)rcerer: Optimal Sourcing Decisions Under Alternative	Osman Alp, Tarkan Tan
		Capacitated Suppliers and General Cost Structures	
311	2010	In-store replenishment procedures for perishable inventory in a retail	R.A.C.M. Broekmeulen, C.H.M. Bakx
		environment with handling costs and storage constraints	
310	2010	The state of the art of innovation-driven business models in the	E. Lüftenegger, S. Angelov, E. van der Linden, P.
		financial services industry	Grefen
309	2010	Design of Complex Architectures Using a Three Dimension Approach:	R. Seguel, P. Grefen, R. Eshuis
		the CrossWork Case	
308	2010	Effect of carbon emission regulations on transport mode selection in	K.M.R. Hoen, T. Tan, J.C. Fransoo, G.J. van Houtum
		supply chains	
307	2010	Interaction between intelligent agent strategies for real-time	Martijn Mes, Matthieu van der Heijden, Peter Schuur
		transportation planning	
306	2010	Internal Slackening Scoring Methods	Marco Slikker, Peter Borm, René van den Brink
305	2010	Vehicle Routing with Traffic Congestion and Drivers' Driving and	A.L. Kok, E.W. Hans, J.M.J. Schutten, W.H.M. Zijm
		Working Rules	
304	2010	Practical extensions to the level of repair analysis	R.J.I. Basten, M.C. van der Heijden, J.M.J. Schutten
303	2010	Ocean Container Transport: An Underestimated and Critical Link in	Jan C. Fransoo, Chung-Yee Lee
		Global Supply Chain Performance	
302	2010	Capacity reservation and utilization for a manufacturer with uncertain	Y. Boulaksil; J.C. Fransoo; T. Tan
		capacity and demand	,,,
300	2009	Spare parts inventory pooling games	F.J.P. Karsten; M. Slikker; G.J. van Houtum
299	2009	Capacity flexibility allocation in an outsourced supply chain with	Y. Boulaksil, M. Grunow, J.C. Fransoo
		reservation	
298	2010	An optimal approach for the joint problem of level of repair analysis	R.J.I. Basten, M.C. van der Heijden, J.M.J. Schutten
	_010	and spare parts stocking	
297	2009	Responding to the Lehman Wave: Sales Forecasting and Supply	Robert Peels, Maximiliano Udenio, Jan C. Fransoo,
,		Management during the Credit Crisis	Marcel Wolfs, Tom Hendrikx
	2009	An exact approach for relating recovering surgical patient workload to	Peter T. Vanberkel, Richard J. Boucherie, Erwin W.
296	2005	the master surgical schedule	Hans, Johann L. Hurink, Wineke A.M. van Lent, Wim
296			
296			IH van Harten
	2009	An iterative method for the simultaneous optimization of renair	H. van Harten R. L. Basten, M.C. van der Heijden, I.M.I. Schutten
296 295	2009	An iterative method for the simultaneous optimization of repair decisions and spare parts stocks	H. van Harten R.J.I. Basten, M.C. van der Heijden, J.M.J. Schutten
	2009	An iterative method for the simultaneous optimization of repair decisions and spare parts stocks Fujaba hits the Wall(-e)	

Nr.	Year	Title	Author(s)
293	2009	Implementation of a Healthcare Process in Four Different Workflow	R.S. Mans, W.M.P. van der Aalst, N.C. Russell, P.J.M.
		Systems	Bakker
292	2009	Business Process Model Repositories - Framework and Survey	Zhiqiang Yan, Remco Dijkman, Paul Grefen
291	2009	Efficient Optimization of the Dual-Index Policy Using Markov Chains	Joachim Arts, Marcel van Vuuren, Gudrun Kiesmuller
290	2009	Hierarchical Knowledge-Gradient for Sequential Sampling	Martijn R.K. Mes; Warren B. Powell; Peter I. Frazier
289	2009	Analyzing combined vehicle routing and break scheduling from a	C.M. Meyer; A.L. Kok; H. Kopfer; J.M.J. Schutten
		distributed decision making perspective	
288	2010	Lead time anticipation in Supply Chain Operations Planning	Michiel Jansen; Ton G. de Kok; Jan C. Fransoo
287	2009	Inventory Models with Lateral Transshipments: A Review	Colin Paterson; Gudrun Kiesmuller; Ruud Teunter; Kevin Glazebrook
286	2009	Efficiency evaluation for pooling resources in health care	P.T. Vanberkel; R.J. Boucherie; E.W. Hans; J.L. Hurink; N. Litvak
285	2009	A Survey of Health Care Models that Encompass Multiple	P.T. Vanberkel; R.J. Boucherie; E.W. Hans; J.L. Hurink;
		Departments	N. Litvak
284	2009	Supporting Process Control in Business Collaborations	S. Angelov; K. Vidyasankar; J. Vonk; P. Grefen
283	2009	Inventory Control with Partial Batch Ordering	O. Alp; W.T. Huh; T. Tan
282	2009	Translating Safe Petri Nets to Statecharts in a Structure-Preserving Way	R. Eshuis
281	2009	The link between product data model and process model	J.J.C.L. Vogelaar; H.A. Reijers
280	2009	Inventory planning for spare parts networks with delivery time requirements	I.C. Reijnen; T. Tan; G.J. van Houtum
279	2009	Co-Evolution of Demand and Supply under Competition	B. Vermeulen; A.G. de Kok
278	2010	Toward Meso-level Product-Market Network Indices for Strategic Product Selection and (Re)Design Guidelines over the Product Life- Cycle	B. Vermeulen, A.G. de Kok
277	2009	An Efficient Method to Construct Minimal Protocol Adaptors	R. Seguel, R. Eshuis, P. Grefen
276	2009	Coordinating Supply Chains: a Bilevel Programming Approach	Ton G. de Kok, Gabriella Muratore
275	2009	Inventory redistribution for fashion products under demand parameter update	G.P. Kiesmuller, S. Minner
274	2009	Comparing Markov chains: Combining aggregation and precedence relations applied to sets of states	A. Busic, I.M.H. Vliegen, A. Scheller-Wolf
273	2009	Separate tools or tool kits: an exploratory study of engineers' preferences	I.M.H. Vliegen, P.A.M. Kleingeld, G.J. van Houtum
272	2009	An Exact Solution Procedure for Multi-Item Two-Echelon Spare Parts Inventory Control Problem with Batch Ordering	
271	2009	Distributed Decision Making in Combined Vehicle Routing and Break Scheduling	C.M. Meyer, H. Kopfer, A.L. Kok, M. Schutten
270	2009	Dynamic Programming Algorithm for the Vehicle Routing Problem with Time Windows and EC Social Legislation	A.L. Kok, C.M. Meyer, H. Kopfer, J.M.J. Schutten
269	2009	Similarity of Business Process Models: Metics and Evaluation	Remco Dijkman, Marlon Dumas, Boudewijn van Dongen, Reina Kaarik, Jan Mendling
267	2009	Vehicle routing under time-dependent travel times: the impact of congestion avoidance	A.L. Kok, E.W. Hans, J.M.J. Schutten
266	2009	Restricted dynamic programming: a flexible framework for solving realistic VRPs	J. Gromicho; J.J. van Hoorn; A.L. Kok; J.M.J. Schutten;

Working Papers published before 2009, contact: beta@tue.nl