

Single-Item Models with Minimal Repair for Multi-Item Maintenance Optimization

Joachim Arts and Rob Basten

Beta Working Paper series 513

BETA publicatie	WP 513 (working paper)
ISBN	1 1 7
ISSN	
NUR	
Eindhoven	July 2016

Single-Item Models with Minimal Repair for Multi-Item Maintenance Optimization

Joachim Arts and Rob Basten

Eindhoven University of Technology, School of Industrial Engineering, j.j.arts@tue.nl, r.j.i.basten@tue.nl

July 28, 2016

Abstract

Capital assets, such as wind turbines and ships, require maintenance throughout their long life times. Assets usually need to go down to perform maintenance and such downs can be either scheduled or unscheduled. Since different components in an asset have different maintenance policies, it is key to have a maintenance program in place that coordinates the maintenance policies of all components, so as to minimize costs associated with maintenance and downtime. Single component maintenance policies have been developed for decades, but such policies do not usually allow coordination between different components within an asset. We study a periodic maintenance policy and a condition based maintenance policy in which the scheduled downs can be coordinated between components. In both policies, we assume that at unscheduled downs, a minimal repair is performed to keep unscheduled downtime as short as possible. Both policies can be evaluated exactly using renewal theory, and we show how these policies can be used as building blocks to design and optimize maintenance programs for multi-component assets.

Keywords: Maintenance, multi-item systems, condition based maintenance

1. Introduction

Capital assets, such as ships, production lines, wind turbines, or weapon systems require maintenance throughout their long life times. Capital assets are crucial to the primary processes of their users, so

unexpected failures that lead to unscheduled downtime of an asset have a large negative impact. Therefore, asset owners prefer to perform *preventive maintenance* to avoid unscheduled downs. This has many advantages over *corrective maintenance*: Maintenance may be performed at moments that the capital asset is not being used anyway or when it can be shut down without incurring too high downtime costs. Furthermore, collateral damage on other components can be avoided and required resources, such as spare parts, service engineers and tooling, can be available at the right place at the right time. Finally, maintenance on multiple components can be clustered; we come back to this below.

Historically, *periodic maintenance* every so many running hours, so many calendar days, so many sheets printed, or because any other usage related measure has reached a certain number, has been prevalent. The first models have been proposed over fifty years ago by Barlow and Hunter (1960). *Condition based maintenance* is becoming more popular because the condition of components becomes easier and cheaper to measure with modern sensor technology. The condition of components can be measured, for example, by the concentration of ferrous particles in lubrication fluid, the vibration amplitude, or the temperature at moments of peak load. Depending on the component and the condition to be measured, a sensor may be installed that measures continuously or the condition may be inspected with a certain interval. Condition monitoring may not always be possible (cost effectively), so in practice, a periodic or corrective maintenance policy is used for some components in a capital asset, while a condition based maintenance policy is used for other components.

Since a system usually needs to be down in order to replace or maintain any of its components, we can end up in a situation where we have to shut down the system very often if we design a maintenance policy for each component in isolation. The consequences of downtime differ per capital asset, but in general they are quite severe and expensive. Possible consequences include the shut down of entire factories, delays of flights, rescheduling of appointments with customers, and all the ensuing costs and inconveniences. Therefore, maintenance programs are usually designed for systems as a whole. The primary considerations that govern this design are avoiding downtime of the system, especially unscheduled downtime, and the cost of maintenance. Therefore, maintenance programs often have scheduled downs (also called scheduled downtimes) during which it is possible to do maintenance, inspections, and/or replacements for any component in the system. At these moments, we need to perform maintenance in such a way that the risk of an unscheduled down due to failure before the next scheduled

down is minimized.

We are aware of one work in which a maintenance program is optimized for a multi-component system in which different components may require different maintenance policies: Zhu (2015). Our approach is in line with that of Zhu (2015), in that we propose two single component models, one for periodic preventive maintenance and one for condition based maintenance, that can be used in a larger framework to optimize a maintenance program for a complete system. In both models, there is a scheduled down every τ time units. By setting one τ for all components, we can use these two single component models to optimize a multi-component maintenance program. We discuss the work of Zhu (2015) in more detail in Section 2. An important difference with the work of Zhu (2015) is that we assume that at an unscheduled down, only a minimal repair is performed upon the component that has failed, while Zhu assumes that a full repair or replacement is performed and that other components can be repaired or replaced as well. As a result, our models can be evaluated exactly, while the models of Zhu cannot. The assumption of minimal repairs is realistic if performing a complete repair or replacement is too time-consuming to perform outside of a scheduled down. This is the case, for example, for military equipment during a mission. One reason why a repair may be time-consuming, or even impossible, is if spare parts, service engineers or tooling are required that are not available, for example when a ship is not in a harbour.

The periodic maintenance model that we propose is a generalization of the block replacement policy with minimal repair upon failure (Policy II of Barlow and Hunter, 1960). In the latter policy, there is a schedule with a certain interval τ at which a component is replaced. If the component fails during an interval, then a minimal repair is performed, meaning that the component's state is restored to a state that is statistically identical to the state just prior to the component's failure. In other words, the failure rate immediately after the minimal repair is equal to that just before the failure. This policy is useful in a situation where there are many components of the same type for which there is a common setup cost. Since these components have the same failure behavior, it is possible to use one τ and replace all components at the same moment. However, we consider many different components. Therefore, our policy has an additional control parameter *n*. Under our policy, a component is replaced after every $n\tau$ time units if nothing happens, i.e., at every *n*-th scheduled down. If a failure occurs at some point, then a minimal repair is performed immediately, and at the next scheduled down, a replacement is

performed. Notice that throughout the paper, at scheduled downs, instead of replacements also a repair or preventive maintenance action may be performed that brings the state of the component back to as-good-as-new. From a modeling point of view, this is equivalent.

The condition-based model that we propose uses the delay time model to model degradation (DTM; introduced by Christer, 1982; Christer and Waller, 1984). This is a semi-Markov model in which a component can be in three different states: good, defect and failed. The time a component remains in the good state after replacement, known as the time-to-defect, is assumed to be exponential. This assumption is natural in several common settings: First, components may be in a normal operating state without too much degradation until an initial defect starts the degradation process. For an axle rod of a train, this initial defect may result from hitting a stone on the track, for instance, which is a purely random event. Second, when manual inspections are performed on many components, it is often not possible to measure and store the exact degradation level. Therefore, it is only checked if the degradation has passed a certain threshold. This means that although the degradation may follow a certain process, from a planning point of view, the time to defect is random. When the component becomes defect, there is a generally distributed time to failure, also known as the delay time. We assume that defects are not selfannouncing, while failures are. Therefore, we require inspections to find defects. These are performed at every *n*-th scheduled down, i.e., after every $n\tau$ time units. If the component turns out to be defect, it is replaced. If a component fails in between two inspection moments, then a minimal repair is performed, and the component is replaced at the next scheduled down.

The remainder of this paper is structured as follows. In Section 2, we review the related literature, focusing on multi-component maintenance optimization. Our key contribution, the periodic and condition based models that we propose, are in Sections 3 and 4, respectively. Next, in Section 5, we give examples of how our models can be used and how they can be combined to optimize a multi-component maintenance program. We conclude in Section 6.

2. Literature

There exists quite a lot of literature on single-component maintenance optimization, starting with the work on optimizing the periodic maintenance interval by Barlow and Hunter (1960, Policy I). We will not treat these models here; we refer to any textbook on reliability engineering or maintenance optimization

(e.g., Jardine and Tsang, 2006; Pintelon and Van Puyvelde, 2006). However, the block replacement policy is a relevant single-component maintenance model, as explained in Section 1: If there are many identical components, then it makes sense to preventively replace all of them at the same time. So, this is also a single-item maintenance policy that can be used for multi-item maintenance optimization. The block replacement policy with minimal repairs upon failure has been introduced by Barlow and Hunter (1960, Policy II) and with complete repairs or, equivalently, replacements by Barlow and Proschan (1965, pp.95– 96). Modifications of the policy have been introduced, for instance, by Berg and Epstein (1976) and Bajestani and Banjevic (2016). These authors consider the block replacement policy with replacements upon failure, and then allow that if a failure and replacement have occurred just before a preventive replacement, then the component is not replaced at the preventive replacement moment.

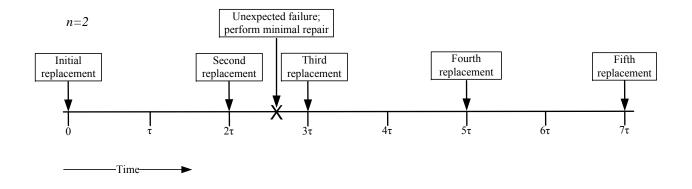
Almost all real-life systems consist of multiple different components, so that it is not only relevant to decide on which maintenance policy to use for each component (e.g., corrective maintenance, periodic maintenance, or condition-based maintenance) and to optimize the policy per component, but also to cluster the maintenance of different components. Maintenance concepts are used to do all of that, typ-ically by giving decision rules. A well known maintenance concept is reliability centred maintenance (RCM, see, e.g., Rausand, 1998), but the maintenance concept of Gits (1992) and CIBOCOF, the concept developed by Waeyenbergh (Waeyenbergh, 2005; Waeyenbergh and Pintelon, 2009) are also interesting. Good overviews of maintenance concepts can be found in Pintelon and Van Puyvelde (2006), Waeyenbergh (2005) and Waeyenbergh and Pintelon (2009). However, there is no real optimization performed in the clustering of the maintenance in these maintenance concepts.

The reason to cluster maintenance on multiple components is the dependencies between components. Often, three types of dependencies are considered (see, e.g., Thomas, 1986; Nicolai and Dekker, 2008; Van Horenbeek and Pintelon, 2013): economic, structural and stochastic dependencies. Economic dependence is virtually always present: It means that the costs of performing two maintenance actions at the same time is not the same as the summation of the costs of performing each of the two maintenance actions. Most common is a positive economic dependency when there are set up costs that are shared. For example, a service engineer needs to go to the capital asset only once to perform two maintenance actions. Structural dependence means that the structure of the asset is such that to maintain one component, another may need to be dismantled (see, e.g. Levi et al., 2014). Finally, stochastic dependence means that the degradation processes of different components are correlated. This usually happens when the degradation level of one component accelerates the degradation of another component.

All three types of dependencies have been discussed in the literature on multi-component maintenance optimization. This literature has been reviewed several times; see, for instance, Thomas (1986) and Nicolai and Dekker (2008). Both reviews are structured according to the dependencies. Interestingly, the former review does not mention condition-based maintenance at all, while the latter review mentions only one paper in which condition-based maintenance is considered.

We further focus on economic dependence, since that is the type of dependence that we also consider. We then notice that virtually all of this literature considers multiple components that all use the same maintenance policy. Many authors have considered clustering of maintenance on components that each use a periodic maintenance policy. Older examples are Wildeman et al. (1997) and Van Dijkhuizen and Van Harten (1997), while a newer example is Levi et al. (2014). Only few articles consider clustering of maintenance on components that each use a condition-based maintenance policy. Examples are Castanier et al. (2005), Tian and Liao (2011), De Jonge et al. (2016) and Olde Keizer et al. (2016).

To the best of our knowledge, the only work in which the maintenance program is optimized for a complete system that consists of components with different maintenance policies, is the PhD thesis of Zhu (2015). He has proposed a framework that functions as follows. Maintenance moments, called scheduled downs, are scheduled for the complete capital asset at constant intervals of length τ . In addition, unscheduled downs may occur due to failures in components. At both scheduled and unscheduled downs, maintenance can be performed at each of the components for which a periodic or condition based maintenance policy is selected (the single-item models per component have also been published as Zhu et al., 2016b,a, respectively). The long term average costs per time unit can be evaluated for each of the components for a given τ . Summing those costs for all components and adding joint setup costs (translated to costs per time unit) leads to the total costs per time unit for the complete asset. τ is then increased in small steps between a lower and an upper bound to find the approximately optimal scheduled downs interval τ . It is *approximately* optimal for two reasons: First, τ is varied in small steps, while the true optimum may be in between two steps. Second, the cost evaluation for each component using a periodic or condition based maintenance policy is approximate.


Our approach is similar to that of Zhu (2015). However, there are two key differences. First, the

single-component models that we propose can be evaluated exactly, thus getting rid of the second type of approximation that Zhu (2015) makes. Since the step size, and thus the first approximation, can be arbitrarily small, this allows for an arbitrarily close approximation of the true optimal cost rate for a complete asset. Second, we use scheduled downs as opportunities to perform maintenance on all components, but we do not use unscheduled downs as such opportunities. In the settings that we have in mind, ship maintenance, for instance, performing a minimal repair and having the system running again, is of key importance and often the only thing that is possible since required resources may not be available.

3. Periodic usage based maintenance model

In this section, we present the first single-item maintenance model we propose. We consider a component with a random lifetime, T, with distribution $\mathbb{P}(T \leq x) = F_T(x)$, density $f_T(x) = \frac{dF_T(x)}{dx}$, and failure rate (or hazard rate) $h_T(x) = f_T(x)/(1 - F_T(x))$. Every τ time units, there is a scheduled down during which this component can undergo planned replacement to restore the component to as-good-as-new condition. We propose the following policy: After the preventive replacement of a component, we replace it preventively again at the *n*-th scheduled down, $n \in \mathbb{N}$. If the component fails before the *n*-th scheduled down, we apply a minimal repair and replace at the next scheduled down. Such a minimal repair will bring the condition of a component back to a condition that is statistically identical to the state just prior to its failure. That is, after a minimal repair, the remaining lifetime distribution of component is identical to the remaining lifetime distribution condition on no failure having occurred yet. We call this the *periodic usage based maintenance* (PUBM) policy. A schematic representation of a sample path under the PUBM policy is given in Figure 1. A planned preventive replacement at a scheduled down costs $C_p \ge 0$, while a replacement after a failure has occurred costs $C_u \ge 0$. Each minimal repair costs $C_r \ge 0$.

Note that both *n* and τ are policy parameters subject to optimization. (In a multi-component system, τ will be common among different components, but *n* can be unique to each component.) Observe further that if n = 1, the PUBM policy reduces to a block policy with minimal repair. Similarly, if $\tau \rightarrow 0$ and $n \rightarrow \infty$ such that $n\tau \rightarrow t$, then the PUBM policy reduces to a regular age-based policy with replacement age *t*. Thus, the PUBM policy also applies to settings where the classical age-based policy

Figure 1: Sample path of the PUBM policy with n = 2.

and block replacement policy with minimal repair apply.

3.1 Performance evaluation

Observe that the cost incurred by a PUBM policy can be described by a renewal reward process. The renewal points are the moments where a component is replaced at a scheduled downtime. The expected renewal cycle length, *ECL*, for a PUBM policy is found by conditioning on the interval in which a component fails for the first time:

$$ECL = \sum_{k=1}^{n-1} k\tau \mathbb{P}\left((k-1)\tau \le T \le k\tau\right) + n\tau \mathbb{P}(T \ge (n-1)\tau)$$
$$= \sum_{k=1}^{n-1} k\tau \left[F_T(k\tau) - F_T((k-1)\tau)\right] + n\tau(1 - F_T((n-1)\tau)).$$
(1)

It is more involved to determine the cost during a renewal cycle. The crux is finding the expected number of minimal repairs that will be conducted during a renewal cycle. For the exposition, it is useful to introduce the random variable $Y(t_1, t_2)$ that denotes the number of minimal repairs in the interval (t_1, t_2) that belong to a renewal cycle that started at time 0 $(t_1 < t_2 < n\tau)$. (Note that minimal repairs in the interval in the interval (t_1, t_2) that occur after a renewal after time 0 but before time t_1 do not belong in the first renewal cycle.) The expected number of minimal repairs in the interval $(0, \tau)$ is given by $\mathbb{E}[Y(0, \tau)]$ under this new definition. Observe that (cf. Barlow and Hunter, 1960) $\mathbb{E}[Y(0, \tau)] = \int_{x=0}^{\tau} h_T(x) dx$ because $Y(0, \tau)$ corresponds with the number of minimal repairs in a block replacement policy with block length τ . The expression for $\mathbb{E}[Y((k-1)\tau, k\tau)]$ with $k \ge 1$ is slightly more complicated and given in Lemma 1.

Lemma 1. The expected number of minimal repairs under a PUBM policy in the interval $((k-1)\tau, k\tau)$ for $k \in \{1, ..., n\}$ that belong to a renewal cycle started at time 0 satisfies:

$$\mathbb{E}[Y((k-1)\tau,k\tau)] = (1 - F_T((k-1)\tau)) \int_{x=(k-1)\tau}^{k\tau} h_T(x) dx$$
(2)

Proof. We condition on whether the renewal cycle that starts at time 0 is still ongoing in the interval $((k-1)\tau, k\tau)$:

$$\mathbb{E}[Y((k-1)\tau,k\tau)] = \mathbb{E}[Y((k-1)\tau,k\tau)|T > (k-1)\tau]\mathbb{P}(T > (k-1)\tau) + \mathbb{E}[Y((k-1)\tau,k\tau)|T \le (k-1)\tau]\mathbb{P}(T \le (k-1)\tau) = \mathbb{E}[Y((k-1)\tau,k\tau)|T > (k-1)\tau](1 - F_T((k-1)\tau)) = (1 - F_T((k-1)\tau)) \int_{x=(k-1)\tau}^{k\tau} h_T(x)dx.$$
(3)

The first equality uses the law of total probability, the second follows because $\mathbb{E}[Y((k-1)\tau, k\tau)|T \le (k-1)\tau] = 0$ by definition of the PUBM policy.

Now it is straightforward to verify that the expected costs during a renewal cycle, *ECC*, of the PUBM policy satisfy:

$$ECC = C_p \mathbb{P}(T \ge n\tau) + C_u \mathbb{P}(T < n\tau) + C_r \sum_{k=1}^n \mathbb{E}[Y((k-1)\tau, k\tau)].$$
(4)

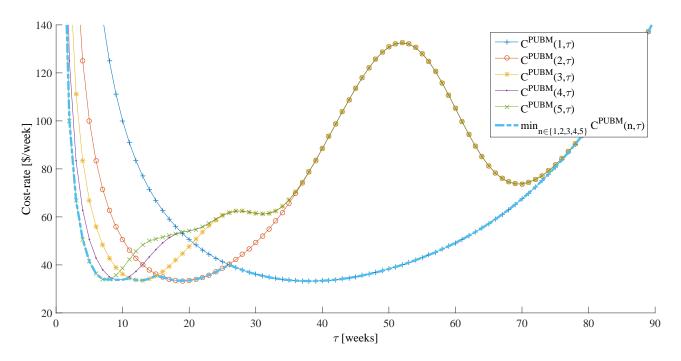
The following theorem follows directly from the renewal reward theorem (e.g. Theorem 2.2.1 of Tijms, 2003) and the results above.

Theorem 1. Under a PUBM policy with parameters τ and n, the average cost rate, $C^{PUBM}(n, \tau)$, satisfies $C^{PUBM}(n, \tau) = ECC/ECL$ where ECL is given by equation (1) and ECC is given by equation (4) with $\mathbb{E}[Y((k-1)\tau, k\tau)]$ as given in Lemma 1.

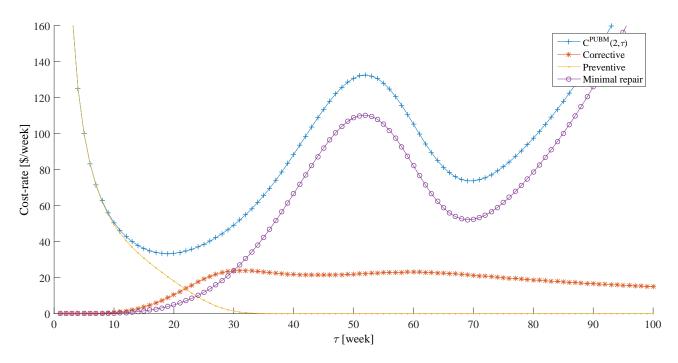
Remark 1. The computation of $\mathbb{E}[Y((k-1)\tau,k\tau)]$ can be done in closed form if *T* has a Weibul distribution. In particular, it is straightforward to show that if $F_T(x) = 1 - \exp(-(x/\alpha)^{\beta})$, with $\alpha, \beta > 0$, then $\mathbb{E}[Y((k-1)\tau,k\tau)] = \alpha^{-\beta}[(k\tau)^{\beta} - ((k-1)\tau)^{\beta}]$. Thus, when the lifetime of a component has a Weibul distribution, the performance of any given PUBM policy can be evaluated exactly in closed form.

3.2 Optimization

The optimization of the PUBM policy (minimization of $C^{PUBM}(n, \tau)$) is difficult because $C^{PUBM}(n, \tau)$ is usually multi-modal. This is illustrated in Figure 2 for a component with Weibul distributed lifetime. The multi-modal behavior of $C^{PUBM}(n, \tau)$ in τ for a given n is due to the cost of minimal repairs, as can be seen in Figure 3 for an example with n = 2. This behavior occurs because the hazard rate of the Weibul distribution is an exponential function: If a part is not replaced at the first scheduled down after an initial replacement, then the number of minimal repairs during the second interval of length τ increases quickly. However, the probability of a component surviving beyond the first scheduled down also decreases to 0 quickly as τ increases. In this regime, a component will not usually remain functional beyond the first scheduled down so that the high minimal repair costs in the second interval can be avoided.


In general, optimizing a PUBM policy requires enumeration. Usually there are practical reasons to optimize τ on some grid (e.g. weeks or months). Let ε denote the granularity of the grid and let $\tau_m = m\varepsilon$ for $m \in \mathbb{N}$. A heuristic that is much quicker than enumeration and finds the optimal solution in all cases we have studied is the following: For each τ_m on the grid, one may find a (near) optimal n_m^* by computing $C^{PUBM}(k,\tau)$ for k = 1, ... until $C^{PUBM}(k+1,\tau) \ge C^{PUBM}(k,\tau)$ and use $n_m^* = k$ as the optimal number of downs between planned inspections for the given τ_m . This procedure can be further accelerated when the grid size is sufficiently small: if n_m^* is optimal for τ_m , then $n_{m+1}^* \in \{n_m^*, n_m^* - 1\}$.

Finally observe that the best policy parameter setting is n = 1 and $\tau = \tau^*(1)$. However, if $n \neq 1$, then we should choose τ such that $n\tau \approx \tau^*(1)$. This can also be observed in Figure 2 by noting the equivalent property that $\tau^*(n) \approx \tau^*(1)/n$.


4. Periodic condition based maintenance model

In this section we study the second single-item policy that we propose. Consider a component that degrades according to a delay time model with exponential time to defect *X* and delay time *Z* with corresponding distributions, densities, and failure (hazard) rates: $\mathbb{P}(X \le x) = F_X(x), f_X(x) = \frac{dF_X(x)}{dx}, h_X(x) = f_X(x)/(1 - F_X(x))$ and analogous definitions for *Z*. Note further that the lifetime of a component under delay time degradation is given by T = X + Z. There is a scheduled down every τ time units. During a scheduled down, we can perform an inspection at cost C_i . The assumption that *X* has an exponential distribution fits well in many settings, as explained in Section 1.

We will analyze the following periodic condition based maintenance (PCBM) policy for such components: The component is inspected every $n\tau$ time units, where both $n \in \mathbb{N}$ and $\tau > 0$ are policy parameters. If the component is found to be defect during inspection, we apply a preventive replace-

Figure 2: The cost of a PUBM policy for different values of *n* and optimized over $n \in \{1, 2, 3, 4, 5\}$ for a Weibul distribution with shape $\beta = 5$ and scale $\alpha = 50$ with $C_p = 1000$, $C_u = 1500$, and $C_r = 600$

Figure 3: The cost of a PUBM policy for n = 2 for a Weibul distribution with shape $\beta = 5$ and scale $\alpha = 50$ with $C_p = 1000$, $C_u = 1500$, and $C_r = 600$. The cost of each term is also shown.

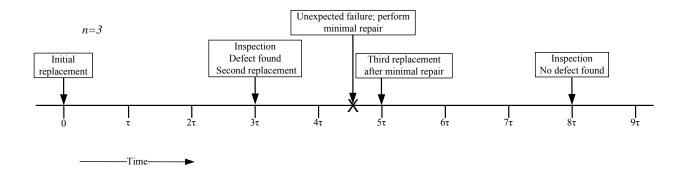


Figure 4: Sample path of a policy with minimal repair between inspection epochs and delay time degradation

ment at cost $C_p \ge 0$. If the component fails before a defect is found at an inspection, we apply minimal repair at a cost of $C_r \ge 0$. This minimal repair will restore the component to a condition that is statistically identical to its state just prior to failure in the sense that its failure rate is restored to the failure rate of the delay time random variable at the time of failure. We thus assume that a minimal repair will never take a component out the defective state. If a minimal repair occurs between scheduled downs, then there is a full replacement at the next scheduled down at the cost $C_u \ge 0$. (Note that an inspection may not have been planned at the next scheduled down.) Usually $C_u \ge C_p$ because it is more difficult to maintain a component that has been "kept together" by minimal repairs, but our analysis does not require this assumption. Finally, there is an inspection cost $C_i \ge 0$ per inspection epoch. A sample path of this policy is shown in Figure 4. Observe that each time a component is replaced or inspected is a renewal point due to the lack of memory of *X*. Therefore, the PCBM policy can be analyzed with renewal theory.

4.1 **Performance evaluation**

The expected cycle length under the PCBM policy can be found in the same way as for the PUBM policy and is the same as given in Equation 1:

$$ECL = \sum_{k=1}^{n-1} k\tau \left[F_T(k\tau) - F_T((k-1)\tau) \right] + n\tau F_T((n-1)\tau).$$
(5)

Finding the expected costs incurred during a renewal cycle is more involved. The crux is again to determine the expected number of minimal repairs during a renewal cycle. To this end, we define Y as

the number of minimal repairs that occur during a renewal cycle.

Lemma 2. The expected number of minimal repairs during a renewal cycle of the PCBM policy satisfies:

$$\mathbb{E}[Y] = F_T(n\tau) + \int_{x=0}^{n\tau} \int_{z=0}^{n\tau-x} \int_{t=z}^{z+\lceil \frac{x+z}{\tau} \rceil \tau-x} h_Z(t) f_X(x) f_Z(z) dt dz dx,$$

where $\lceil x \rceil$ denotes x rounded up to the nearest integer.

Proof. Let us first study a renewal cycle starting from time 0 where $T = X + Z < n\tau$. Failure thus occurs at time X + Z and so the first scheduled down after this is at time $\left\lceil \frac{X+Z}{\tau} \right\rceil \tau$. This means that at time $t \in (X + Z, \left\lceil \frac{X+Z}{\tau} \right\rceil \tau)$, additional failures occur at rate $h_Z(t - X)$. Therefore, we have:

$$\mathbb{E}[Y \mid X = x, Z = z] = \begin{cases} 1 + \int_{t=z}^{\left\lceil \frac{x+z}{\tau} \right\rceil \tau - x} h_Z(t) dt, & \text{if } 0 \le x + y \le n\tau; \\ 0, & \text{otherwise.} \end{cases}$$
(6)

Now we have that:

$$\mathbb{E}[Y] = \int_{x=0}^{\infty} \int_{z=0}^{\infty} \mathbb{E}[Y \mid X = x, Z = z] f_X(x) f_Z(z) dz dx$$

$$= \int_{x=0}^{n\tau} \int_{z=0}^{n\tau-x} \left[1 + \int_{t=z}^{\left\lceil \frac{x+z}{\tau} \right\rceil \tau - x} h_Z(t) dt \right] f_X(x) f_Z(z) dz dx$$

$$= F_T(n\tau) + \int_{x=0}^{n\tau} \int_{z=0}^{n\tau-x} \int_{t=z}^{\left\lceil \frac{x+z}{\tau} \right\rceil \tau - x} h_Z(t) f_X(x) f_Z(z) dt dz dx,$$
(7)

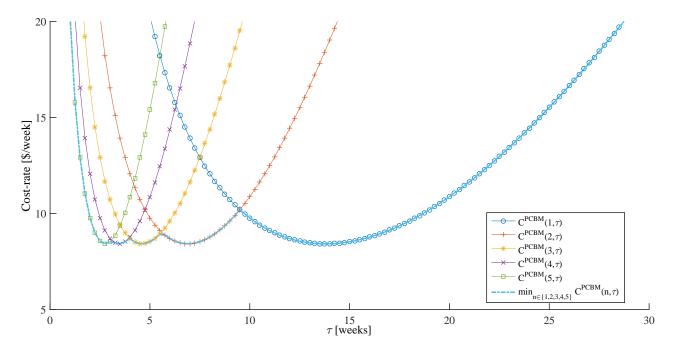
where the first equality follows from the law of total probability, the second from using equation (6), and the third by observing that $\int_{x=0}^{n\tau} \int_{z=0}^{n\tau-x} f_X(x) f_Z(z) dz dx = \mathbb{P}(T \le n\tau)$.

The expected cycle costs can be expressed as:

$$ECC = C_r \mathbb{E}[Y] + C_u \mathbb{P}(T \le n\tau) + C_p \mathbb{P}(X < n\tau \cap X + Y > n\tau) + \mathbb{P}(T \ge n\tau)C_i$$

= $C_r \mathbb{E}[Y] + C_u F_T(n\tau) + C_p \int_{x=0}^{n\tau} (1 - F_Z(n\tau - x))f_X(x)dx + C_i(1 - F_T(n\tau)),$ (8)

so that by the renewal reward theorem we have:


Theorem 2. Under a PCBM policy with parameters τ and n, the average cost rate, $C^{PCBM}(n, \tau)$, satisfies $C^{PCBM}(n, \tau) = ECC/ECL$ where ECL is given by equation (5) and ECC is given by equation (8) with $\mathbb{E}[Y]$ as given in Lemma 2.

Remark 2. The case where a component's condition is monitored continuously, but maintenance is only possible at scheduled dows, can be modeled by setting n = 1 and $C_i = 0$.

4.2 Optimization

The optimization of the PCBM policy (minimization of $C^{PCBM}(n, \tau)$) is difficult. Although $C^{PCBM}(n, \tau)$ appears to be convex in τ for fixed n, clearly $\min_{n \in \mathbb{N}} C^{PCBM}(n, \tau)$ is not, see Figure 5. However, the same approach used for the minimization of $C^{PUBM}(n, \tau)$ works here too. There are often practical reasons to optimize τ over a fixed grid (e.g. weeks or months). Let ε denote the granularity of the grid and let $\tau_m = m\varepsilon$ for $m \in \mathbb{N}$. Enumeration is needed for formal optimality guarantees, but the same heuristic that works for the PUBM policy also works here in all cases we studied: For each τ_m on the grid, one may find a (near) optimal n_m^* by computing $C^{PCBM}(k, \tau)$ for $k = 1, \ldots$ until $C^{PCBM}(k+1, \tau) \ge C^{PCBM}(k, \tau)$ and use $n_m^* = k$ as the optimal number of downs between planned inspections for the given τ_m . This procedure can be further accelerated when the grid size is sufficiently small: if n_m^* is optimal for τ_m , then $n_{m+1}^* \in \{n_m^*, n_m^* - 1\}$.

Figure 5 also reveals that $\tau^*(n) \approx \tau^*(1)/n$ also for the PCBM policy. (Here, $\tau^*(n)$ denotes the minimizer of $C^{PCBM}(n, \tau)$ over τ for a fixed n.) The reason for this is analogous to the reason why this holds for the PUBM policy; see Section 3.2.

Figure 5: The cost of a PCBM policy for different values of *n* and optimized over $n \in \{1, 2, 3, 4, 5\}$ for an exponential time to defect with mean 15 weeks and a Weibul delay time distribution with shape $\beta = 3$ and scale $\alpha = 30$ with $C_p = 1000$, $C_u = 1500$, $C_r = 600$, and $C_i = 50$.

5. Maintenance programs for multi-component system

In Sections 3 and 4, we have introduced two single-item maintenance models. However, components belong to a system consisting of many components, which means that the maintenance policies per component need to be coordinated. We introduce this optimization problem formally, give a solution approach, and conclude this section with an example.

5.1 Problem description

Consider a system consisting of multiple components that are subject to failure. Let *I* denote the set of all components in a system and let I_{PCBM} denote the set of components for which we apply the PCBM policy and I_{PUBM} denote the set of components for which we apply the PUBM policy; $I_{PCBM} \cap I_{PUBM} = \emptyset$ and $I_{PCBM} \cup I_{PUBM} = I$. The system will have a scheduled down every τ time units. τ is a decision variable at the system level. Each scheduled down incurs an expected cost of C_d so that the cost-rate due to scheduled downs is C_d/τ .

For each component $i \in I_{PUBM}$, the lifetime T_i , its distribution $F_{T_i}(t)$ and density $f_{T_i}(t)$ are given, as well as the cost of a minimal repair $C_{r,i}$, corrective replacement $C_{u,i}$ and planned preventive replacement $C_{p,i}$. We apply the PUBM policy as described in SECTION3 with τ as the time between scheduled downs. For each component $i \in I_{PUBM}$, we need to decide on the number of scheduled downs n_i before we apply preventive maintenance. We let $C_i^{PUBM}(n_i, \tau)$ denote the average cost-rate of a component $i \in I_{PUBM}$ when scheduled downs are τ time units apart and n_i is the number of scheduled downs before component i is replaced preventively. Furthermore, we let $C_i^{PUBM*}(\tau) = C_i^{PUBM}(n_i^*(\tau), \tau)$, where $n_i^*(\tau)$ minimizes $C_i^{PUBM}(n_i, \tau)$ over $n_i \in \mathbb{N}$ for a given τ .

Components $i \in I_{PCBM}$ are assumed to have an exponential time to defect, X_i , and generally distributed delay time Z_i with corresponding known distributions and densities. Corrective maintenance costs $C_{u,i}$, preventive maintenance costs $C_{p,i}$, and minimal repairs cost $C_{r,i}$ per repair. We control the system using the PUBM policy described in SECTION4. We let $C_i^{PCBM}(n_i, \tau)$ denote the expected costrate incurred by component $i \in I_{PCBM}$ when scheduled downs are τ time units apart and inspections are planned n_i scheduled downs after replacement. Furthermore, we let $C_i^{PCBM*}(\tau) = C_i^{PCBM}(n_i^*(\tau), \tau)$, where $n_i^*(\tau)$ minimizes $C_i^{PCBM}(n_i, \tau)$ over $n_i \in \mathbb{N}$ for a given τ .

The optimization problem that we seek to solve is the following multi-variable non-linear non-

convex mixed integer programming problem:

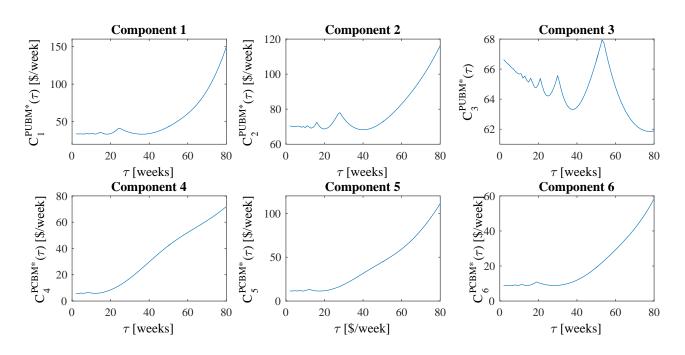
$$(P1) \quad \min_{\tau,n_i} \sum_{i \in I_{PUBM}} C_i^{PUBM}(n_i,\tau) + \sum_{i \in I_{PCBM}} C_i^{PCBM}(n_i,\tau) + \frac{C_d}{\tau}$$

subject to $n_i \in \mathbb{N}, \quad \forall i \in I$
 $\tau \ge 0,$ (9)

which is equivalent to the following single variable non-linear non-convex programming problem:

$$(P2) \quad \min_{\tau \ge 0} \quad C_{system} = \sum_{i \in I_{PUBM}} C_i^{PUBM*}(\tau) + \sum_{i \in I_{PCBM}} C_i^{PCBM*}(\tau) + \frac{C_d}{\tau}$$
(10)

5.2 Solution approach


Optimization problems (P1) and (P2) are non-linear and non-convex, so we cannot hope for a very efficient algorithm. However, for a fixed τ , the objective of (10) can be approximately evaluated by assuming $C_{PUBM,i}(n_i,\tau)$ and $C_i^{PCBM}(n_i,\tau)$ are uni-modal in n_i for fixed τ and using a greedy search to find n_i^* for each $i \in I$. A good solution for optimization problem (P2) can therefore be found by evaluating $C_{system}(\tau)$ using the scheme above on a sufficiently fine grid $\tau \in {\varepsilon, 2\varepsilon, ...}$. In many practical applications, there is a natural grid size, ε , because scheduled downs need to occur at known occasions such as weekends or the end of the month.

5.3 Example

Consider a system that consists of 6 components with cost and distribution data as indicated in Table 1. The optimal costs for a given τ for each component is shown in Figure 6. The optimal costs for each component are multi-modal as we also observed in Sections 3.2 and 4.2. The optimal $n_i^*(\tau)$ for each τ and component are decreasing in τ as shown in Figure 7. This is a consequence of our earlier observation that $n_i^*(\tau - \varepsilon) \in \{n_i^*(\tau), n_i^*(\tau) - 1\}$ for sufficiently small ε . The costs for the system as a whole are obtained by summing the costs for each component and adding the cost rate for scheduled downtimes, C_d/τ . Figure 8 shows C_{system} for the case that $C_d = 6000$. From this figure, we can see that the optimal time between scheduled downs for the system as a whole is $\tau^* = 40$ weeks leading to an optimal system-wide cost of $C_{system}^* = 389.04$ \$/week. The n_i for this solution can be read from Figure 7 to be $(n_1, n_2, n_3, n_4, n_5, n_6) = (1, 1, 2, 1, 1, 1)$.

							We	ibul parameters of
						mean time	life/d	elay time distribution
Component	Policy	Cp	Cu	C_r	C_i	to defect	α	β
1	PUBM	1000	1900	600	-	-	50	6
2	PUBM	2000	3500	1300	-	-	55	4
3	PUBM	3000	4500	1700	-	-	90	3
4	PCBM	1000	1900	600	50	35	47	3.5
5	PCBM	500	1200	450	150	29	40	4.1
6	PCBM	750	1100	550	200	40	55	5

Table 1: Input parameters for an example with 6 components

Figure 6: Optimal cost per component for several scheduled down intervals τ .

6. Conclusions

We have proposed two single-item maintenance policies that are convenient to use in a framework for multi-item maintenance optimization. A key assumption that we have made is that there are scheduled downs that can be synchronized over multiple components, during which preventive periodic or condition based maintenance can be performed, while an unscheduled down that results from the failure of one component is used only to minimally repair that one component. This is a realistic assumption if it is very important to have a failed capital asset up as soon as possible or if it is impossible to perform

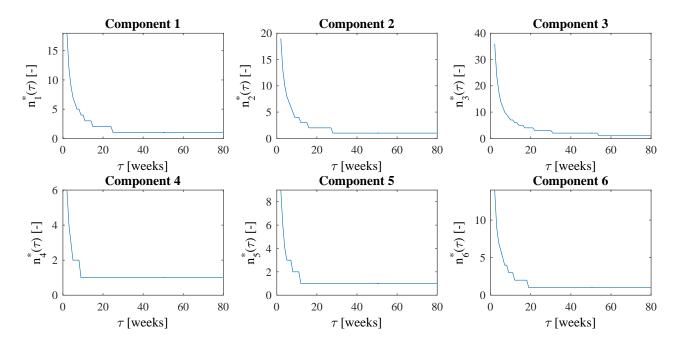


Figure 7: Optimal number of scheduled downs between planned maintenance.

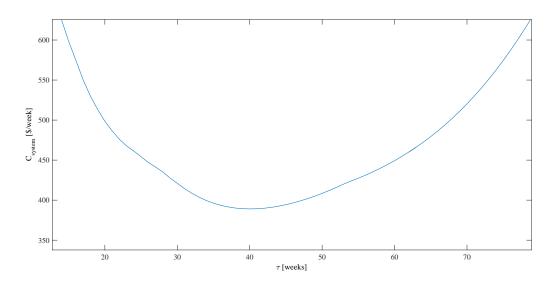


Figure 8: Total optimal cost for the system as a whole for different scheduled down intervals.

thorough maintenance on the failed component and other components at unscheduled downs. Settings were this assumption holds include maintenance of military equipment during a mission and maintenance for ships that are sailing. We have explained how the maintenance program for a complete capital asset can be optimized if there are many components using different maintenance policies, and we have given an example. It would be interesting to combine the models that we have proposed with the models that Zhu (2015) has proposed. He assumes in his models that at an unscheduled down, a complete repair or replacement is performed on the failed component and that other components may be repaired or replaced as well. There are situations where his models fit well and there are situations where our models fit well, but there may also be situations where a minimal repair is interesting for some components, while other components require a complete repair, which gives the opportunity to also repair other components. From a mathematical point of view, we do not expect too many difficulties, except that the total costs cannot be evaluated exactly, since that is not possible with the models of Zhu (2015). Determining all the required inputs for a complete capital asset will be challenging, but the resulting case study should be very interesting.

Combining a maintenance program with other constraints is another interesting possibility for future research. For example, if a user has multiple capital assets, or if the supplier of the capital asset is responsible for the upkeep of many capital assets, then synchronization of the maintenance over the complete installed base becomes relevant. Sometimes clustering will be interesting, for example if systems are geographically close to each other, while spreading out the work is interesting if the work load of the service engineers is taken into account. Rescheduling the exact timing of maintenance at an operational level is also interesting to look at, for instance because of unavailability of service engineers or spare parts.

Acknowledgements

We thank Laura Restrepo for useful comments on an earlier draft of this paper. We also thank the Netherlands Organisation for Scientific Research for funding this research.

References

- Bajestani, M. A. and Banjevic, D. (2016). Calendar-based age replacement policy with dependent renewal cycles. *IIE Transactions*. Accepted Manuscript.
- Barlow, R. and Hunter, L. (1960). Optimum preventive maintenance policies. *Operations Research*, 8(1):90–100.

Barlow, R. E. and Proschan, F. (1965). Mathematical theory of reliability john wiley & sons. New York.

- Berg, M. and Epstein, B. (1976). A modified block replacement policy. *Naval Research Logistics Quarterly*, 23(1):15–24.
- Castanier, B., Grall, A., and Bérenguer, C. (2005). A condition-based maintenance policy with nonperiodic inspections for a two-unit series system. *Reliability Engineering and System Safety*, 87(1):109– 120.
- Christer, A. H. (1982). Modelling inspection policies for building maintenance. *The Journal of the Operational Research Society*, 33(8):723–732.
- Christer, A. H. and Waller, W. M. (1984). Delay time models of industrial inspection maintenance problems. *The Journal of the Operational Research Society*, 35(5):401–406.
- Gits, C. W. (1992). Design of maintenance concepts. *International Journal of Production Economics*, 24:217–226.
- Jardine, A. K. S. and Tsang, A. H. C. (2006). *Maintenance, Replacement, and Reliability. Theory and Applications*. Dekker Mechanical Engineering. CRC Press, Boca Raton (FL).
- Levi, R., Magnanti, T. L., Muckstadt, J. A., Segev, D., and Zarybnisky, E. J. (2014). Maintenance scheduling for modular systems: Modeling and algorithms. *Naval Research Logistics*, 61(6):472–488.
- Nicolai, R. P. and Dekker, R. (2008). Optimal maintenance of multi-component systems: A review. In Kobbacy, K. A. H. and Murthy, D. N. P., editors, *Complex System Maintenance Handbook*, Springer Series in Reliability Engineering, pages 263–286. Springer, London (UK).
- Olde Keizer, M. C. A., Teunter, R. H., and Veldman, J. (2016). Clustering condition-based maintenance for systems with redundancy and economic dependencies. *European Journal of Operational Research*, 251:531–540.
- Pintelon, L. and Van Puyvelde, F. (2006). Maintenance Decision Making. Acco, Leuven (Belgium).
- Rausand, M. (1998). Reliability centered maintenance. *Reliability Engineering and System Safety*, 60:121–132.

- Thomas, L. C. (1986). A survey of maintenance and replacement models for maintainability and reliability of multi-item systems. *Reliability Engineering*, 16(4):297–309.
- Tian, Z. and Liao, H. (2011). Condition based maintenance optimization for multi-component systems using proportional hazards model. *Reliability Engineering and System Safety*, 96(5):581–589.
- Tijms, H. (2003). A First Fourse in Stochastic Models. John Wiley & Sons.
- De Jonge, B., Klingenberg, W., Teunter, R. H., and Tinga, T. (2016). Reducing costs by clustering maintenance activities for multiple critical units. *Reliability Engineering and System Safety*, 145:93–103.
- Van Dijkhuizen, G. and Van Harten, A. (1997). Optimal clustering of frequency-constrained maintenance jobs with shared set-ups. *European Journal of Operational Research*, 99:552–564.
- Van Horenbeek, A. and Pintelon, L. (2013). A dynamic predictive maintenance policy for complex multicomponent systems. *Reliability Engineering and System Safety*, 120:39–50.
- Waeyenbergh, G. (2005). *A framework for industrial maintenance concept development*. PhD thesis, Katholieke Universiteit Leuven.
- Waeyenbergh, G. and Pintelon, L. (2009). Cibocof: A framework for industrial maintenance concept development. *International Journal of Production Economics*, 121(2):633–640.
- Wildeman, R. E., Dekker, R., and Smit, A. C. J. M. (1997). A dynamic policy for grouping maintenance activities. *European Journal of Operational Research*, 99:530–551.
- Zhu, Q. (2015). *Maintenance optimization for multi-component systems under condition monitoring*. PhD thesis, Eindhoven University of Technology.
- Zhu, Q., Peng, H., Timmermans, B., and Van Houtum, G. J. (2016a). A condition-based maintenance model for a single component in a system with scheduled and unscheduled downs. *BETA Working Paper*, 499.
- Zhu, Q., Peng, H., and van Houtum, G. J. (2016b). An age-based maintenance policy using the opportunities of scheduled and unscheduled system downs. *BETA Working Paper*, 498.

Nr.	Year	Title	Author(s)
513	2016	Single-Item Models with Minimal Repair for Multi-Item	Joachim Arts and Rob Basten
		Maintenance Optimization	
512	2016	Using Imperfect Advance Demand Information in Lost-Sales	Engin Topan, Tarkan Tan, Geert-Jan Van
		Inventory Systems	Houtum, Rommert Dekker
511	2016	Integrated Resource Planning in Maintenance Logistics with	S. Rahimi Ghahroodi, A. Al Hanbali, W.
		Spare Parts Emergency Shipment and Service Engineers	H. M. Zijm, J. K. W. van Ommeren, A.
		Backlogging	Sleptchenko
510	2016	A note on Maximal Covering Location Games	Loe Schlicher, Marco Slikker, Geert-Jan
			van Houtum
509	2016	Spare parts pooling games under a critical level policy	Loe Schlicher, Marco Slikker, Geert-Jan
			van Houtum
508	2016	A note on "Linear programming models for a stochastic	Thomas D. van Pelt, Jan C. Fransoo
		dynamic capacitated lot sizing problem"	
507	2016	Multi-hop driver-parcel matching problem with time	Wenyi Chen, Martijn Mes, Marco
		windows	Schutten
506	2016	Constrained maintenance optimization under non-constant	J.P.C. Driessen, H. Peng, G.J. van
		probabilities of imperfect inspections	Houtum
505	2016	Awareness Initiative for Agile Business Models in the Dutch	Paul Grefen, Oktay Turetken, Maryam
		Mobility Sector: An Experience Report	Razavian
504	2016	Service and transfer selection for freights in a synchromodal	Arturo Pérez Rivera, Martijn Mes
		network	
503	2016	Simulation of a multi-agent system for autonomous trailer	Berry Gerrits, Martijn Mes, Peter Schuur
		docking	
502	2016	Integral optimization of spare parts inventories in systems	Andrei Sleptchenko, Matthieu van der
		with redundancies	Heijden
501	2016	An agent-based simulation framework to evaluate urban	Wouter van Heeswijk, Martijn Mes,
500	2016	logistics scheme	Marco Schutten
500	2016	Integrated Maintenance and Spare Part Optimization for	Ayse Sena Eruguz, Tarkan Tan, Geert-Jan
		Moving Assets	van Houtum
499	2016	A Condition-Based Maintenance Model for a Single	Qiushi Zhu, Hao Peng, Bas Timmermans,
		Component in a System with Scheduled and Unscheduled	and Geert-Jan van Houtum
400	2010	Downs	Oliveki Zhu, Uze Deze
498	2016	An age-based maintenance policy using the opportunities of	Qiushi Zhu, Hao Peng,
407	2016	scheduled and unscheduled system downs	Geert-Jan van Houtum
497	2016	Dynamism in Inter-Organizational Service Orchestration - An Analysis of the State of the Art	Paul Grefen Stefanie Rinderle-Ma
496	2016	Service-Dominant Business	Oktay Türetken, Paul Grefen
490	2010	Modeling in Transport Logistics	Oktay Turetken, Paul Greien
495	2016	Approximate Dynamic Programming by Practical Examples	Martijn Mes
			Arturo Perez Rivera
494	2016	Design of a near-optimal generalized ABC classi [®] cation for a	E. Van Wingerden
		multi-item inventory control problem	T. Tan
			G.J. Van Houtum
493	2015	multi-item inventory control problem	W.J.A. van Heeswijk
			M.R.K. Mes
			J.M.J Schutten
492	2015	Anticipatory Freight Selection in Intermodal	A.E. Pérez Rivera
		Long-haul Round-trips	M.R.K. Mes
491	2015	Base-stock policies for lost-sales models:	Joachim Arts
		Aggregation and asymptotics	Retsef Levi
			Geert-Jan van Houtum
			Bert Zwart
490	2015	The Time-Dependent Pro_table Pickup and Delivery	Peng Sun
450	2012	Traveling Salesman Problem with Time Windows	Said Dabia
			Lucas P. Veelenturf
			Tom Van Woensel

Nr.	Year	Title	Author(s)
489	2015	A survey of maintenance and service logistics management:	Ayse Sena Eruguz, Tarkan Tan, Geert-Jan
		Classification and research agenda from a maritime sector perspective	van Houtum
488	2015	Structuring AHP-based maintenance policy selection	A.J.M. Goossens, R.J.I. Basten, J.M. Hummel, L.L.M. van der Wegen
487	2015	Pooling of critical, low-utilization resources with	Loe Schlicher, Marco Slikker,
		unavailability	Geert-Jan van Houtum
486	2015	Business Process Management Technology for Discrete Manufacturing	lrene Vanderfeesten, Paul Grefen
485	2015	Towards an Architecture for Cooperative-Intelligent Transport System (C-ITS) Applications in the Netherlands	Marcel van Sambeek, Frank Ophelders, Tjerk Bijlsma, Borgert van der Kluit, Oktay Türetken, Rik Eshuis, Kostas Traganos, Paul Grefen
484	2015	Reasoning About Property Preservation in Adaptive Case Management	Rik Eshuis, Richard Hull, Mengfei Yi
483	2015	An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows and Scheduled Lines	Veaceslav Ghilas, Emrah Demir, Tom Van Woensel
482	2015	Inventory Dynamics in the Financial Crisis: An Empirical Analysis of Firm Responsiveness and its Effect on Financial Performance	Kai Hoberg, Maximiliano Udenio, Jan C. Fransoo
481	2015	The extended gate problem: Intermodal hub location with multiple actors	Yann Bouchery, Jan Fransoo, Marco Slikker
480	2015	Inventory Management with Two Demand Streams: A Maintenance Application	Rob J.I. Basten, Jennifer K. Ryan
479	2015	Optimal Design of Uptime-Guarantee Contracts	Behzad Hezarkhani
478	2015	Collaborative Replenishment in the Presence of Intermediaries	Behzad Hezarkhani, Marco Slikker, Tom Van Woensel
477	2015	Reference Architecture for Mobility-Related Services A reference architecture based on GET Service and SIMPLI-CITY Project architectures	A. Husak, M. Politis, V. Shah, R. Eshuis, P. Grefen
476	2015	A Multi-Item Approach to Repairable Stocking and Expediting in a Fluctuating Demand Environment	Joachim Arts
475	2015	An Adaptive Large Neighborhood Search Heuristic for the Share-a-Ride Problem	Baoxiang Li, Dmitry Krushinsky, Tom Van Woensel, Hajo A. Reijers
474	2015	An approximate dynamic programming approach to urban freight distribution with batch arrivals	Wouter van Heeswijk, Martijn Mes, Marco Schutten
473	2015	Dynamic Multi-period Freight Consolidation	Arturo Pérez Rivera, Martijn Mes
472	2015	Maintenance policy selection for ships: finding the most	A.J.M. Goossens, R.J.I. Basten
471	2015	important criteria and considerations Using Twitter to Predict Sales: A Case Study	Remco Dijkman, Panagiotis Ipeirotis, Freek Aertsen, Roy van Helden
470	2015	The Effect of Exceptions in Business Processes	Remco Dijkman, Geoffrey van IJzendoorn, Oktay Türetken, Meint de Vries
469	2015	Business Model Prototyping for Intelligent Transport Systems. A Service-Dominant Approach	Konstantinos Traganos, Paul Grefen, Aafke den Hollander, Oktay Türetken, Rik Eshuis
468	2015	How suitable is the RePro technique for rethinking care processes?	Rob J.B. Vanwersch, Luise Pufahl, Irene Vanderfeesten, Jan Mendling, Hajo A. Reijers
467	2014	Where to exert abatement effort for sustainable operations considering supply chain interactions?	Tarkan Tan, Astrid Koomen
466	2014	An Exact Algorithm for the Vehicle Routing Problem with Time Windows and Shifts	Said Dabia, Stefan Ropke, Tom Van Woensel

Nr.	Year	Title	Author(s)
465	2014	The RePro technique: a new, systematic technique for	Rob J.B. Vanwersch, Luise Pufahl, Irene
		rethinking care processes	Vanderfeesten, Hajo A. Reijers
464	2014	Exploring maintenance policy selection using the Analytic	A.J.M. Goossens, R.J.I. Basten
		Hierarchy Process: an application for naval ships	
463	2014	Allocating service parts in two-echelon networks at a utility	D. van den Berg, M.C. van der Heijden,
		company	P.C. Schuur
462	2014	Freight consolidation in networks with transshipments	W.J.A. van Heeswijk, M.R.K. Mes, J.M.J.
			Schutten, W.H.M. Zijm
461	2014	A Software Architecture for a Transportation Control Tower	Anne Baumgrass, Remco Dijkman, Paul
			Grefen, Shaya Pourmirza, Hagen Völzer,
			Mathias Weske
460	2014	Small traditional retailers in emerging markets	Youssef Boulaksil, Jan C. Fransoo, Edgar
			E. Blanco, Sallem Koubida
459	2014	Defining line replaceable units	J.E. Parada Puig, R.J.I. Basten
458	2014	Inventories and the Credit Crisis: A Chicken and Egg Situation	Maximiliano Udenio, Vishal Gaur, Jan C.
			Fransoo
457	2014	An Exact Approach for the Pollution-Routing Problem	Said Dabia, Emrah Demir, Tom Van
			Woensel
456	2014	Fleet readiness: stocking spare parts and high-tech assets	Rob J.I. Basten, Joachim J. Arts
455	2014	Competitive Solutions for Cooperating Logistics Providers	Behzad Hezarkhani, Marco Slikker, Tom
			Van Woensel
454	2014	Simulation Framework to Analyse Operating Room Release	Rimmert van der Kooij, Martijn Mes,
		Mechanisms	Erwin Hans
453	2014	A Unified Race Algorithm for Offline Parameter Tuning	Tim van Dijk, Martijn Mes, Marco
			Schutten, Joaquim Gromicho
452	2014	Cost, carbon emissions and modal shift in intermodal	Yann Bouchery, Jan Fransoo
		network design decisions	
451	2014	Transportation Cost and CO2 Emissions in Location Decision	Josue C. Vélazquez-Martínez, Jan C.
		Models	Fransoo, Edgar E. Blanco, Jaime Mora-
			Vargas
450	2014	Tracebook: A Dynamic Checklist Support System	Shan Nan, Pieter Van Gorp, Hendrikus
			H.M. Korsten, Richard Vdovjak, Uzay
			Kaymak
449	2014	Intermodal hinterland network design with multiple actors	Yann Bouchery, Jan Fransoo
448	2014	The Share-a-Ride Problem: People and Parcels Sharing Taxis	Baoxiang Li, Dmitry Krushinsky, Hajo
			A. Reijers, Tom Van Woensel
447	2014	Stochastic inventory models for a single item at a single	K.H. van Donselaar, R.A.C.M.
		location	Broekmeulen
446	2014	Optimal and heuristic repairable stocking and expediting in a	Joachim Arts, Rob Basten, Geert-Jan
		fluctuating demand environment	van Houtum
445	2014	Connecting inventory control and repair shop control: a	M.A. Driessen, W.D. Rustenburg, G.J.
		differentiated control structure for repairable spare parts	van Houtum, V.C.S. Wiers
444	2014	A survey on design and usage of Software Reference	Samuil Angelov, Jos Trienekens, Rob
		Architectures	Kusters
443	2014	Extending and Adapting the Architecture Tradeoff Analysis	Samuil Angelov, Jos J.M. Trienekens,
		Method for the Evaluation of Software Reference	Paul Grefen
		Architectures	
442	2014	A multimodal network flow problem with product quality	Maryam SteadieSeifi, Nico Dellaert,
		preservation, transshipment, and asset management	Tom Van Woensel
441	2013	Integrating passenger and freight transportation: Model	Veaceslav Ghilas, Emrah Demir, Tom
		formulation and insights	Van Woensel
440	2013	The Price of Payment Delay	K. van der Vliet, M.J. Reindorp, J.C.
10-			Fransoo
439	2013	On Characterization of the Core of Lane Covering Games via	Behzad Hezarkhani, Marco Slikker, Tom
		Dual Solutions	van Woensel
438	2013	Destocking, the Bullwhip Effect, and the Credit Crisis:	Maximiliano Udenio, Jan C. Fransoo,
		Empirical Modeling of Supply Chain Dynamics	Robert Peels

Nr.	Year	Title	Author(s)
437	2013	Methodological support for business process redesign in healthcare: a systematic literature review	Rob J.B. Vanwersch, Khurram Shahzad, Irene Vanderfeesten, Kris Vanhaecht, Paul Grefen, Liliane Pintelon, Jan Mendling, Geofridus G. van Merode, Haio A. Reijers
436	2013	Dynamics and equilibria under incremental horizontal differentiation on the Salop circle	B. Vermeulen, J.A. La Poutré, A.G. de Kok
435	2013	Analyzing Conformance to Clinical Protocols Involving Advanced Synchronizations	Hui Yan, Pieter Van Gorp, Uzay Kaymak, Xudong Lu, Richard Vdovjak, Hendriks H.M. Korsten, Huilong Duan
434	2013	Models for Ambulance Planning on the Strategic and the Tactical Level	J. Theresia van Essen, Johann L. Hurink, Stefan Nickel, Melanie Reuter
433	2013	Mode Allocation and Scheduling of Inland Container Transportation: A Case-Study in the Netherlands	Stefano Fazi, Tom Van Woensel, Jan C. Fransoo
432	2013	Socially responsible transportation and lot sizing: Insights from multiobjective optimization	Yann Bouchery, Asma Ghaffari, Zied Jemai, Jan Fransoo
431	2013	Inventory routing for dynamic waste collection	Martijn Mes, Marco Schutten, Arturo Pérez Rivera
430	2013	Simulation and Logistics Optimization of an Integrated Emergency Post	N.J. Borgman, M.R.K. Mes, I.M.H. Vliegen, E.W. Hans
429	2013	Last Time Buy and Repair Decisions for Spare Parts	S. Behfard, M.C. van der Heijden, A. Al Hanbali, W.H.M. Zijm
428	2013	A Review of Recent Research on Green Road Freight Transportation	Emrah Demir, Tolga Bektas, Gilbert Laporte
427	2013	Typology of Repair Shops for Maintenance Spare Parts	M.A. Driessen, V.C.S. Wiers, G.J. van Houtum, W.D. Rustenburg
426	2013	A value network development model and implications for innovation and production network management	B. Vermeulen, A.G. de Kok
425	2013	Single Vehicle Routing with Stochastic Demands: Approximate Dynamic Programming	C. Zhang, N.P. Dellaert, L. Zhao, T. Van Woensel, D. Sever
424	2013	Influence of Spillback Effect on Dynamic Shortest Path Problems with Travel-Time-Dependent Network Disruptions	Derya Sever, Nico Dellaert, Tom Van Woensel, Ton de Kok
423	2013	Dynamic Shortest Path Problem with Travel-Time-Dependent Stochastic Disruptions: Hybrid Approximate Dynamic Programming Algorithms with a Clustering Approach	Derya Sever, Lei Zhao, Nico Dellaert, Tom Van Woensel, Ton de Kok
422	2013	System-oriented inventory models for spare parts	R.J.I. Basten, G.J. van Houtum
421	2013	Lost Sales Inventory Models with Batch Ordering and Handling Costs	T. Van Woensel, N. Erkip, A. Curseu, J.C. Fransoo
420	2013	Response speed and the bullwhip	Maximiliano Udenio, Jan C. Fransoo, Eleni Vatamidou, Nico Dellaert
419	2013	Anticipatory Routing of Police Helicopters	Rick van Urk, Martijn R.K. Mes, Erwin W. Hans
418	2013	Supply Chain Finance: research challenges ahead	Kasper van der Vliet, Matthew J. Reindorp, Jan C. Fransoo
417	2013	Improving the Performance of Sorter Systems by Scheduling Inbound Containers	S.W.A. Haneyah, J.M.J. Schutten, K. Fikse
416	2013	Regional logistics land allocation policies: Stimulating spatial concentration of logistics firms	Frank P. van den Heuvel, Peter W. de Langen, Karel H. van Donselaar, Jan C. Fransoo
415	2013	The development of measures of process harmonization	Heidi L. Romero, Remco M. Dijkman, Paul W.P.J. Grefen, Arjan van Weele
414	2013	BASE/X. Business Agility through Cross-Organizational Service Engineering. The Business and Service Design Approach developed in the CoProFind Project	
413	2013	The Time-Dependent Vehicle Routing Problem with Soft Time Windows and Stochastic Travel Times	Duygu Tas, Nico Dellaert, Tom van Woensel, Ton de Kok
412	2013	Clearing the Sky - Understanding SLA Elements in Cloud Computing	Marco Comuzzi, Guus Jacobs, Paul Grefen

Nr.	Year	Title	Author(s)
411	2013	Approximations for the waiting time distribution in an M/G/c	A. Al Hanbali, E.M. Alvarez, M.C. van der
		priority queue	Heijden
410	2013	To co-locate or not? Location decisions and logistics	Frank P. van den Heuvel, Karel H. van
		concentration areas	Donselaar, Rob A.C.M. Broekmeulen,
			Jan C. Fransoo, Peter W. de Langen
409	2013	The Time-Dependent Pollution-Routing Problem	Anna Franceschetti, Dorothée Honhon,
			Tom van Woensel, Tolga Bektas, Gilbert
			Laporte
408	2013	Scheduling the scheduling task: A time management	J.A. Larco, V. Wiers, J. Fransoo
		perspective on scheduling	
407	2013	Clustering Clinical Departments for Wards to Achieve a	J. Theresia van Essen, Mark van
-		Prespecified Blocking Probability	Houdenhoven, Johann L. Hurink
406	2013	MyPHRMachines: Personal Health Desktops in the Cloud	Pieter Van Gorp, Marco Comuzzi
405	2013	Maximising the Value of Supply Chain Finance	Kasper van der Vliet, Matthew J.
	-010		Reindorp, Jan C. Fransoo
404	2013	Reaching 50 million nanostores: retail distribution in	Edgar E. Blanco, Jan C. Fransoo
-0-	2015	emerging megacities	
403	2013	A Vehicle Routing Problem with Flexible Time Windows	Duygu Tas, Ola Jabali, Tom van Woensel
-05	2015	A venicie routing i robient with hexible time windows	buygu ras, ola jabali, rolli vali woeliser
402	2013	The Service Dominant Business Model: A Service Focused	Egon Lüftenegger, Marco Comuzzi, Paul
402	2015	Conceptualization	Grefen, Caren Weisleder
401	2013	Relationship between freight accessibility and logistics	Frank P. van den Heuvel, Liliana Rivera,
401	2015		
		employment in US counties	Karel H. van Donselaar, Ad de Jong,
			Yossi Sheffi, Peter W. de Langen, Jan C.
100	2012		Fransoo
400	2012		Qiushi Zhu, Hao Peng, Geert-Jan van
200	2012	Systems with a High Maintenance Setup Cost	Houtum
399	2012	A flexible iterative improvement heuristic to support creation	
		of feasible shift rosters in self-rostering	Schutten, S.T. Uijland
398	2012	Scheduled Service Network Design with Synchronization and	K. Sharypova, T.G. Crainic, T. van
		Transshipment Constraints for Intermodal Container	Woensel, J.C. Fransoo
		Transportation Networks	
397	2012	Destocking, the bullwhip effect, and the credit crisis:	Maximiliano Udenio, Jan C. Fransoo,
		empirical modeling of supply chain dynamics	Robert Peels
396	2012	Vehicle routing with restricted loading capacities	J. Gromicho, J.J. van Hoorn, A.L. Kok,
			J.M.J. Schutten
395	2012	Service differentiation through selective lateral	E.M. Alvarez, M.C. van der Heijden,
		transshipments	I.M.H. Vliegen, W.H.M. Zijm
394	2012	A Generalized Simulation Model of an Integrated Emergency	Martijn Mes, Manon Bruens
		Post	
393	2012	Business Process Technology and the Cloud: defining a	Vassil Stoitsev, Paul Grefen
		Business Process Cloud Platform	
392	2012	Vehicle Routing with Soft Time Windows and Stochastic	D. Tas, M. Gendreau, N. Dellaert, T. van
		Travel Times: A Column Generation and Branch-and-Price	Woensel, A.G. de Kok
001		Traver Times. A column Generation and Branch-and-Price	
		Solution Approach	
391	2012		J. Theresia van Essen, Joël M. Bosch,
	2012	Solution Approach	
	2012	Solution Approach	J. Theresia van Essen, Joël M. Bosch,
	2012	Solution Approach	J. Theresia van Essen, Joël M. Bosch, Erwin W. Hans, Mark van Houdenhoven,
391		Solution Approach Improve OR-Schedule to Reduce Number of Required Beds	J. Theresia van Essen, Joël M. Bosch, Erwin W. Hans, Mark van Houdenhoven, Johann L. Hurink
391		Solution Approach Improve OR-Schedule to Reduce Number of Required Beds How does development lead time affect performance over the ramp-up lifecycle? Evidence from the consumer	J. Theresia van Essen, Joël M. Bosch, Erwin W. Hans, Mark van Houdenhoven, Johann L. Hurink Andreas Pufall, Jan C. Fransoo, Ad de
391		Solution Approach Improve OR-Schedule to Reduce Number of Required Beds How does development lead time affect performance over the ramp-up lifecycle? Evidence from the consumer electronics industry	J. Theresia van Essen, Joël M. Bosch, Erwin W. Hans, Mark van Houdenhoven, Johann L. Hurink Andreas Pufall, Jan C. Fransoo, Ad de Jong, A.G. (Ton) de Kok
391 390	2012	Solution Approach Improve OR-Schedule to Reduce Number of Required Beds How does development lead time affect performance over the ramp-up lifecycle? Evidence from the consumer	J. Theresia van Essen, Joël M. Bosch, Erwin W. Hans, Mark van Houdenhoven, Johann L. Hurink Andreas Pufall, Jan C. Fransoo, Ad de Jong, A.G. (Ton) de Kok Andreas Pufall, Jan C. Fransoo, Ad de
391 390 389	2012	Solution Approach Improve OR-Schedule to Reduce Number of Required Beds How does development lead time affect performance over the ramp-up lifecycle? Evidence from the consumer electronics industry The Impact of Product Complexity on Ramp-Up Performance	J. Theresia van Essen, Joël M. Bosch, Erwin W. Hans, Mark van Houdenhoven, Johann L. Hurink Andreas Pufall, Jan C. Fransoo, Ad de Jong, A.G. (Ton) de Kok Andreas Pufall, Jan C. Fransoo, Ad de Jong, A.G. (Ton) de Kok
391 390	2012	Solution Approach Improve OR-Schedule to Reduce Number of Required Beds How does development lead time affect performance over the ramp-up lifecycle? Evidence from the consumer electronics industry	J. Theresia van Essen, Joël M. Bosch, Erwin W. Hans, Mark van Houdenhoven, Johann L. Hurink Andreas Pufall, Jan C. Fransoo, Ad de Jong, A.G. (Ton) de Kok Andreas Pufall, Jan C. Fransoo, Ad de

Nr.	Year	Title	Author(s)
387	2012	Proximity matters: Synergies through co-location of logistics	Frank P. van den Heuvel, Peter W. de
		establishments	Langen, Karel H. van Donselaar, Jan C.
			Fransoo
386	2012	Spatial concentration and location dynamics in logistics: the	Frank P. van den Heuvel, Peter W. de
		case of a Dutch province	Langen, Karel H. van Donselaar, Jan C.
			Fransoo
385	2012	FNet: An Index for Advanced Business Process Querying	Zhiqiang Yan, Remco Dijkman, Paul
			Grefen
384	2012	Defining Various Pathway Terms	W.R. Dalinghaus, P.M.E. Van Gorp
383	2012	The Service Dominant Strategy Canvas: Defining and	Egon Lüftenegger, Paul Grefen, Caren
		Visualizing a Service Dominant Strategy through the	Weisleder
		Traditional Strategic Lens	
382	2012	A Stochastic Variable Size Bin Packing Problem with Time	Stefano Fazi, Tom van Woensel, Jan C.
		Constraints	Fransoo
381	2012	Coordination and Analysis of Barge Container Hinterland	K. Sharypova, T. van Woensel, J.C.
		Networks	Fransoo
380	2012	Proximity matters: Synergies through co-location of logistics	Frank P. van den Heuvel, Peter W. de
		establishments	Langen, Karel H. van Donselaar, Jan C.
			Fransoo
379	2012	A literature review in process harmonization: a conceptual	Heidi Romero, Remco Dijkman, Paul
		framework	Grefen, Arjan van Weele
378	2012	A Generic Material Flow Control Model for Two Different	S.W.A. Haneyah, J.M.J. Schutten, P.C.
		Industries	Schuur, W.H.M. Zijm
377	2012	Dynamic demand fulfillment in spare parts networks with	H.G.H. Tiemessen, M. Fleischmann, G.J.
		multiple customer classes	van Houtum, J.A.E.E. van Nunen, E.
			Pratsini
376	2012	Paper has been replaced by wp 417	K. Fikse, S.W.A. Haneyah, J.M.J. Schutten
375	2012	Strategies for dynamic appointment making by container	Albert Douma, Martijn Mes
		terminals	
374	2012	MyPHRMachines: Lifelong Personal Health Records in the	Pieter van Gorp, Marco Comuzzi
		Cloud	
373	2012	Service differentiation in spare parts supply through	E.M. Alvarez, M.C. van der Heijden,
		dedicated stocks	W.H.M. Zijm
372	2012	Spare parts inventory pooling: how to share the benefits?	Frank Karsten, Rob Basten
371	2012	Condition based spare parts supply	X. Lin, R.J.I. Basten, A.A. Kranenburg,
			G.J. van Houtum
370	2012	Using Simulation to Assess the Opportunities of Dynamic	Martijn Mes
		Waste Collection	
369	2012	Aggregate overhaul and supply chain planning for rotables	J. Arts, S.D. Flapper, K. Vernooij
368	2012	Operating Room Rescheduling	J.T. van Essen, J.L. Hurink, W. Hartholt,
			B.J. van den Akker
367	2011	Switching Transport Modes to Meet Voluntary Carbon	Kristel M.R. Hoen, Tarkan Tan, Jan C.
		Emission Targets	Fransoo, Geert-Jan van Houtum
366	2011	On two-echelon inventory systems with Poisson demand and	Elisa Alvarez, Matthieu van der Heijden
		lost sales	
365	2011	Minimizing the Waiting Time for Emergency Surgery	J.T. van Essen, E.W. Hans, J.L. Hurink, A.
			Oversberg
364	2012	Vehicle Routing Problem with Stochastic Travel Times	Duygu Tas, Nico Dellaert, Tom van
		Including Soft Time Windows and Service Costs	Woensel, Ton de Kok
363	2011	A New Approximate Evaluation Method for Two-Echelon	Erhun Özkan, Geert-Jan van Houtum,
		Inventory Systems with Emergency Shipments	Yasemin Serin
362	2011	Approximating Multi-Objective Time-Dependent	Said Dabia, El-Ghazali Talbi, Tom Van
		Optimization Problems	Woensel, Ton de Kok
361	2011	Branch and Cut and Price for the Time Dependent Vehicle	Said Dabia, Stefan Röpke, Tom Van
		Routing Problem with Time Windows	Woensel, Ton de Kok

Nr.	Year	Title	Author(s)
360	2011	Analysis of an Assemble-to-Order System with Different Review Periods	A.G. Karaarslan, G.P. Kiesmüller, A.G. de Kok
359	2011	Interval Availability Analysis of a Two-Echelon, Multi-Item System	Ahmad Al Hanbali, Matthieu van der Heijden
358	2011	Carbon-Optimal and Carbon-Neutral Supply Chains	Felipe Caro, Charles J. Corbett, Tarkan Tan, Rob Zuidwijk
357	2011	Generic Planning and Control of Automated Material Handling Systems: Practical Requirements Versus Existing Theory	Sameh Haneyah, Henk Zijm, Marco Schutten, Peter Schuur
356	2011	Last time buy decisions for products sold under warranty	Matthieu van der Heijden, Bermawi Iskandar
355	2011	Spatial concentration and location dynamics in logistics: the case of a Dutch province	Frank P. van den Heuvel, Peter W. de Langen, Karel H. van Donselaar, Jan C. Fransoo
354	2011	Identification of Employment Concentration Areas	Frank P. van den Heuvel, Peter W. de Langen, Karel H. van Donselaar, Jan C. Fransoo
353	2011	BPMN 2.0 Execution Semantics Formalized as Graph Rewrite Rules: extended version	Pieter van Gorp, Remco Dijkman
352	2011	Resource pooling and cost allocation among independent service providers	Frank Karsten, Marco Slikker, Geert-Jan van Houtum
351	2011	A Framework for Business Innovation Directions	E. Lüftenegger, S. Angelov, P. Grefen
350	2011	The Road to a Business Process Architecture: An Overview of Approaches and their Use	Remco Dijkman, Irene Vanderfeesten, Hajo A. Reijers
349	2011	Effect of carbon emission regulations on transport mode selection under stochastic demand	K.M.R. Hoen, T. Tan, J.C. Fransoo, G.J. van Houtum
348	2011	An improved MIP-based combinatorial approach for a multi- skill workforce scheduling problem	Murat Firat, Cor Hurkens
347	2011	An approximate approach for the joint problem of level of repair analysis and spare parts stocking	R.J.I. Basten, M.C. van der Heijden, J.M.J. Schutten
346	2011	Joint optimization of level of repair analysis and spare parts stocks	R.J.I. Basten, M.C. van der Heijden, J.M.J. Schutten
345	2011	Inventory control with manufacturing lead time flexibility	Ton G. de Kok
344	2011	Analysis of resource pooling games via a new extension of the Erlang loss function	Frank Karsten, Marco Slikker, Geert-Jan van Houtum
343	2011	Vehicle refueling with limited resources	Murat Firat, C.A.J. Hurkens, Gerhard J. Woeginger
342	2011	Optimal Inventory Policies with Non-stationary Supply Disruptions and Advance Supply Information	Bilge Atasoy, Refik Güllü, Tarkan Tan
341	2011	Redundancy Optimization for Critical Components in High- Availability Capital Goods	Kurtulus Baris Öner, Alan Scheller-Wolf, Geert-Jan van Houtum
340	2011	Making Decision Process Knowledge Explicit Using the Product Data Model	Razvan Petrusel, Irene Vanderfeesten, Cristina Claudia Dolean, Daniel Mican
339	2010	Analysis of a two-echelon inventory system with two supply modes	Joachim Arts, Gudrun Kiesmüller
338	2010	Analysis of the dial-a-ride problem of Hunsaker and Savelsbergh	Murat Firat, Gerhard J. Woeginger
335	2010	Attaining stability in multi-skill workforce scheduling	Murat Firat, Cor Hurkens
334	2010	Flexible Heuristics Miner (FHM)	A.J.M.M. Weijters, J.T.S. Ribeiro
333	2010	An exact approach for relating recovering surgical patient workload to the master surgical schedule	P.T. Vanberkel, R.J. Boucherie, E.W. Hans, J.L. Hurink, W.A.M. van Lent, W.H. van Harten
332	2010	Efficiency evaluation for pooling resources in health care	Peter T. Vanberkel, Richard J. Boucherie, Erwin W. Hans, Johann L. Hurink, Nelly Litvak
331	2010	The Effect of Workload Constraints in Mathematical Programming Models for Production Planning	M.M. Jansen, A.G. de Kok, I.J.B.F. Adan

Nr.	Year	Title	Author(s)
330	2010	Using pipeline information in a multi-echelon spare parts	Christian Howard, Ingrid Reijnen, Johan
		inventory system	Marklund, Tarkan Tan
329	2010	Reducing costs of repairable spare parts supply systems via dynamic scheduling	H.G.H. Tiemessen, G.J. van Houtum
328	2010	Identification of Employment Concentration and	Frank P. van den Heuvel, Peter W. de
		Specialization Areas: Theory and Application	Langen, Karel H. van Donselaar, Jan C.
			Fransoo
327	2010	A combinatorial approach to multi-skill workforce scheduling	M. Firat, C. Hurkens
326	2010	Stability in multi-skill workforce scheduling	M. Firat, C. Hurkens, A. Laugier
325	2010	Maintenance spare parts planning and control: A framework	M.A. Driessen, J.J. Arts, G.J. van
		for control and agenda for future research	Houtum, W.D. Rustenburg, B. Huisman
324	2010	Near-optimal heuristics to set base stock levels in a two-	R.J.I. Basten, G.J. van Houtum
		echelon distribution network	
323	2010	Inventory reduction in spare part networks by selective	M.C. van der Heijden, E.M. Alvarez,
		throughput time reduction	J.M.J. Schutten
322	2010	The selective use of emergency shipments for service-	E.M. Alvarez, M.C. van der Heijden,
224	2010	contract differentiation	W.H.M. Zijm
321	2010	Heuristics for Multi-Item Two-Echelon Spare Parts Inventory	Engin Topan, Z. Pelin Bayindir, Tarkan
		Control Problem with Batch Ordering in the Central	Tan
220	2010	Warehouse	Dah Malanya Kim E yang Operati at A
320	2010	Preventing or escaping the suppression mechanism:	Bob Walrave, Kim E. van Oorschot, A.
319	2010	intervention conditions Hospital admission planning to optimize major resources	Georges L. Romme Nico Dellaert, Jully Jeunet
519	2010	utilization under uncertainty	Nico Denaert, Juliy Jeuriet
318	2010		P Soquel P Eshuis D Grefen
318	2010	Minimal Protocol Adaptors for Interacting Services Teaching Retail Operations in Business and Engineering	R. Seguel, R. Eshuis, P. Grefen Tom Van Woensel, Marshall L. Fisher,
317	2010	Schools	Jan C. Fransoo
316	2010	Design for Availability: Creating Value for Manufacturers and	Lydie P.M. Smets, Geert-Jan van
510	2010	Customers	Houtum, Fred Langerak
315	2010	Transforming Process Models: executable rewrite rules	Pieter van Gorp, Rik Eshuis
		versus a formalized Java program	
314	2010	Working paper 314 is no longer available	
313	2010	A Dynamic Programming Approach to Multi-Objective Time-	S. Dabia, T. van Woensel, A.G. de Kok
		Dependent Capacitated Single Vehicle Routing Problems with	
		Time Windows	
312	2010	Tales of a So(u)rcerer: Optimal Sourcing Decisions Under	Osman Alp, Tarkan Tan
		Alternative Capacitated Suppliers and General Cost	
		Structures	
311	2010	In-store replenishment procedures for perishable inventory	R.A.C.M. Broekmeulen, C.H.M. Bakx
		in a retail environment with handling costs and storage	
		constraints	
310	2010	The state of the art of innovation-driven business models in	E. Lüftenegger, S. Angelov, E. van der
		the financial services industry	Linden, P. Grefen
309	2010	Design of Complex Architectures Using a Three Dimension	R. Seguel, P. Grefen, R. Eshuis
		Approach: the CrossWork Case	
308	2010	Effect of carbon emission regulations on transport mode	K.M.R. Hoen, T. Tan, J.C. Fransoo, G.J.
		selection in supply chains	van Houtum
307	2010	Interaction between intelligent agent strategies for real-time	Martijn Mes, Matthieu van der Heijden,
200	2010	transportation planning	Peter Schuur
306	2010	Internal Slackening Scoring Methods	Marco Slikker, Peter Borm, René van den Brink
305	2010	Vehicle Routing with Traffic Congestion and Drivers' Driving	A.L. Kok, E.W. Hans, J.M.J. Schutten,
	2010	and Working Rules	W.H.M. Zijm
304	2010	Practical extensions to the level of repair analysis	R.J.I. Basten, M.C. van der Heijden,

Nr.	Year	Title	Author(s)
303	2010	Ocean Container Transport: An Underestimated and Critical Link in Global Supply Chain Performance	Jan C. Fransoo, Chung-Yee Lee
302	2010	Capacity reservation and utilization for a manufacturer with uncertain capacity and demand	Y. Boulaksil; J.C. Fransoo; T. Tan
300	2009	Spare parts inventory pooling games	F.J.P. Karsten; M. Slikker; G.J. van Houtum
299	2009	Capacity flexibility allocation in an outsourced supply chain with reservation	Y. Boulaksil, M. Grunow, J.C. Fransoo
298	2010	An optimal approach for the joint problem of level of repair analysis and spare parts stocking	R.J.I. Basten, M.C. van der Heijden, J.M.J. Schutten
297	2009	Responding to the Lehman Wave: Sales Forecasting and Supply Management during the Credit Crisis	Robert Peels, Maximiliano Udenio, Jan C. Fransoo, Marcel Wolfs, Tom Hendrikx
296	2009	An exact approach for relating recovering surgical patient workload to the master surgical schedule	Peter T. Vanberkel, Richard J. Boucherie, Erwin W. Hans, Johann L. Hurink, Wineke A.M. van Lent, Wim H. van Harten
295	2009	An iterative method for the simultaneous optimization of repair decisions and spare parts stocks	R.J.I. Basten, M.C. van der Heijden, J.M.J. Schutten
294	2009	Fujaba hits the Wall(-e)	Pieter van Gorp, Ruben Jubeh, Bernhard Grusie, Anne Keller
293	2009	Implementation of a Healthcare Process in Four Different Workflow Systems	R.S. Mans, W.M.P. van der Aalst, N.C. Russell, P.J.M. Bakker
292	2009	Business Process Model Repositories - Framework and Survey	Zhiqiang Yan, Remco Dijkman, Paul Grefen
291	2009	Efficient Optimization of the Dual-Index Policy Using Markov Chains	Joachim Arts, Marcel van Vuuren, Gudrun Kiesmuller
290	2009	Hierarchical Knowledge-Gradient for Sequential Sampling	Martijn R.K. Mes; Warren B. Powell; Peter I. Frazier
289	2009	Analyzing combined vehicle routing and break scheduling from a distributed decision making perspective	C.M. Meyer; A.L. Kok; H. Kopfer; J.M.J. Schutten
288	2010	Lead time anticipation in Supply Chain Operations Planning	Michiel Jansen; Ton G. de Kok; Jan C. Fransoo
287	2009	Inventory Models with Lateral Transshipments: A Review	Colin Paterson; Gudrun Kiesmuller; Ruud Teunter; Kevin Glazebrook
286	2009	Efficiency evaluation for pooling resources in health care	P.T. Vanberkel; R.J. Boucherie; E.W. Hans; J.L. Hurink; N. Litvak
285	2009	A Survey of Health Care Models that Encompass Multiple Departments	P.T. Vanberkel; R.J. Boucherie; E.W. Hans; J.L. Hurink; N. Litvak
284	2009	Supporting Process Control in Business Collaborations	S. Angelov; K. Vidyasankar; J. Vonk; P. Grefen
283	2009	Inventory Control with Partial Batch Ordering	O. Alp; W.T. Huh; T. Tan
282	2009	Translating Safe Petri Nets to Statecharts in a Structure- Preserving Way	R. Eshuis
281	2009	The link between product data model and process model	J.J.C.L. Vogelaar; H.A. Reijers
280	2009	Inventory planning for spare parts networks with delivery time requirements	I.C. Reijnen; T. Tan; G.J. van Houtum
279	2009	Co-Evolution of Demand and Supply under Competition	B. Vermeulen; A.G. de Kok
278	2010	Toward Meso-level Product-Market Network Indices for Strategic Product Selection and (Re)Design Guidelines over the Product Life-Cycle	B. Vermeulen, A.G. de Kok
277	2009	An Efficient Method to Construct Minimal Protocol Adaptors	R. Seguel, R. Eshuis, P. Grefen
276	2009	Coordinating Supply Chains: a Bilevel Programming Approach	Ton G. de Kok, Gabriella Muratore
275	2009	Inventory redistribution for fashion products under demand parameter update	G.P. Kiesmuller, S. Minner

Nr.	Year	Title	Author(s)
274	2009	Comparing Markov chains: Combining aggregation and	A. Busic, I.M.H. Vliegen, A. Scheller-Wolf
		precedence relations applied to sets of states	
273	2009	Separate tools or tool kits: an exploratory study of engineers'	I.M.H. Vliegen, P.A.M. Kleingeld, G.J. van
		preferences	Houtum
272	2009	An Exact Solution Procedure for Multi-Item Two-Echelon	
		Spare Parts Inventory Control Problem with Batch Ordering	
271	2009	Distributed Decision Making in Combined Vehicle Routing	C.M. Meyer, H. Kopfer, A.L. Kok, M.
		and Break Scheduling	Schutten
270	2009	Dynamic Programming Algorithm for the Vehicle Routing	A.L. Kok, C.M. Meyer, H. Kopfer, J.M.J.
		Problem with Time Windows and EC Social Legislation	Schutten
269	2009	Similarity of Business Process Models: Metics and Evaluation	Remco Dijkman, Marlon Dumas,
			Boudewijn van Dongen, Reina Kaarik,
			Jan Mendling
267	2009	Vehicle routing under time-dependent travel times: the	A.L. Kok, E.W. Hans, J.M.J. Schutten
		impact of congestion avoidance	
266	2009	Restricted dynamic programming: a flexible framework for	J. Gromicho; J.J. van Hoorn; A.L. Kok;
		solving realistic VRPs	J.M.J. Schutten;

Working Papers published before 2009 see: http://beta.ieis.tue.nl