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Abstract

Crowdsourced shipping can result in significant economic and social benefits. For a shipping company, it
has a potential cost advantage and creates opportunities for faster deliveries. For the society, it can provide
desirable results by reducing congestion and air pollution. Despite the great potential, crowdsourced shipping
is not well studied. With the aim of using the spare capacities along the existing transportation flows of the
crowd to deliver small-to-medium freight volumes, this paper defines the multi-driver multi-parcel matching
problem and proposes a general ILP formulation, which incorporates drivers’ maximum detour, capacity
limits, and the option of transferring parcels between drivers. Due to the high computational complexity,
we develop two heuristics to solve the problem. The numerical study shows that crowdsourced shipping
can be an economic viable and sustainable option, depending on the spatial characteristics of the network
and drivers’ schedules. Furthermore, the added benefits increase with an increasing number of participating

drivers and parcels.
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1. Introduction

E-commerce currently appears to be one of the fastest growing marketing channels for different kinds
of products and services for consumers. Online sales of goods in the European Union amounted to
approximately 200 billion euros (B2C only) in 2014 and may double in the next five years with annual
growth rates above 15% per year (Prologis, 2015), which has resulted in a rapid growth in parcel
delivery. With the growth of e-commerce in distribution channels, deliveries will likely become more
fragmented than ever with a large number of small-to-medium packages that need to be delivered
to customer’s locations rapidly (Fatnassi et al., 2015). Although a “last-mile” delivery service is
convenient for the customer, it creates significant logistical challenges for shipping companies, one of
which is the allocation of large load capacity to address small volume demands (Montreuil, 2011). A
larger fleet size increases congestion and environmental problems in urban areas. The INRIX Traffic
Scorecard Annual report shows that countries with strong economic growth in 2014, such as the US,

Germany, Ireland, Switzerland and Luxembourg, all experienced increased gridlock on their roads. In

* Corresponding author, Tel.: + 31 53 489 5991, E-mail: w.chen-5@Qutwente.nl



the US, for instance, 6.9 billion hours of US drivers’ extra time and 3.1 billion gallons of fuel, which
is approximately 160 billion US dollars, are wasted in traffic congestion (Schrank et al., 2015). The
road transport sector also plays an important role in world energy use and emissions of greenhouse
gases. Up to 30-40% of road sector CO, emissions come from road freight transport (ITF, 2010;
IPCC, 2014).

As a result of the ever-growing conflict between the increasing demand for mobility and limited
resources, shared transport practice has gained a lot of attention recently. It focuses on making joint
use of transport resources, between passengers and goods flows. Trentini and Mahléné (2010) provide
an overview of solutions for combining passenger and freight transportation used in practice. Large
retailers such as Walmart and Amazon are also considering crowdsourced parcel services (Barr and
Wohl, 2013; Reilly, 2015). As shared economy is increasingly in the spotlight, related strategic and
operational aspects of providing integrated transportation services for both people and freight have
received academic attention. Several attempts to develop such integrated models have been made. Li
et al. (2014) and Nguyen et al. (2015) consider problems in which people and parcels are handled in
an integrated way by the same taxi network. Ghilas et al. (2013) study the possibility of transporting
freight by public transport, which operates according to predetermined routes and schedules. Simi-
larly, Masson et al. (2014) design a two-tier distribution system that uses spare capacity of the buses
combined with a fleet of near-zero emission city freighters to deliver parcels to shops and adminis-
trations located in congested city cores. In addition, Fatnassi et al. (2015) investigate the potential
of integrating a shared goods and passengers on-demand rapid transit system in urban areas. Pre-
sumably due to the computational complexity, the prevailing literature focuses on the driver-parcel
matching problems where parcels cannot hop (be transferred) between drivers. Our research fills this
gap and explores People and Freight Integrated Transportation (PFIT) problems with the consid-
eration of multiple hops. As a result, drivers and parcels can be matched without requirements of
sharing a similar destination or parcel destination that are positioned on or near the driver’s route.
Instead, parcels can move towards their destination one hop at a time. The multi-hop principle makes
our approach suitable for instances with longer distances, such as intercity transportation.

From the standpoint of a shipping company (or a consortium of shippers), this paper considers a
problem where the shipper provides freight transportation services via a pool of approved drivers with
spare capacity. This crowdsource business setting has a potential cost advantage because thousands
of drivers are commuting between home and businesses with spare space in their cars, and those
drivers pay for their own cars, gas, insurance, and maintenance. It also creates opportunities for

faster deliveries and thus enhances customer satisfaction. Traditionally, for a shipping company’s



business-to-customer (B2C) model to be profitable, a critical mass of customers need to be engaged
for the provision of the service. Having the crowd as potential means, the time and effort necessary
for arranging economically sustainable delivery may be substantially less. From a social standpoint,
it can provide desirable results by reducing congestion and air pollution. The key idea to achieve
these advantages is to exploit unused capacities along the existing transportation flows of the crowd.
Although it is out of the scope of this paper, we would like to point out that crowdsoured shipping
can also be used to provide peer-to-peer (P2P) delivery, as seen recently with examples as Deliv,
Walmart and Amazon. Such a delivery platform is considered by Arslan et al. (2016). We would also
like to comment on the environmental and social benefits of crowdsourced shipping. Without the
condition of using the existing vehicle flows, such services (e.g., Uber) may also induce unnecessary
travels and thus do not necessarily reduce congestion and air pollution.

The goal of this paper is to provide the means for a shipping company (or a consortium of shippers)
to match its demand for freight transportation with people transportation with a particular focus on
using spare capacities of the existing private vehicle flows with the objective to minimize the total cost
of delivering all the parcels on time. To achieve this goal, we present a mixed integer programming
formulation for matching and scheduling such a combined system. Considering the combination
with existing planned routes of the drivers, we limit our attention to the offline problem: given
all drivers and known delivery requests (i.e., origin, destination, earliest departure time and latest
arrival time), find an optimal plan to deliver all the parcels on time, ignoring possible future request.
In contrast to P2P platforms where users usually expect a direct response, we focus on periodic
planning to benefit from resource consolidation, which makes sense from a shipper’s perspective.
The offline setting enables us to batch incoming requests smartly and facilitates the multi-driver
multi-parcel matching. Even a driver with a completely different destination can take the parcel
to an intersection where the parcel could be transferred to other vehicles that travel closer to the
destination. Furthermore, we provide two heuristics for solving non-trivial problem instances of the
considered NP-hard optimization problem, which are the time compatibility based heuristic and the
time expanded graph based heuristic. These heuristics use different approaches to handle timetable
information of the drivers. As a result, they deviate from the exact solution approach due to the
consideration of different solution spaces and also require different levels of computational efforts. In
this paper, we explain the pros and cons of both heuristics and provide an extensive experimental
comparison of the two approaches.

The remainder of the paper is organized as follows. In the next section, we position our research

in the context of the relevant literature. After introducing the Multi-Driver Multi-Parcel Matching



Problem (MDMPMP) in Section 3, the mixed integer programming formulation is presented in Sec-
tion 4. We propose two heuristics for solving the MDMPMP in Section 5. Section 6 presents the
experimental settings. Section 7 reports the results obtained from extensive computational experi-

ments. The paper ends with concluding remarks in Section 8.

2. Literature review

As far as the application is concerned, the design and planning of the driver-parcel matching problem
described in this paper falls into the field of People and Freight Integrated Transportation prob-
lems (PFIT problems). Despite the increasing interest in practice, an integrated people and freight
transport solution to short-haul (intra and intercity) transportation has not been sufficiently taken
into consideration in the literature (Lindholm and Behrends, 2012; Ghilas et al., 2013). Three ways
of integration (i.e., public transport, taxi, and private vehicles) are proposed in the literature. We
subsequently discuss each of them in the following paragraphs.

Public transport, such as bus, train, metro and other light rail systems, operates according to
predetermined routes and schedules. Ghilas et al. (2013) investigate the opportunity of making use
of available public transport as a part of the freight journey of logistics service providers, which
operates according to predetermined routes and schedules. An arc-based mixed integer program is
presented and it is amenable to solve by CPLEX. The numerical analysis shows significant reductions
in operating cost and carbon dioxide emission and the potential for mitigating traffic congestion.
Along the same vein, Shen et al. (2015) conduct a case study on the Yuantong Express, one of the
major national logistics enterprises in China, to explore the feasibility of the proposed public transit-
based freight system using the existing bus network in Zhenjiang City in China. Such an integrated
system results in a significant reduction in the fleet size required for good delivery service. Masson
et al. (2014) designs a two-tiered distribution system that uses the buses spare capacity combined
with a fleet of near-zero emissions city freighters to deliver parcels to shops and administrations
located in congested city cores.

A taxi carries passengers and(or) parcels between locations of their choice, which differs from
the abovementioned modes of public transport where the pick-up and drop-off locations as well as
the schedules are determined by the service provider. Li et al. (2014) propose to integrate parcel
transportation into a taxi service, which is defined as the Share-A-Ride Problem, an extension of
the dial-a-ride problem. For the sake of reducing the computational complexity, they also propose
a method to optimize the insertion of parcel requests into the predefined taxi routes. Nguyen et al.

(2015) builds upon the model from Li et al. (2014) and conduct a case study on the Tokyo-Musen



Taxi company in Tokyo city. Typically, a taxi driver has to comply with the service levels for both the
passenger and the parcels. In common practice, parcel deliveries should not interfere with passenger
transport, the core business of running a taxi.

When it comes to private vehicles, drivers have absolute control of the routes and schedules, and
parcels can never travel without a driver. A closely related work by Arslan et al. (2016) studies the
incorporation of crowdshipping into the last-mile delivery system within an urban area. The differ-
entiating feature of our work is the consideration of transfers, which makes our approach typically
more suitable for instances with longer distances, e.g., transport between urban areas. To support
this, we have to make sure that parcels are not left unattended due to the presence of transfers.
These requirements strengthen the interdependency between drivers and parcels.

Methodologically, our research belongs to the family of ride-sharing problems, and more specially
the multiple driver, multiple rider arrangement (Agatz et al., 2012). Gruebele (2008) describes such
multi-hop and multi-passenger routing system in detail. Herbawi and Weber (2011) consider a single
rider version of the multi-hop ride-sharing problem where drivers do not deviate from their routes and
schedules. As such, the set of drivers’ routes form the transportation network for the rider who aims at
minimizing time, cost and number of transfers. The problem is modeled as a multi-objective shortest
path problem on a time-expanded graph representing the drivers’ offers. They propose an evolutionary
multi-objective route planning algorithm to solve the problem and show that this approach can
provide good quality solutions in reasonable runtime. The multi-hop ride-sharing problem is a lot
more difficult when also considering the routing of the drivers (Agatz et al., 2012). Herbawi and
Weber (2012) extend the previous work to match multiple riders with multiple drivers having time
windows and allowing a possible detour from their routes. They propose a genetic algorithm and
show that it can be used to solve the model in reasonable time. Drews and Luxen (2013) show that
the problem studied by Herbawi and Weber (2012) can also be solved by exploiting time-expanded
graphs representing the drivers’ offers. In this paper, we consider a problem with (i) multiple drivers,
(ii) multiple parcels, (iii) time windows, (iv) the routing of the drivers, and (v) multiple hops of
the parcels. Additional complexity is introduced in our problem due to the requirement of keeping
parcels attended all the time.

The contribution of this paper is multi-fold. First, we provide one of the earliest modeling efforts
on matching the demand for freight transportation with people transportation by utilizing spare
capacities of the existing private vehicle flows. Second, we consider the possibility of transfers, which
makes our approach suitable for instances with longer distances. Third, we show that the proposed
model can by solved by two very distinct heuristics and provide a comprehensive comparison of the

pros and cons of using them.



3. Problem description

As e-commerce grows and evolves, shipping companies need to deliver a large number of small-to-
medium freight volumes and home deliveries every day while thousands of drivers are commuting
between home and businesses with spare space in their cars. To reduce shipping costs and efforts,
shipping companies consider to pay these independent drivers to deliver the parcels for them on the
way. To accommodate the parcels, the driver has to make a detour and make extra stops. The length
of the detour and the number of extra stops are determined by the driver’s willingness to extend
his trip with respect to both distance and time. Drivers may take a single parcel or multiple parcels
(sequentially or simultaneously) along the journey, as long as the capacity of their vehicle is not
exceeded. Similarly, parcels may be carried by a single driver from their origins to their destinations
or may be transported by multiple drivers and transferred from one to another en route to their
destinations. We propose the Multi-Driver Multi-Parcel Matching Problem (MDMPMP) based on
the Multi-Hop Ride Sharing Problem.

The MDMPMP is defined on an undirected graph G = (N, E), where N is the set of nodes repre-
senting the possible locations for departure, arrival or transfer, and E is the set of edges that directly
connect two aforementioned locations, i.e., represents the road network. With each edge (i,7) € E, a
distance d;; and a travel time ¢;; are associated. Furthermore, we are given a set of drivers ) and a
set of parcels P. Driver ¢ € ) will travel from his origin 022 to his destination w? and SP, represents
the set of edges belonging to his shortest path from 022 to wfl’?. An earliest time E,? at which he
can depart from his origin 0 and a latest time L% at which he has to arrive at his destination wg
are also associated with driver ¢. Driver ¢ has V, spare space available for parcels. Similarly, each
parcel p € P will travel from its origin 05 to its destination wf . An earliest time Ef at which it can
depart from its origin 05 and a latest time Lf at which it has to arrive at its destination wf are also
associated with parcel p. Each parcel has a volume of v,,.

To cope with realistic requirements, our model has the following features. First, drivers are allowed
to deviate from their shortest path to pick up and drop off parcels, as long as their detour is at most a
fraction ¢ of their shortest path length, and thus the routing of the drivers also need to be considered.
Second, parcels are not allowed to be left unattended. As a result, the waiting time of the driver who
needs to handover the parcel at a certain station (and thus the subsequent possible paths) depends
on the arrival time of the following driver, and so on. Third, parcels are not as time sensitive as
riders in the ride sharing problem, as long as they are delivered within the associated time windows.
Therefore, assigning longer paths to the parcels may facilitate the system-wide matching. To avoid

making too many unnecessary transfers, parcels are not allowed to pass the same node more than



once in our model. From an algorithmic viewpoint, the first two features make the assignment of
parcels to drivers more complicated because the validation of the possible paths for different drivers
are intertwined.

While it costs the shipping company ¢, to deliver parcel p itself, it can also let the crowd do it by
paying them a compensation for the service. Our goal is to help the shipper deliver all the parcels on
time with minimum overall cost, which consists of (i) the shipping costs, and (ii) the compensation

for drivers’ traveling cost and inconvenience due to the parcel delivery.

4. Mathematical model for the MDMPMP

In this section, we present a mixed-integer program for the MDMPMP from a shipping company’s
perspective. Table 1 lists all the relevant parameters and variables used. With this model, the shipping
company can determine (i) the optimal matching plan between drivers and parcels for the whole
planning horizon (e.g., one day), (ii) the optimal path of each driver and each parcel, and (iii) the
time schedule for the drivers and the parcels to be delivered by independent drivers. Depending on
the availability of the drivers, many parcels might still need to be delivered by the shipper itself
(see numerical results from Section 7). The driver-parcel matching requires a seamless coordination
among drivers, parcels, and the freight transportation network, which motivated us to design this
MDMPMP model.

The objective is to minimize the overall cost of the shipping company related to the parcel delivery
service, which consists of the shipping cost incurred from self delivery and the four weighted costs
of compensating the crowd. The compensation includes (i) the transportation cost compensation for
the kilometers that the drivers travel with parcels, (ii) the risk and inconvenience associated with
the number of parcel transfers, (iii) the waiting time for transferring parcels, and (iv) the extra
kilometers traveled. The last two components are the compensation for the system-wide opportunity
costs incurred by all the drivers due to the parcel delivery. Accordingly, the objective function in our

formulation of the MDMPMP is written as follows. Each of the five terms has a weight attached.



Table 1 Parameters and decision variables for the MDMPMP model.

Parameters

ES = v
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Decision variables
Z

qij

Yoqij
WP
Dy
Dy;
Dependent variables
Spqi
Ag
A
Ypj

Set of drivers

Set of parcels

Set of nodes

Set of edges

driver ¢’s origin

driver ¢’s destination

parcel p’s origin

parcel p’s destination

Set of edges belonging to the shortest path of driver ¢ from oqQ to wf;?

Earliest departure time of driver ¢

Latest arrival time of driver ¢

Distance of the shortest path from 0? to wdQ of driver ¢

Coefficient of maximum detour

Binary parameters equal to 1 if edge (7,7) belongs to the set of paths of driver ¢,
the length of which is no more than (1+0)r,; and 0 otherwise

Earliest departure time of parcel p

Latest arrival time of parcel p

Available car capacity of driver ¢

Volume of parcel p

Travel distance from node ¢ to node j, Vi,j € N

Travel time from node 7 to node j, Vi,j € N

Cost of delivering parcel p by the shipping company

Compensation per parcel per kilometer for a driver who help carry freight

Cost of transferring a parcel between drivers

Compensation per minute for a driver waiting on the way

Compensation per kilometer for a driver’s additional travel cost due to detour

Large numbers

Binary variable equal to 1 if driver ¢ goes directly from node i to node j; and 0
otherwise

Binary variable equal to 1 if driver ¢ carries parcel p from node ¢ to node j;
and 0 otherwise

Binary variable equal to 1 if parcel p is delivered by the shipping company

Departure time of driver ¢ at node ¢

Departure time of parcel p at node i

Binary variable equal to 1 if driver ¢ picks up parcel p at node i

Arrival time of driver ¢ at node ¢

Arrival time of parcel p at node ¢

Binary variable for logic constraints that are used to ensure that parcels are not
left unattended
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The MDMPMP is confined by two sets of constraints: (i) spatial constraints and (ii) capacity and

time constraints.

Constraints for spatial issues

Z Zyi; = Vq,i=0f (2)
ZZ,M sz =0 Vg, Vj € N\ {oF, w2} (3)
Z Zyi; = 0 Vq,j=0§ (4)
Z Zyis <1 Va, (5)
un <y Yq,1i,j (6)
S iy Zgiy < 1q(146) Y (7)
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ZZ i ZZ ik =0 Vp,VjGN\{of,wf} (9)
Z Z paij = Vp,j=o) (10)
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Constraints (2)-(13) are imposed to find the feasible matches between drivers and parcels based
on the spatial information (i.e., origins and destinations). Constraints (2) and (3) ensure that each
driver will take one and only one path, and this path is continuous. Constraints (4) ensure that no
driver will return to his/her origin. Constraints (5) prevent the drivers returning to already visited
nodes. Constraints (6) guarantee that drivers only use edges of paths that comply with the maximum
detour constraint. Constraints (7) are the maximum detour constraint for the drivers. By constraints
(8) and (9), each parcel will be delivered from origin to destination either by drivers or by the ship-

ping company itself. Constraints (10) ensure that no parcel will return to its origin. Constraints (11)
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ensure that the parcels that are scheduled to be delivered by drivers cannot travel without a driver.
Constraints (12) keep track of the stations where parcels are picked up by drivers. Constraints (13)

are domain constraints.

Constraints for capacity and time related issues

va paii < Va,i,j (14)
Ag?j > D?i—ktij — M(1— Zy;) Vg,Vie N\ {w?},Vje N\ {ol} (15)
Dy > EN(1-W,) i=o Vp (16)
AP <LP(1-W,) j=w, ,¥p (17)
Df > AP Vie N\{o} w, };Vp (18)
DS > E9 i=0% Vg (19)
AL <L? j=wg Vg (20)
D% > A% vie N\ {ol wl},vq (21)
DF — D2 < M( 1—2 i) Vp,q,Vi € N\ {w), w&} (22)
DF — D$ > —M( 1—2 i) Vp,q,Vi € N\ {w), w?} (23)
AQ AP<M 1—2 i) Vp,q,VzeN\{op, . (24)
AQ APZ —M( I—Z i) Vp,q,VzeN\{op, . (25)
DY —DF > —M(1 ZYW — Yy K Vp,q,¥j € N\ {w) , w?} (26)
A2 - pP > 1—2 paii) — Ypi K j=w?,Vp,q (27)
AP — AZ > M1—Z i) — K (1 —1y,5) Vg,r € Q,Vp,Vj € N\ {w! w?} (28)
D&, DE A% AP >0 ' Vq,p,i (29)
Yp €{0,1} VD, j (30)

Constraints (14)-(33) concern the capacity and time related issues. Constraints (14) are capacity
constraints for the drivers. Constraints (15) calculate the arrival times of drivers based on the asso-
ciated departure times. Constraints (16) and (17) ensure that each parcel that is to be delivered by
the crowd departs after the corresponding earliest departure time and arrives before the correspond-
ing latest arrival time. Clearly, the departure time cannot be earlier than the arrival time at the
same station, which is considered by Constraints (18). Similarly, the time compatibility issues for the
drivers are enforced by Constraints (19)-(21). Constraints (22) and (23) ensure that the departure

time of a parcel equals the departure time of the driver who will carry it. Constraints (24) and (25)
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guarantee that the arrival time of a parcel equals the departure time of the driver who will carry it.
Thus, Constraints (22)-(25) ensure the time consistency of a parcel and all the drivers carrying it.
Constraints (26) ensure that the departure time of the driver who brought the parcel to a particular
node is no earlier than the departure time of the parcel. Constraints (27) deal with the boundary
situation of Constraints (26) that the driver who has arrived at his destination with a parcel has to
stay until the parcel departs again. Constraints (28) guarantee that the arrival time of the driver
who will carry the parcel arrives earlier than the parcel. If y = 0, then only Constraints (26) and (27)
hold, and if y,; =1 then only Constraints (28) hold. This either/or behavior ensures that parcels are

never left unattended. Constraints (29) and (30) are domain constraints.

Valid inequalities
In addition, we add the following valid inequalities to the model that help us find the solution.
Although these five sets of constraints are not necessary, the scenarios we tested show that they can

reduce the run time by up to 11.6%.

> Zyy=1 vq,j =wg (31)

D]q% <MY Zy; Vg, Vie N\ {wd} (32)

A2 <M i: Z4ij Vg, Vie N\ {o?} (33)

Dl < Mi: > Yo vp,Vie N\ {wl} (34)

Al < MitiqU Vp,Vie N\ {o} (35)
qa J

Constraints (31) ensure each driver will visit the destination once and only once. Constraints (32)-
(35) prevent assigning arrival and departure times to the non-visited nodes of drivers and parcels.
In fact, Constraints (6) are also valid inequalities, the purpose of which is to restrict a driver from
traveling via the other drivers’ possible paths on the subgraph. This set of constraints effectively

reduce the actual size of the ILP model.

5. Algorithms

The MDMPMP is an extension of the Share-A-Ride Problem, which is an NP-hard problem. The
computational complexity of the MDMPMP motivated us to develop heuristics to efficiently solve
the problem. In Section 5.1, we describe the procedure of finding possible routes for drivers given the
maximum detour §. This procedure is used to obtain the z matrices in solving the ILP from Section

4 and to build the subgraph in the time compatibility based heuristic (TC-heuristic) presented in
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Section 5.2. The basic idea of the TC-heuristic is to assign each parcel to the shortest feasible path
in the subgraph, yet checking the time compatibility on the basis of every assignment. These time
compatibility checks can be computationally costly, as the dependency of the assignments increases.
In Section 5.3, we propose the time-expanded graph based heuristic (TEG-heuristic), the basic idea

of which is to use a more stable structure to model the timetable information.

5.1. Finding possible routes

Taking the maximum detour into account, the goal of this subsection is to find all the possible paths
for drivers in terms of travel distance. For any driver ¢, the shortest path SP, is found through
the unidirectional A* algorithm. Then, a variant of the depth-first search (DFS) strategy is used
to enumerate all possible paths that are no longer than the maximum detour, with respect to the
shortest path that the driver is willing to take. These possible paths constitute a subgraph of the
original graph. Figure 1 provides an illustrative example for two drivers. Figure 1(a) is the original
graph with 10 stations, where driver 1 needs to travel from Station 1 to Station 8 and driver 2 needs
to travel from Station 1 to Station 9. The number associated with each edge represents the travel
distance between the two nodes connected by the edge. Each driver is willing to take a detour of
at most 10% of his/her shortest path. There are three options to travel from Station 1 to Station
8, which are 1 -2 —-7—8,1—-2—6—8 and 1 - 3 — 8, and the corresponding travel distances
are 9, 9.5 and 16, respectively. Since the maximum distance driver 1 is willing to travel is 9.9(=
1.1x9),only 1 -2—7—8and 1 —2— 6 — 8 are possible paths for driver 1. Therefore, we obtain
T11,2,%127,T1,7.8,T1,2,6, 1,68 = 1, and 0 for the rest of the elements. Similarly, the only possible path
for driver 2is 1 =4 — 5 — 9, and thus z314,%245,%259 = 1, and 0 for the rest of the elements.
Figure 1(b) describes the resulting subgraph for the MDMPMP. This procedure efficiently reduces

the size of the problem by removing unnecessary edges.

(a) The original graph (b) The subgraph

Figure 1 An example of building subgraph
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5.2. Time compatibility based heuristic

The basic idea of the TC-heuristic is to assign each parcel to the shortest feasible path on the
subgraph described in Section 5.1, where feasibility is based on the time compatibility and capacity
availability between the parcel and the associated drivers on the path. For each object (either a parcel
or a driver), there exists a time interval associated with a node, a time range between the earliest
possible time to arrive at this node from the origin and the latest possible time to depart from this
node in order to arrive at the destination on time. Time compatibility refers to the existence of an
intersection between the time interval of drivers and parcels, either two drivers or a driver and a

parcel. Figure 2 describes the major steps of the TC-heuristic.

The path exists?

Read the data
and configuration

Timea
compatible?

Sart the list of
parcals

Build a subgraph
based on drivers'
passible paths

Find a path on the
subgraph to assign
the first parcel on
the list

Assign the parcel
ta minimum
number of drivers

ter drivers that will
carry the parcel and

update the subgraph

bounds for the
correspanding
drivers

Assign a partial path

Update the time

Deliver the parcel
by the shipping
company

Remove the
parcel from the
list

More parcels
fo assign’?

Figure 2 Flowchart of the TC-heuristic

The parcels are sorted in decreasing shipping cost if delivered by the shipping company. As such,

Assign a path fo
each driver
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the more costly parcels will have bigger chances of being assigned to the crowd. Having the subgraph
built, the TC-heuristic finds the shortest path of each parcel on the subgraph. Finding a physical
path through the subgraph is not a sufficient condition for a match. In addition to the car capacity
constraints, the time constraints of a parcel must also fit those of the drivers’. The major challenge
of this heuristic is how to evaluate the time compatibility issue of a parcel and all the drivers who
are assigned to deliver the parcel along the way. To this end, we need to construct time intervals of
parcels and drivers on each node.

The TC-heuristic utilizes the bidirectional A* search to solve the shortest paths of parcels. For
each step, forward and backward, it checks the time compatibility. The lower-bound of a parcel’s time
interval in the forward A* search (the upper-bound of a parcel’s time interval in the backward A*
search) at a node is represented by the earliest arrival time departing from the origin (destination).
Since the path from the current node to the sink in each search direction has not been fixed yet, the
time needed to travel to the sink is approximated by the time needed if traveling through “airplane
distance”. As such, the exact value of the upper-bound of a parcel’s time interval in the forward A*
search (the lower-bound of a parcel’s time interval in the backward A* search) can be estimated as
above.

To solve the time compatibility issue for drivers, we introduce the concept of the equivalent time
interval associated with a driver at a node, which is the possible time interval for the driver if he
would pass the node as part of his route. These nodes do not necessary belong to the feasible paths
of the driver. In order to become a “time-compatible” node on a parcel path, the intersection of the
parcel’s time interval and the equivalent time intervals of those drivers who have carried the parcel
must be non-empty. Figure 3 provides an illustrative example of the time compatibility check. A
parcel (P) is requested to be shipped from Node 1 to Node 4. Drivers 1, 2, 3 and 4 (D1, D2, D3,
and D4) travel from 1 to 5, 2 to 6, 3 to 7, and 3 to 7, respectively. The numbers in italic are inputs
and the rest are obtained via calculation. The time intervals of the parcel and the equivalent time
intervals associated with the drivers are calculated. The parcel has been carried by D1 and D2 to
Node 3. Spatially, either Driver 3 or Driver 4 can take the parcel from Node 3 to Node 4. By checking
the time compatibility at Node 4, PN D1 N D2N D3 = () while PN D1 N D2N D4 = (240, 250) # 0.
Therefore, Node 4 is a time-compatible node associated with P, D1, D2 and D4. It is important to
mention that the arrival time and the departure time at a node are assumed to be equal, which
implies that the drivers do not wait after departure.

The time compatibility is checked at each step of the algorithm with approximated values and it

is checked with exact values when a path is found. If the final check of a path fails, the algorithm
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Figure 3 Time compatibility

keeps searching for more paths, and stops when a feasible path is found or all possible paths have

been checked. If no feasible path is found, the parcel will be delivered by the shipping company.

5.3. Time-expanded graph based heuristic

The pairwise time compatibility checks in the TC-heuristic might lead to a combinatorial explosion
in realistic problems with more potential meeting points and more transfers. The computational
complexity of the TC-heuristic motivated us to develop a second heuristic for solving larger-scale
problem instances. In particular, we engineer the MDMPMP by exploiting a dynamic time-expanded
graph that is typically used in public transportation to model timetable information.

Given the information associated with a driver ¢ (ie., EZ, L?, o9 and w?), we define [ =
{51, 82,t1,t2,q} as an offer with s;,s, € S,q € Q,t; < 1o, s1 # S2, meaning that driver g needs to drive
from s; to s,, departing at the earliest #; and arriving at the latest t,. Each offer corresponds to
a set of possible paths that satisfy this offer. Figure 3 provides an illustration of what an offer is.
D4 travels from Node 3 to Node 7, and thus his initial offer is {3,7,50,300,4}. After Parcel P is
assigned to D4, he has to go from Node 3 to Node 7 through Node 4 within a certain time window,
considering of the schedule of D1, D2 and P. Accordingly, his offers are updated as {3,4,170,250,4}
and {4,7,240,300,4}.

A delivery request contains an origin of’

-, destination wf , earliest departure time Ef , and implicit

service window Lf: — Ef . The time expanded graph can be defined by time nodes and time edges. A
time node is denoted by a triple (n,[,t), representing this driver’s offer [ at node n at time ¢. There
exists a time node for every departure or arrival of a driver. Each time edge is associated with a
weight that is the travel time. Note that on a TEG, a station node is represented by a set of time
nodes, which are sorted according to the time of the event they represent. The time-ordered nodes of

a station can be connected by so-called transfer edges that model the waiting within the station. For
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the details of this technique we refer to Drews and Luxen (2013). Here, we focus on the differentiating
feature of the TEG-heuristic, compared to the typical TEG method.

The proposed TEG-heuristic can be divided into two parts. First, to use the drivers’ information
to build a TEG based on graph G. Second, to greedily assign parcels to drivers’ offers. The critical
feature of this approach is that a parcel delivery request is answered by applying some shortest-path
algorithm (A* algorithm in our case) to a suitably constructed bigraph (i.e., timetable). As discussed
above, parcels may be carried by multiple drivers but cannot be left unattended during the transfer.
Hence, either the driver who carries the parcel to the transfer point or the driver who is going to
pick up the parcel from there is required to wait. Given that the drivers do not have predetermined
routes and schedules, this requirement makes the time that a driver has to spend on each transfer
point highly uncertain, not only depending on the path he travels, but also on the path of the driver
whom he is going to hand over the parcel to. In order to localize the procedure of finding the possible
paths for each driver, we apply a fixed “hold time” to each driver who needs to hand over a parcel.
Any transfer that takes longer than the “hold time” is not possible. At a potential price of finding
less possible paths, forcing the drivers to wait a “hold time” at each transfer enables us to find the
possible paths for each driver by considering only his/her own detour and time constraints, which
can be efficiently done by any shortest-path algorithm. As we discuss later on, post-processing can
be used to reduce the negative impact of the fixed “hold time”. Similar to slotted TEGs, on the
other hand, the fixed “hold time” adds some reliability to making transfers and thus reflects arguably
more realistic scenarios (Drews and Luxen, 2013). Following this idea, we propose a greedy heuristic
that incorporates the TEG procedure for the MDMPMP. Figure 4 describes the major steps of the
TEG-heuristic.

The TEG-heuristic simplifies the MDMPMP by letting drivers depart at their earliest departure
times. In fact, for the realistic MDMPMP drivers are fine with any postponement of departure as
long as they can arrive on time. This discrepancy leads us to develop an improved version of the
basic TEG-heuristic, which we call the constrained randomized TEG-heuristic (CR-TEG heuristic).
In this algorithm, the initial solution obtained by the TEG-heuristic is then improved by attempting
to randomize the departure times of the drivers who have not yet had any parcel assignment. The
results are also compared with a fully randomized version (R-TEG heuristic) where we attempt to
find the best solution among the independent iterations of the basic TEG-heuristic with randomly

generated departure times for all drivers, including those that already have parcels assigned to.
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Figure 4 Flowchart of the time expanded graph based heuristic

5.4. Discussion

In the previous subsections, we proposed two very different approaches that solve the MDMPMP
as shortest-path problems in weighted graphs. The TC-heuristic applies a routing algorithm in a
road network, while the TEG-heuristic utilizes the time-expanded graph approach that is typically
used to model timetable information in public transportation where the routes and schedules are
usually predetermined. As such, the most differentiating feature of the two approaches is whether
the decision on a driver’s route and the corresponding time schedule affects the feasibility of another
driver’s decision.

Given that drivers’ timetable information are not modeled explicitly in the TC-heuristic, a driver’s
time interval at a node not only depends on the path he travels, but also on the paths of the drivers
who previously carried the same parcel. Thus, the pairwise time compatibility has to be checked
at every step of the heuristic. Such time compatibility checks can be computational costly. Even
worse, the fulfillment of all the checks with approximate values cannot guarantee the feasibility of the
candidate path in the final check. Very differently, the TEG-heuristic creates a fixed “hold time” as
a buffer between any two consecutive drivers along a parcel’s path in order to localize the procedure

of finding possible paths for each driver. At a potential price of finding less possible paths, forcing
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the drivers to wait a “hold time” at each transfer enables us to find the possible paths for each driver
by considering only his own detour and time constraints.

In order to reduce the computational complexity, The TC- and TEG-heuristics are not designed
to consider all the possible paths of each driver. Under the assumption that drivers do not wait
after departure, the TC-heuristic loses feasible solutions with transfers that require waiting time, the
impact of which is controlled by adjusting the departure time based on the assignment results, and
by minimizing the number of drivers assigned to a parcel. The TEG-heuristic loses possible paths in
two ways. First, due to the fixed “hold time” at each transfer, drivers’ effective travel time decreases.
Second, drivers are assumed to depart at the earliest departure time in the original TEG-heuristic.
Although it cannot regain the lost paths, post-processing may improve the objective value of the
existing driver-parcel assignments by re-optimizing the time schedule of the given assignment. To this

end, we can run the ILP by using the resulting Z;;,

Y,qi; and W), from the TEG-heuristic as input.
Moreover, these two approaches are greedy algorithms in the sense that they give matching priority
to parcels that are more expensive to deliver. As such, the locally optimal assignments eliminate a
subset of drivers’ possible paths, which may include the global optimum. In addition, as a starting
point, a shortest path algorithm is used by both heuristics as an efficient way to generate possible
paths for parcels, which deviates from the fact that parcels are not as time sensitive as people.
The heuristics might lead to a better results without this rule. From a different angle, the shipping
company may view it as a business opportunity to segment customers by providing even more speedy
delivery service.

To summarize, the search spaces of the two heuristics intersect. However, the TC-heuristic tends
to be able to generate more possible paths, and thus, it is more likely to find a better solution at
the cost of computational effort, especially in small-to-medium instances where number of transfers
are rather limited. Considering the potential shortcomings of the TEG-heuristic, we proposed two
variants to generate different departure times aiming at mitigating the loss of possible paths, the

benefits of which are shown in Section 7.

6. Experimental settings
In this section, the experimental settings are described. Our goal of the numerical experiments is
two-fold. First, we present the features of the MDMPMP and the efficiency gain by integrating
crowdshipping. Second, we show that our solution methods can obtain high quality solutions in
reasonable time.

Three basic factors affect the complexity of the problem: the number of drivers, the number of

parcels, and the maximum detour. Two additional factors that affect the behavior of the model are



19

the spatial distribution of the network and the planning horizon. The experiments reported here
are to test the influence of these five factors. The results are analyzed from the standpoints of the
shipper, drivers, parcel senders, and the society. From the shipper’s perspective, the most important
performance indicator is the total cost spent on delivering all the parcels on time, either by the
crowd or by itself. The compensation for drivers relates to the kilometers traveling with parcel(s),
the number of parcel transfers, the waiting time during transfer, and the detour distance. Another
performance indicator that can show the benefit of our model is the match rate, a ratio between
the number of parcels delivered by the crowd and the total number of parcels to be delivered. For
drivers, we record the maximum, minimum and mean values of drivers’ extra travel time, as well as
the average capacity utilization of a driver’s car. For parcels, the average number of hops is the only
performance indicator. In terms of social welfare, we use the kilometers saved as an indicator for the
reduction of traffic congestion and CO, emission. Considering the difficulty in estimating the extent
of consolidation for unmatched parcels in practice, we assume that these parcels are delivered by
the shipper using a traditional parcel delivery service. As such, this indicator provides an optimistic
estimation of the potential social benefit of crowdsourced shipping.

We start the numerical experiments with small-scale networks with graphs of 25 nodes. Two dif-
ferent spatial distributed sets with 25 nodes generated from the Solomon’s benchmark problem R101
are considered: the scattered set and the clustered set. In particular, customer locations 26-50 are
used to generate the scattered set, while customer locations 76-100 are used to generate the clustered
set. The scattered set nicely represents the characteristics of the evenly-distributed cities, while the
clustered set represents a network with city clusters. We multiply the coordinations of these nodes
by 3, resulting in an area of 210 x 210 kilometers (roughly the size of the Netherlands) and connect
them by generating the Delaunay graph (Delaunay, 1934) for the two sets of 25 nodes. A Delaunay
graph for a set of nodes in a plane is a graph such that no node is inside the circumcircle of any
triangle in the graph. It is a geometric spanner with the best upper bound known, that is, the short-
est path between any two nodes, along Delaunay edges, is known to be no longer than 34% ~ 2.418
times the Euclidean distance between them. This property can be exploited to compute shortest
paths efficiently, which allows us to focus on the efficiency of the main operations such as the time
to compute a match and the time to add an offer. The Delaunay graph is also used to construct road
networks on given sets of nodes by Vckovski et al. (1999), Baccelli et al. (2000) and Liu (2014). The
resulting graphs are depicted in Figure 5.

The Euclidean distance is used to calculate the distances between the connected nodes. The average

speed of the drivers is assumed to be 60km/h. Each driver’s earliest departure time is uniformly
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Figure 5 The two networks used in smaller-scale test problems

distributed between 0 and 120 (representing the time window between 8am and 10am); his/her latest
arrival time is the summation of the corresponding earliest arrival time plus a time slack. Any time
slack is assumed to be dependent on the associated driver’s shortest travel distance r,. We assign
a time slack of 30 minutes to the driver who has the shortest shortest path and a time slack of
120 to the driver who has the longest shortest path. For the rest of the drivers, the corresponding
time slack is calculated proportionally based on the length of his/her shortest path. These numbers
are reasonable regarding the network used in the experiment. A driver’s car capacity for parcels is
assumed to be an integer uniformly distributed between 5 and 10 units, and a parcel’s volume is an
integer varying between 1 and 4 units with equal probability. As a benchmark, we assume that the
earliest departure time and the latest arrival time are 0 and 450 for all the parcels; representing the
time window between 8am and 5pm. This policy can be related to the next-day delivery service, as
all the parcels have to be ready at the beginning of the day and delivered by the end of the day.

In order to study how parcels’ time windows affect the matching performance, we also consider
two variations of the parcels’ time windows under the dependent time slack assumption, the main
difference being the earliest departure time of the parcels. In the case of half-day time windows,
the earliest departure time is randomly generated between 0 and 180 for all the parcels, which is
equivalent to being ready by noon. It can be related to the same-day delivery service. We also consider
the case of 3-hour time windows, where the earliest departure time is randomly generated between
0 and 270. The corresponding maximum time duration is the maximum between 3 hours and the
time needed for the parcel to be delivered to the destination through its shortest path, as it is simply

impossible for some of the parcels to be delivered within the 3-hour time window, especially those in
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remote areas. These numbers are chosen to ensure that the parcel departing at the upper bound of
the time window can be delivered on the same day.

The value of the cost parameters that are used in the experiments are inspired by the real life
situation in the Netherlands. They are as follows. The cost ¢, for same-day delivery of a parcel by
the shipping company is given by 20+ 0.1 x SP euros, where SP is the shortest distance between
the parcel’s origin and destination. This results in an average tariff of approximately 30 euros in
our networks (35.5 and 27.8 euros for the scattered and clustered networks, respectively), which
corresponds to the tariffs for same-day delivery and 12-hour emergency shipments charged by the
major Dutch shipping companies for lightweight (<5kg) parcels. A driver’s average cost of driving
a car in the Netherlands, taking into account gas, taxes and insurance is about 0.30 €/km. We
assume that the drivers are compensated for 30% of the total travel cost on the routes where they
carry at least one parcel. Thus, w; =0.09 €/km. Note that the compensation is additive if multiple
parcels are carried simultaneously. The cost of transferring a parcel between drivers is €2 (€1 for each
driver), i.e., wy = 2. We further assume that the cost of a driver waiting on the way is 10 €/hour,
i.e., w3 =0.167€/min. Since the time spent on detour is compensated by ws, w, = 0.3 €/km is used
to compensate the additional travel cost due to detours.

In order to understand the efficiency of integrating crowdshipping in a more realistic setting, we
consider a case that might be faced by a shipping company operating in the Netherlands using the
proposed heuristics. The network used in this more realistic case comnsists of 39 big cities in the
Netherlands. Each city is represented by a node on the graph. We assume that transfers can only
happen in the cities. All crossings/mergings of the roads within a 5-kilometer radius of each city
center are also assumed to be located at the city center as a potential transfer point. The edges
between each city pair represent the travel route chosen by Google Maps under the criteria of shortest

driving time. The resulting graph is depicted in Figure 6.

7. Numerical results

Test instances are solved on an Intel Core i7-4790 3.60GHz, CPU 8 GB RAM computer. The ILP is
solved by using the standard CPLEX 12.4 MIP solver in AIMMS. The TC-heuristic is implemented
using Delphi XE7. In order to take advantage of existing open-source libraries and frameworks to
build the time-expanded graph structure, the TEG-heuristics (i.e., TEG, CR-TEG and R-TEG)
are implemented in Java. Statistically, Delphi XE6 is found to be at least 3 times as fast as Java
(Arudchelvam et al., 2013; Karaci, 2015). Due to the performance gap between the two compilers
in terms of run time, our analysis of the performance of the two heuristics concerning run time will

focus on the increments rather than the absolute values.
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Figure 6  The network used in the realistic case

Sections 7.1 and 7.2 study the features of the MDMPMP based on the optimal solution for different
scenarios. A scenario refers to a problem setting with respect to the number of drivers and parcels,
the maximum allowed detour, the set of delivery windows, and a certain network, the results of which
are averaged over 10 instances. Section 7.1 analyzes the impact of crowdsourced shipping in different
spatial distributions of the network from different stakeholder’s viewpoints. Section 7.2 highlights the
influence of the planning horizon. In Section 7.3, we compare the performance of the two proposed

heuristics. In Section 7.4, we study the more realistic case.

7.1. Results of the ILP

In this subsection, we illustrate the performance of the ILP with different maximum detours and
different number of drivers and parcels, the results of which are compared with the current situation
where all the parcels are delivered by the shipping company. Figure 7 presents the total costs with
varying maximum detour § for 15 drivers and 30 parcels. The total cost of the default situation
provides an upper bound of the driver-parcel matching system; the total cost obtained by the ILP
provides the best lower-bound. As ¢ increases, more parcels can be delivered by the crowd, at the
expense of increasing travel distances, which becomes a source of CO, emission and traffic flow. A
higher driver participation could be a socially responsible alternative, given that the drivers who

participate in this problem need to travel anyway. Besides, Figure 8 shows its economic viability.
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In order to illustrate the ideas in a transparent manner, the results of varying § in Figure 8 is a
reorganization of the results obtained by the ILP in the scattered and clustered networks that are
shown in Figure 7. Starting from the benchmark case of #driver=15, #parcel=30 and ¢ = 0.05, it
compares the total cost of 15 participating drivers at 6 = 0.05,0.1,0.15,0.2, and the total cost of
15, 20, 25, and 30 participating drivers who are willing to deviate at = 0.05. The total cost is
plotted as a function of § and #driver, respectively. In the scattered network (SC), we find that the
total cost function of #driver always has a steeper slope. Since we start from the same benchmark
case, this means that the total cost of having 5 additional participating drivers is always lower than
a 5 percentage points increase in the driver’s willingness to deviate from their shortest path; the
difference is increasing with increasing #driver and §. Such a cost advantage does not always exist
in the clustered network (CL).

Tables 2 and 3 report on the numerical results with varying number of drivers and parcels using
a maximum detour of 10%. Table 2 shows that the total cost decreases with increasing number of

drivers, because the parcels can be delivered by the most appropriate driver(s) among a larger pool
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of them. Table 3 shows that the total cost increases with increasing number of parcels, because more
parcels need to be delivered. Moreover, increasing number of drivers and parcels are both more socially
desirable since the overall cost efficiency of the assigned parcels and drivers increases with increased
number of parcels and drivers in the candidate pool. In order to present some joint observations in
Tables 2 and 3, we define the driver-parcel (DP) ratio, the ratio between the number of drivers and
the number of parcels. It seems to suggest the existence of a critical DP ratio (1 in SC and 0.33
in CL), below which, the percentage cost saving remains stable. Although the potential cost saving
from the crowd is relatively robust in this case, the overall vehicle-miles traveled constantly increases.
This is because more suitable parcels among a relatively larger parcel pool can be assigned to the
crowd. Fleet consolidation leads to a significant reduction in overall vehicle-miles traveled, and thus
reduced CO, emission and traffic congestion. Above the critical DP ratio, the percentage cost saving
increases as the DP ratio increases, which results from assigning parcels to more suitable drivers
among a relatively larger driver pool. Note that this increased driver-parcel ratio can be translated
into either an increased number of drivers or a decreased number of parcels. Although the maximum
extra travel time (the average over the maximum values of each instance) for a driver varies from
6.5 to 17.8 minutes, the average extra time is less than 4 minutes for all the scenarios. Based on the
basic results presented in Table 3, 9 studies the correlation between capacity utilization and vehicle
miles saved, both resulting from varying the number of parcels. It suggests that a positive correlation
exists between the vehicle miles saved and the capacity utilization, and the correlation coefficient is

larger in SC.

Table 2  The exact solutions by varying the number of drivers (#parcel =15, 6 =0.1)

extra travel

+# DP total cost time (min)  avg. cap. match #hops mile

Network driver ratio| EA current saving | max mean utilization  rate|max min mean | saved
SC 15 1.00 |404.1 489.9 17.5%| 6.5 0.8 0.08 0.30] 1.8 0 0.01| 405.3
30  2.00 |303.3 4879 37.8% | 15.8 1.5 0.10 0.67| 2.9 0 0.02]1091.9

45  3.00 | 374.3 4945 44.3% | 17.3 0.9 0.07 0.78] 2.7 0 0.02|1375.5

CL 15 1.00 |276.0 423.0 34.8% | 11.2 1.6 0.13 050] 14 0 0.6| 445.2
30 2.00|191.3 413.1 53.7% | 13.1 1.3 0.10 0.75] 2.6 0 09| 7316

45  3.00 | 142.9  416.7 65.7% | 7.8 0.3 0.09 091] 338 0 1.2| 998.5

We observe that the cost performance and the match rate in CL is better than in SC. For instance,
given the same number of drivers and parcels, the average cost reduction in CL is about 70% higher
than in SC. The match rate in CL can reach 91%, when the DP ratio is 3. The average number of hops

for a parcel to reach its destination is also larger in CL. These phenomena can be explained by the
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Table 3  The exact solutions by varying the number of parcels (#driver =15, § =0.1)

extra travel

# DP total cost time (min)  avg. cap. match #hops mile

Network parcel ratio EA current saving | max mean utilization rate|max min mean | saved
SC 15 1.00 | 404.1 489.9 17.5%| 6.5 0.8 0.08 0.30] 1.8 0 0.01| 405.3
30 0.50 | 820.3 974.7 15.8% | 14.6 2.2 0.15  0.27] 2.7 0 0.01| 758.6

45 0.33 [1209.9 1455.8 16.9% | 15.6 2.9 022 0.30] 3.1 0 0.02|1382.1

60  0.25 |1606.7 1953.4 17.8% | 17.8 3.7 0.31  0.31] 3.0 0 0.03|1784.5

75 0.20 |2095.2 2475.8 154% | 16.8 3.2 0.33 0.27] 35 0 0.03]2075.8

90  0.17 |2490.6 29155 14.6% | 15.8 2.9 0.38 0.25] 3.0 0 0.03|2190.1

CL 15 1.00 | 276.0 423.0 34.8% | 11.2 1.6 0.13 050| 1.4 0 06| 4452
30 0.50 | 553.6 835.4 33.8% | 12.8 2.6 025 048] 2.9 0 0.5 916.6

45  0.33 | 936.3 1271.5 26.4% | 11.4 2.8 0.25 0.37] 3.8 0 0.4)1006.7

60  0.25 |1233.3 1662.7 25.9% | 14.1 3.1 032 0.36] 5.1 0 0411755

75 0.20 | 1580.0 2099.1 24.7% | 13.9 3.2 041 0.35| 6.5 0 0.4]1646.8

90 0.17 | 1879.3 2531.0 25.8% | 13.4 3.8 046 0.37| 7.6 0 04]1924.6

fact that the majority of drivers’ and parcels’ origins and destinations are close to each other within

the clusters, leading to a denser subgraph consisting of drivers’ possible paths for these parcels. We

also find that different key parameters in SC and CL have a different effect on the total cost. For

instance, the maximum allowed detour has more impact on the total cost in CL (see Figure 7), while

the total cost in SC reacts stronger to increasing car capacity utilization (see Figure 9). In addition,

implementing crowdsourced shipping saves more vehicle miles in SC in 6 out of the 8 scenarios. This

is mainly because SC is more geographically spanned, that is, the average distance between any two

nodes in SC is about 48% longer than in CL. The vehicle miles saved is larger in CL only when its

match rate is significantly higher, i.e., the DP ratio between 0.5 and 1 in Figure 10).
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7.2. Impact of delivery time windows

The same-day delivery option is rare and expensive in the Netherlands. The goal of this subsection
is to show that by using crowdsourced shipping, a shipper can provide affordable same-day delivery
services to its customers.

Tables 4 and 5 provide a summary of the results obtained under different delivery options, including
next-day delivery, same-day delivery, and 3-hour emergency delivery services. We observe similar
trends of the cost reduction and the match rate in the same-day delivery and the 3-hour delivery
service by varying the number of parcels and drivers. In Table 5, although the delivery window
in the same-day delivery is only 1.5 hours less on average compared to the next-day delivery, the
cost saving drops 4.7% (7.9%) on the SC (CL), which is 1.2 (1.4) times more than the cost saving
reduction from the same-day delivery to the 3-hour delivery service. This seems counter-intuitive
at first glance. However, it can be explained by the fact that the shipper mainly use the morning
commute (8-10am) of the crowd to deliver parcels, yet the parcels that are delivered via the same-day
delivery option are ready at 9:30am on average. It results in a drastic decrease in available drivers.
Therefore, it is important for the shipper to fully understand the feature of the crowd’s schedule and
select the delivery options that are compatible with crowdsourced shipping. Otherwise, the shipper
may lose not only the benefit of crowdsourced shipping but also the opportunity of in-house resource
consolidation. Tables 4 and 5 also show that if crowdsourced shipping can be efficiently implemented,

faster delivery service options can be provided with lower costs.

7.3. Performance of the algorithms
In this subsection, we illustrate the computational performance of both the TC-heuristic and the

TEG-heuristic in the small-scale numerical setting with different maximum detours as well as different
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Table 4  Results under different delivery options varying the number of drivers (6 =0.1)

Cost saving (%) Match rate
Network #driver #parcel Current Next day Same day Urgent Next day Same day Urgent
SC 15 15 489.9 17.6 122 89 0.30 0.21 0.15
30 487.9 37.8 33.3 239 0.67 0.56 0.37
45 494.5 44.3 33.9 214 0.78 0.57 0.35
CL 15 15 423.0 34.8 26.8 18.8 0.50 0.39 0.27
30 413.1 53.7 33.9 304 0.75 0.59 0.42
45 416.7  65.7 55.3 345 0.91 0.76 0.47

Table 5 Results under different delivery options varying the number of parcels (6 =0.1)

Cost saving (%) Match rate
Network #driver #parcel Current Next-day Same-day 3-hour Next-day Same-day 3-hour
SC 15 15 489.9 17.6 12.2 8.9 0.30 0.21 0.15
30 974.7 15.9 11.6 7.9 0.27 0.20 0.13
45 1455.8 16.9 13.1 8.4 0.30 0.23 0.14
60 1953.4 17.8 12.3 8.0 0.31 0.22 0.13
75 2475.8 15.4 10.7 6.8 0.27 0.19 0.11
90 2915.5 14.6 10.4 7.5 0.25 0.18 0.12
CL 15 15 423.0 34.8 26.8 18.8 0.50 0.39 0.27
30 835.4 33.8 23.1 17.9 0.48 0.33 0.25
45 1271.5 26.4 19.1 14.8 0.37 0.27 0.21
60 1662.7 25.9 18.2 12.6 0.36 0.25 0.18
75 2099.1 24.7 19.9 12.7 0.35 0.28 0.18
90 2531.0 25.8 16.9 12.6 0.37 0.25 0.18

number of drivers and parcels, the results of which are compared with the exact solution, and the
current situation where all the parcels are delivered by the shipping company.

Compared to the exact solution given by the ILP, the optimality gap varies between 2.9% (2.5%)
and 49.9% (39.4%) for the TC (TEG) heuristic. Based on the percentage difference from the exact
solution, Figures 11 and 12 depict the quality of the solutions obtained by the TC, TEG, CR-TEG
and R-TEG heuristics by varying the number of parcels and drivers. Given a fixed number of drivers
(i.e., #driver = 15), Figure 11 shows that the performance of every solution method is robust to
changes in the number of parcels, compared to the best possible practice. This means that as the
number of parcels increases, the percentage difference between the solution obtained by a certain
heuristic and the exact solution obtained by solving the ILP does not vary a lot. In contrast, the
heuristics perform less with increasing number of drivers (see Figure 12). This is mainly due to the
neglect of the increasing number of possible paths for the drivers, as the previous analysis has shown
that the number of drivers is a dominant source of the computational complexity. Even so, all the
proposed heuristics can be used to obtain a solution that performs much better than the current

situation. Arguably, the R-TEG heuristic outperforms the other methods in all these scenarios and
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its deterioration rate is the lowest among the four heuristics, as the number of drivers increases.

The above results are computed using a maximum detour of 0.1. Interestingly, as seen before, Figure

7 shows that when ¢ is small, the TC-heuristic performs better than the three TEG heuristics,

but it gets behind quickly as either the number of drivers or the maximum detour increases. This

demonstrates the fact that when the subgraph that is constructed by drivers’ possible paths becomes

better connected, the number of potential transfers for each parcel increases. As such, not being able

to wait at transfer points becomes the most influential adverse factor that affects the quality of the

solution. Figure 13 also shows that the TEG approaches perform consistently well as the maximum

detour increases.
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The run time of each solution method spent in solving the different scenarios is summarized in

Tables 6 and 7. We see that the number of drivers is a major source of computational complexity,

compared to the number of parcels. For each instance, the CR-TEG and the R-TEG heuristics run
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for 100 iterations and 1000 iterations, respectively. Obviously, these two heuristics achieve a better
solution at the cost of having a 100-1000 times longer run time. Therefore, we study the number
of iterations needed for CR-TEG (R-TEG) to achieve a certain percentage improvement on the gap
between the TEG objective and the objective of the CR-TEG (R-TEG) after 100 (1000) iterations.
The results of using #driver = 15, #parcel = 90,9 = 0.1 are shown in Figure 14. We see that the
CR-TEG heuristic reaches 90% improvement after 8 iterations in SC and after 10 iterations in CL.
The R-TEG heuristic obtains 90% improvement after 98 iterations in SC and after 23 iterations in
CL. We also studied the other scenarios and found similar patterns. The fast convergence of the

heuristics shows the added value of using even more iterations is limited.

Table 6 Summary of the run time by varying the number of drivers (6 =0.1)

run time (sec)

Network #driver #parcel TC TEG CR-TEG R-TEG EA
SC 15 15 0.006 0.003  1.255 2.813 1.846
30 0.028 0.007  2.191 6.604 2367.392

45 0.029 0.010  2.869 9.688 12852.460

CL 15 15 0.006 0.005  1.925 5.385 28.355
30 0.019 0.011  3.177 11.103  4610.559

45 0.032 0.019  4.019 18.515 16539.498

7.4. Realistic case

In this subsection, we solve a larger-scale problem setting that a Dutch shipping company might face
when using crowd based shipping within the Netherlands using the proposed heuristics. We compare
the efficiency of each heuristic and also compare the results with the default scenario that the shipper

delivers all the parcels itself. Our goal is two-fold. First, we want to show that the proposed heuristics
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Table 7 Summary of the rum time by varying the number of parcels (6§ =0.1)

run time (sec)

Network #driver #parcel TC TEG CR-TEG R-TEG EA
SC 15 15 0.006 0.003  1.255 2.813 1.846
30 0.008 0.004 1.514 3.878 30.873

45 0.011 0.006  2.249 6.381 88.961

60  0.006 0.007  2.351 7.090 37.831

75 0.014 0.006  2.062 6.326 196.111

90 0.016 0.008  2.577 8.115 76.930

CL 15 15 0.006 0.005 1.925 5.385 28.355
30 0.014 0.008  2.550 8.137  1627.549

45 0.019 0.009  3.019 8.649  3130.300

60 0.015 0.009  2.959 9.227 4391.117

75 0.019 0.011  3.190 11.388 22442.349

90  0.020 0.011  3.405 11.345  7008.197
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are capable of solving real life problems in reasonable run time. Second, the MDMPMP could be an
economically sound alternative for a shipper, and can lead to socially desirable results.

Since the number of drivers is a major source of computational complexity, we consider scenarios
with 300 parcels and varying number of drivers ranging between 100 and 900. The results are shown
in Table 8. As explained at the beginning of Section 7, we focus on the increments rather than the
absolute values concerning the run times. We see that the run time of the TC heuristic increases
super-linearly with respect to the number of drivers, whereas the run time of the TEG-typed heuristics
increases linearly. For the largest scenario that we test (i.e., 900 drivers, 300 parcels, 0.1 maximum
detour and 3-hour delivery window), the use of the TC (TEG) heuristic leads to 53.4% (38.5%)
average reduction in the overall cost compared to the default shipping option, with a run time of

43.9 (3.2) seconds. There is almost no impact on the run time between the next-day delivery and the
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same-day delivery, but we see a run time increment between the same-day delivery and the urgent
delivery for the scenario of 900 drivers.

As the problem scale increases, the CR-TEG outperforms the R-TEG in both quality and run time.
Due to the substantial increase in the solution space, the CR-TEG has a steeper and more steady
descent by fixing the existing parcel-driver assignments. Similar to a random walk, the R-TEG is
better at escaping from a local minimum and achieve better solutions in principle, but the limited
number of iterations compared to the solution space becomes a barrier. Furthermore, the impact of
shortening the time window has the least impact on the CR-TEG, mainly because the solution is
obtained based on an initial solution where drivers are considered to depart at the earliest departure
time.

To conclude, we recommend the CR-TEG heuristic for the larger-scale problems based on its overall

performance with respect to quality and run time.

Table 8  Results of a realistic case under different delivery options (#parcel=300, § =0.1)

Relative difference in objective value

Delivery # compared to current Run time (sec)
option driver TC TEG CR-TEG R-TEG TC TEG CR-TEG R-TEG
Next-day 100 16.9% 11.4% 12.5% 13.6% 2.045 0.171 12.275 34.127
300 46.9% 25.3%  29.4% 29.2% 9.738 0.993 65.736 198.648
500  52.1% 34.2%  39.0% 38.1%  15.656 1.839  101.066 367.745
700 53.2% 39.0%  42.2% 42.4% 28.938 2.723  167.474 544.695
900 53.4% 38.5%  40.4% 39.3% 43.878 3.220 131.794 643.949
Same-day 100 15.3% 9.7% 11.3% 11.7% 1.735 0.173 12.254 34.585
300 40.2% 22.6% 27.2% 27.4% 9.482 0.925 60.059 184.925
500 49.2% 29.2%  37.4% 34.8% 17.545 1.769  100.447 353.868
700 52.0% 32.3%  42.7% 39.1% 29.717 2.565  144.293 512.900
900 52.2% 33.4%  43.8% 38.7% 46.388 3.320  144.990 664.015
Urgent 100 13.5% 7.8% 9.7% 10.8% 1.391 0.172 11.115 34.466
300 30.5% 17.2%  23.1% 22.2% 9.377 1.021 67.539 204.139
500 37.2% 22.5% 31.7% 29.3% 21.043 1.523  114.407 304.521
700 42.0% 24.8%  36.5% 36.0%  37.027 3.324  167.370 664.809
900 43.2% 25.2%  39.4% 32.5%  60.435 4.510  231.232 901.989

Note: Due to the increase of run time, 50 iterations are applied to the CR-TEG and 200 iterations
are applied to the R-TEG.

8. Conclusion
In this paper, we consider the problem where a shipper (or a consortia of shippers) uses crowdsourced
shipping for home deliveries of small-to-medium freight volumes. In particular, we take advantage

of the spare capacity in the private vehicles from crowdsourced drivers along their scheduled trips.
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We provide a general ILP formulation for the multi-driver multi-parcel matching problem, which can
be viewed as an extension of the multi-hop ride sharing problem. The model incorporates driver’s
maximum allowed detour, vehicle capacities, and the option of transferring parcels between drivers.

Due to the high computational complexity of the problem, the ILP can be solved to optimality
only for small instances. This motivates us to develop two heuristics: the time compatibility heuristic
and the time-expanded graph heuristic. The time compatibility heuristic assigns each parcel to the
shortest feasible path on a network that consists of drivers’ possible physical paths, yet checking the
time compatibility for each step can be computationally costly. The time-expanded graph heuristic
uses an approach that is typically used to model timetable information in public transportation
where the routes and schedules are usually predetermined. The most differentiating feature of the two
approaches is whether the decision on a driver’s route and the corresponding time schedule affects the
feasibility of another driver’s decision. We explain the pros and cons of both heuristics and provide
an extensive experimental comparison of the two approaches.

Assuming the participating drivers need to travel anyway, the numerical results show that an
increasing number of participating drivers is beneficial for the shipper, and socially desirable due to
reduction in CO, emissions and traffic congestion. In addition, the results suggest that it is desirable
to analyze the characteristics of the system before implementing a crowdsourced shipping service.
For instance, the spatial characteristics of the logistical network, and the spatial distribution of the
origin and destination of the participating drivers and parcels can affect the performance of the
matching system as well as the response to key parametric changes. Finally, we show that the TC-
heuristic performs well in the small-to-medium sized problems, while the CR-TEG is recommended
for larger-scale problems.

Future research can be done in three lines. First, future work can be done in finding a search direc-
tion regarding the choice of departure time that gives a faster convergence for the TEG approach.
Second, as an extension towards a semi-online model environment, a rolling-horizon approach can be
introduced. Finally, a shipping company may consider to collaborate with companies that provide
storage services (e.g., locker systems) at convenient locations, which can loosen the time synchro-

nization restriction among drivers and parcels.
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