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Abstract
Crowdsourced shipping can result in significant economic and social benefits. For a shipping company, it
has a potential cost advantage and creates opportunities for faster deliveries. For the society, it can provide
desirable results by reducing congestion and air pollution. Despite the great potential, crowdsourced shipping
is not well studied. With the aim of using the spare capacities along the existing transportation flows of the
crowd to deliver small-to-medium freight volumes, this paper defines the multi-driver multi-parcel matching
problem and proposes a general ILP formulation, which incorporates drivers’ maximum detour, capacity
limits, and the option of transferring parcels between drivers. Due to the high computational complexity,
we develop two heuristics to solve the problem. The numerical study shows that crowdsourced shipping
can be an economic viable and sustainable option, depending on the spatial characteristics of the network
and drivers’ schedules. Furthermore, the added benefits increase with an increasing number of participating
drivers and parcels.

Key words : crowdsourced shipping; pickup and delivery problem; multi-hop; ridesharing; transfers

1. Introduction
E-commerce currently appears to be one of the fastest growing marketing channels for different kinds

of products and services for consumers. Online sales of goods in the European Union amounted to

approximately 200 billion euros (B2C only) in 2014 and may double in the next five years with annual

growth rates above 15% per year (Prologis, 2015), which has resulted in a rapid growth in parcel

delivery. With the growth of e-commerce in distribution channels, deliveries will likely become more

fragmented than ever with a large number of small-to-medium packages that need to be delivered

to customer’s locations rapidly (Fatnassi et al., 2015). Although a “last-mile” delivery service is

convenient for the customer, it creates significant logistical challenges for shipping companies, one of

which is the allocation of large load capacity to address small volume demands (Montreuil, 2011). A

larger fleet size increases congestion and environmental problems in urban areas. The INRIX Traffic

Scorecard Annual report shows that countries with strong economic growth in 2014, such as the US,

Germany, Ireland, Switzerland and Luxembourg, all experienced increased gridlock on their roads. In
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the US, for instance, 6.9 billion hours of US drivers’ extra time and 3.1 billion gallons of fuel, which

is approximately 160 billion US dollars, are wasted in traffic congestion (Schrank et al., 2015). The

road transport sector also plays an important role in world energy use and emissions of greenhouse

gases. Up to 30-40% of road sector CO2 emissions come from road freight transport (ITF, 2010;

IPCC, 2014).

As a result of the ever-growing conflict between the increasing demand for mobility and limited

resources, shared transport practice has gained a lot of attention recently. It focuses on making joint

use of transport resources, between passengers and goods flows. Trentini and Mahléné (2010) provide

an overview of solutions for combining passenger and freight transportation used in practice. Large

retailers such as Walmart and Amazon are also considering crowdsourced parcel services (Barr and

Wohl, 2013; Reilly, 2015). As shared economy is increasingly in the spotlight, related strategic and

operational aspects of providing integrated transportation services for both people and freight have

received academic attention. Several attempts to develop such integrated models have been made. Li

et al. (2014) and Nguyen et al. (2015) consider problems in which people and parcels are handled in

an integrated way by the same taxi network. Ghilas et al. (2013) study the possibility of transporting

freight by public transport, which operates according to predetermined routes and schedules. Simi-

larly, Masson et al. (2014) design a two-tier distribution system that uses spare capacity of the buses

combined with a fleet of near-zero emission city freighters to deliver parcels to shops and adminis-

trations located in congested city cores. In addition, Fatnassi et al. (2015) investigate the potential

of integrating a shared goods and passengers on-demand rapid transit system in urban areas. Pre-

sumably due to the computational complexity, the prevailing literature focuses on the driver-parcel

matching problems where parcels cannot hop (be transferred) between drivers. Our research fills this

gap and explores People and Freight Integrated Transportation (PFIT) problems with the consid-

eration of multiple hops. As a result, drivers and parcels can be matched without requirements of

sharing a similar destination or parcel destination that are positioned on or near the driver’s route.

Instead, parcels can move towards their destination one hop at a time. The multi-hop principle makes

our approach suitable for instances with longer distances, such as intercity transportation.

From the standpoint of a shipping company (or a consortium of shippers), this paper considers a

problem where the shipper provides freight transportation services via a pool of approved drivers with

spare capacity. This crowdsource business setting has a potential cost advantage because thousands

of drivers are commuting between home and businesses with spare space in their cars, and those

drivers pay for their own cars, gas, insurance, and maintenance. It also creates opportunities for

faster deliveries and thus enhances customer satisfaction. Traditionally, for a shipping company’s



3

business-to-customer (B2C) model to be profitable, a critical mass of customers need to be engaged

for the provision of the service. Having the crowd as potential means, the time and effort necessary

for arranging economically sustainable delivery may be substantially less. From a social standpoint,

it can provide desirable results by reducing congestion and air pollution. The key idea to achieve

these advantages is to exploit unused capacities along the existing transportation flows of the crowd.

Although it is out of the scope of this paper, we would like to point out that crowdsoured shipping

can also be used to provide peer-to-peer (P2P) delivery, as seen recently with examples as Deliv,

Walmart and Amazon. Such a delivery platform is considered by Arslan et al. (2016). We would also

like to comment on the environmental and social benefits of crowdsourced shipping. Without the

condition of using the existing vehicle flows, such services (e.g., Uber) may also induce unnecessary

travels and thus do not necessarily reduce congestion and air pollution.

The goal of this paper is to provide the means for a shipping company (or a consortium of shippers)

to match its demand for freight transportation with people transportation with a particular focus on

using spare capacities of the existing private vehicle flows with the objective to minimize the total cost

of delivering all the parcels on time. To achieve this goal, we present a mixed integer programming

formulation for matching and scheduling such a combined system. Considering the combination

with existing planned routes of the drivers, we limit our attention to the offline problem: given

all drivers and known delivery requests (i.e., origin, destination, earliest departure time and latest

arrival time), find an optimal plan to deliver all the parcels on time, ignoring possible future request.

In contrast to P2P platforms where users usually expect a direct response, we focus on periodic

planning to benefit from resource consolidation, which makes sense from a shipper’s perspective.

The offline setting enables us to batch incoming requests smartly and facilitates the multi-driver

multi-parcel matching. Even a driver with a completely different destination can take the parcel

to an intersection where the parcel could be transferred to other vehicles that travel closer to the

destination. Furthermore, we provide two heuristics for solving non-trivial problem instances of the

considered NP-hard optimization problem, which are the time compatibility based heuristic and the

time expanded graph based heuristic. These heuristics use different approaches to handle timetable

information of the drivers. As a result, they deviate from the exact solution approach due to the

consideration of different solution spaces and also require different levels of computational efforts. In

this paper, we explain the pros and cons of both heuristics and provide an extensive experimental

comparison of the two approaches.

The remainder of the paper is organized as follows. In the next section, we position our research

in the context of the relevant literature. After introducing the Multi-Driver Multi-Parcel Matching



4

Problem (MDMPMP) in Section 3, the mixed integer programming formulation is presented in Sec-

tion 4. We propose two heuristics for solving the MDMPMP in Section 5. Section 6 presents the

experimental settings. Section 7 reports the results obtained from extensive computational experi-

ments. The paper ends with concluding remarks in Section 8.

2. Literature review
As far as the application is concerned, the design and planning of the driver-parcel matching problem

described in this paper falls into the field of People and Freight Integrated Transportation prob-

lems (PFIT problems). Despite the increasing interest in practice, an integrated people and freight

transport solution to short-haul (intra and intercity) transportation has not been sufficiently taken

into consideration in the literature (Lindholm and Behrends, 2012; Ghilas et al., 2013). Three ways

of integration (i.e., public transport, taxi, and private vehicles) are proposed in the literature. We

subsequently discuss each of them in the following paragraphs.

Public transport, such as bus, train, metro and other light rail systems, operates according to

predetermined routes and schedules. Ghilas et al. (2013) investigate the opportunity of making use

of available public transport as a part of the freight journey of logistics service providers, which

operates according to predetermined routes and schedules. An arc-based mixed integer program is

presented and it is amenable to solve by CPLEX. The numerical analysis shows significant reductions

in operating cost and carbon dioxide emission and the potential for mitigating traffic congestion.

Along the same vein, Shen et al. (2015) conduct a case study on the Yuantong Express, one of the

major national logistics enterprises in China, to explore the feasibility of the proposed public transit-

based freight system using the existing bus network in Zhenjiang City in China. Such an integrated

system results in a significant reduction in the fleet size required for good delivery service. Masson

et al. (2014) designs a two-tiered distribution system that uses the buses spare capacity combined

with a fleet of near-zero emissions city freighters to deliver parcels to shops and administrations

located in congested city cores.

A taxi carries passengers and(or) parcels between locations of their choice, which differs from

the abovementioned modes of public transport where the pick-up and drop-off locations as well as

the schedules are determined by the service provider. Li et al. (2014) propose to integrate parcel

transportation into a taxi service, which is defined as the Share-A-Ride Problem, an extension of

the dial-a-ride problem. For the sake of reducing the computational complexity, they also propose

a method to optimize the insertion of parcel requests into the predefined taxi routes. Nguyen et al.

(2015) builds upon the model from Li et al. (2014) and conduct a case study on the Tokyo-Musen
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Taxi company in Tokyo city. Typically, a taxi driver has to comply with the service levels for both the
passenger and the parcels. In common practice, parcel deliveries should not interfere with passenger
transport, the core business of running a taxi.

When it comes to private vehicles, drivers have absolute control of the routes and schedules, and
parcels can never travel without a driver. A closely related work by Arslan et al. (2016) studies the
incorporation of crowdshipping into the last-mile delivery system within an urban area. The differ-
entiating feature of our work is the consideration of transfers, which makes our approach typically
more suitable for instances with longer distances, e.g., transport between urban areas. To support
this, we have to make sure that parcels are not left unattended due to the presence of transfers.
These requirements strengthen the interdependency between drivers and parcels.

Methodologically, our research belongs to the family of ride-sharing problems, and more specially
the multiple driver, multiple rider arrangement (Agatz et al., 2012). Gruebele (2008) describes such
multi-hop and multi-passenger routing system in detail. Herbawi and Weber (2011) consider a single
rider version of the multi-hop ride-sharing problem where drivers do not deviate from their routes and
schedules. As such, the set of drivers’ routes form the transportation network for the rider who aims at
minimizing time, cost and number of transfers. The problem is modeled as a multi-objective shortest
path problem on a time-expanded graph representing the drivers’ offers. They propose an evolutionary
multi-objective route planning algorithm to solve the problem and show that this approach can
provide good quality solutions in reasonable runtime. The multi-hop ride-sharing problem is a lot
more difficult when also considering the routing of the drivers (Agatz et al., 2012). Herbawi and
Weber (2012) extend the previous work to match multiple riders with multiple drivers having time
windows and allowing a possible detour from their routes. They propose a genetic algorithm and
show that it can be used to solve the model in reasonable time. Drews and Luxen (2013) show that
the problem studied by Herbawi and Weber (2012) can also be solved by exploiting time-expanded
graphs representing the drivers’ offers. In this paper, we consider a problem with (i) multiple drivers,
(ii) multiple parcels, (iii) time windows, (iv) the routing of the drivers, and (v) multiple hops of
the parcels. Additional complexity is introduced in our problem due to the requirement of keeping
parcels attended all the time.

The contribution of this paper is multi-fold. First, we provide one of the earliest modeling efforts
on matching the demand for freight transportation with people transportation by utilizing spare
capacities of the existing private vehicle flows. Second, we consider the possibility of transfers, which
makes our approach suitable for instances with longer distances. Third, we show that the proposed
model can by solved by two very distinct heuristics and provide a comprehensive comparison of the
pros and cons of using them.
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3. Problem description
As e-commerce grows and evolves, shipping companies need to deliver a large number of small-to-

medium freight volumes and home deliveries every day while thousands of drivers are commuting

between home and businesses with spare space in their cars. To reduce shipping costs and efforts,

shipping companies consider to pay these independent drivers to deliver the parcels for them on the

way. To accommodate the parcels, the driver has to make a detour and make extra stops. The length

of the detour and the number of extra stops are determined by the driver’s willingness to extend

his trip with respect to both distance and time. Drivers may take a single parcel or multiple parcels

(sequentially or simultaneously) along the journey, as long as the capacity of their vehicle is not

exceeded. Similarly, parcels may be carried by a single driver from their origins to their destinations

or may be transported by multiple drivers and transferred from one to another en route to their

destinations. We propose the Multi-Driver Multi-Parcel Matching Problem (MDMPMP) based on

the Multi-Hop Ride Sharing Problem.

The MDMPMP is defined on an undirected graph G= (N,E), where N is the set of nodes repre-

senting the possible locations for departure, arrival or transfer, and E is the set of edges that directly

connect two aforementioned locations, i.e., represents the road network. With each edge (i, j)∈E, a

distance dij and a travel time tij are associated. Furthermore, we are given a set of drivers Q and a

set of parcels P . Driver q ∈Q will travel from his origin oQq to his destination wQq and SPq represents

the set of edges belonging to his shortest path from oQq to wQq . An earliest time EQ
q at which he

can depart from his origin oQq and a latest time LQq at which he has to arrive at his destination wQq

are also associated with driver q. Driver q has Vq spare space available for parcels. Similarly, each

parcel p∈ P will travel from its origin oPp to its destination wPp . An earliest time EP
p at which it can

depart from its origin oPp and a latest time LPp at which it has to arrive at its destination wPp are also

associated with parcel p. Each parcel has a volume of vp.

To cope with realistic requirements, our model has the following features. First, drivers are allowed

to deviate from their shortest path to pick up and drop off parcels, as long as their detour is at most a

fraction δ of their shortest path length, and thus the routing of the drivers also need to be considered.

Second, parcels are not allowed to be left unattended. As a result, the waiting time of the driver who

needs to handover the parcel at a certain station (and thus the subsequent possible paths) depends

on the arrival time of the following driver, and so on. Third, parcels are not as time sensitive as

riders in the ride sharing problem, as long as they are delivered within the associated time windows.

Therefore, assigning longer paths to the parcels may facilitate the system-wide matching. To avoid

making too many unnecessary transfers, parcels are not allowed to pass the same node more than
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once in our model. From an algorithmic viewpoint, the first two features make the assignment of

parcels to drivers more complicated because the validation of the possible paths for different drivers

are intertwined.

While it costs the shipping company cp to deliver parcel p itself, it can also let the crowd do it by

paying them a compensation for the service. Our goal is to help the shipper deliver all the parcels on

time with minimum overall cost, which consists of (i) the shipping costs, and (ii) the compensation

for drivers’ traveling cost and inconvenience due to the parcel delivery.

4. Mathematical model for the MDMPMP
In this section, we present a mixed-integer program for the MDMPMP from a shipping company’s

perspective. Table 1 lists all the relevant parameters and variables used. With this model, the shipping

company can determine (i) the optimal matching plan between drivers and parcels for the whole

planning horizon (e.g., one day), (ii) the optimal path of each driver and each parcel, and (iii) the

time schedule for the drivers and the parcels to be delivered by independent drivers. Depending on

the availability of the drivers, many parcels might still need to be delivered by the shipper itself

(see numerical results from Section 7). The driver-parcel matching requires a seamless coordination

among drivers, parcels, and the freight transportation network, which motivated us to design this

MDMPMP model.

The objective is to minimize the overall cost of the shipping company related to the parcel delivery

service, which consists of the shipping cost incurred from self delivery and the four weighted costs

of compensating the crowd. The compensation includes (i) the transportation cost compensation for

the kilometers that the drivers travel with parcels, (ii) the risk and inconvenience associated with

the number of parcel transfers, (iii) the waiting time for transferring parcels, and (iv) the extra

kilometers traveled. The last two components are the compensation for the system-wide opportunity

costs incurred by all the drivers due to the parcel delivery. Accordingly, the objective function in our

formulation of the MDMPMP is written as follows. Each of the five terms has a weight attached.
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Table 1 Parameters and decision variables for the MDMPMP model.
Parameters
Q Set of drivers
P Set of parcels
N Set of nodes
E Set of edges
oQq driver q’s origin
wQq driver q’s destination
oPp parcel p’s origin
wPp parcel p’s destination
SPq Set of edges belonging to the shortest path of driver q from oQq to wQq
EQ
q Earliest departure time of driver q

LQq Latest arrival time of driver q
rq Distance of the shortest path from oQq to wQq of driver q
δ Coefficient of maximum detour
xqij Binary parameters equal to 1 if edge (i, j) belongs to the set of paths of driver q,

the length of which is no more than (1 + δ)rq; and 0 otherwise
EP
p Earliest departure time of parcel p

LPp Latest arrival time of parcel p
Vq Available car capacity of driver q
vp Volume of parcel p
dij Travel distance from node i to node j, ∀i, j ∈N
tij Travel time from node i to node j, ∀i, j ∈N
cp Cost of delivering parcel p by the shipping company
w1 Compensation per parcel per kilometer for a driver who help carry freight
w2 Cost of transferring a parcel between drivers
w3 Compensation per minute for a driver waiting on the way
w4 Compensation per kilometer for a driver’s additional travel cost due to detour
M,K Large numbers

Decision variables
Zqij Binary variable equal to 1 if driver q goes directly from node i to node j; and 0

otherwise
Ypqij Binary variable equal to 1 if driver q carries parcel p from node i to node j;

and 0 otherwise
Wp Binary variable equal to 1 if parcel p is delivered by the shipping company
DQ
qi Departure time of driver q at node i

DP
pi Departure time of parcel p at node i

Dependent variables
Spqi Binary variable equal to 1 if driver q picks up parcel p at node i
AQqi Arrival time of driver q at node i
APpi Arrival time of parcel p at node i
ypj Binary variable for logic constraints that are used to ensure that parcels are not

left unattended
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min
∑
p

cpWp +w1
∑
q

∑
p

∑
i,j

dijYpqij +w2
∑
p

∑
q

∑
i6=oP

p

Spqi

+w3
∑
q

(
(AQ

q,w
Q
q
−DQ

q,o
Q
q

)−
∑
i,j

tijZqij
)

+w4
∑
q

(∑
i,j

dijZqij − rq
)

(1)

The MDMPMP is confined by two sets of constraints: (i) spatial constraints and (ii) capacity and

time constraints.

Constraints for spatial issues

∑
j

Zqij = 1 ∀q, i= oQq (2)∑
i

Zqij −
∑
k

Zqjk = 0 ∀q,∀j ∈N \ {oQq ,wQq } (3)∑
i

Zqij = 0 ∀q, j = oQq (4)∑
i

Zqij ≤ 1 ∀q, j (5)

Zqij ≤ xqij ∀q, i, j (6)∑
i,j

dijZqij ≤ rq(1 + δ) ∀q (7)∑
q

∑
j

Ypqij +Wp = 1 ∀p, i= oPp (8)∑
i

∑
q

Ypqij −
∑
q

∑
k

Ypqjk = 0 ∀p,∀j ∈N \ {oPp ,wPp } (9)∑
q

∑
i

Ypqij = 0 ∀p, j = oPp (10)

Ypqij ≤Zqij ∀p, q, i, j (11)

Spqj ≥
∑
i

Ypqji−
∑
i

Ypqij ∀p, q, j (12)

Zqij , Ypqij ,Wp, Spqi ∈ {0,1} ∀p, q, i, j (13)

Constraints (2)-(13) are imposed to find the feasible matches between drivers and parcels based

on the spatial information (i.e., origins and destinations). Constraints (2) and (3) ensure that each

driver will take one and only one path, and this path is continuous. Constraints (4) ensure that no

driver will return to his/her origin. Constraints (5) prevent the drivers returning to already visited

nodes. Constraints (6) guarantee that drivers only use edges of paths that comply with the maximum

detour constraint. Constraints (7) are the maximum detour constraint for the drivers. By constraints

(8) and (9), each parcel will be delivered from origin to destination either by drivers or by the ship-

ping company itself. Constraints (10) ensure that no parcel will return to its origin. Constraints (11)
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ensure that the parcels that are scheduled to be delivered by drivers cannot travel without a driver.

Constraints (12) keep track of the stations where parcels are picked up by drivers. Constraints (13)

are domain constraints.

Constraints for capacity and time related issues

∑
p

vpYpqij ≤ Vq ∀q, i, j (14)

AQqj ≥D
Q
qi + tij −M(1−Zqij) ∀q,∀i∈N \ {wQq },∀j ∈N \ {oPp } (15)

DP
pi ≥EP

p (1−Wp) i= oPp ,∀p (16)

APpj ≤LPp (1−Wp) j =wPp ,∀p (17)

DP
pi ≥APpi ∀i∈N \ {oPp ,wPp };∀p (18)

DQ
qi ≥EQ

q i= oQq ,∀q (19)

AQqj ≤LQq j =wQq ,∀q (20)

DQ
qi ≥A

Q
qi ∀i∈N \ {oPp ,wPp },∀q (21)

DP
pi−D

Q
qi ≤M(1−

∑
j

Ypqij) ∀p, q,∀i∈N \ {wPp ,wQq } (22)

DP
pi−D

Q
qi ≥−M(1−

∑
j

Ypqij) ∀p, q,∀i∈N \ {wPp ,wQq } (23)

AQqi−APpi ≤M(1−
∑
j

Ypqji) ∀p, q,∀i∈N \ {oPp , oQq } (24)

AQqi−APpi ≥−M(1−
∑
j

Ypqji) ∀p, q,∀i∈N \ {oPp , oQq } (25)

DQ
qj −DP

pj ≥−M(1−
∑
i

Ypqij)− ypjK ∀p, q,∀j ∈N \ {wPp ,wQq } (26)

AQqj −DP
pj ≥−M(1−

∑
i

Ypqij)− ypjK j =wQq ,∀p, q (27)

APpj −A
Q
rj ≥−M(1−

∑
k

Yprjk)−K(1− ypj) ∀q, r ∈Q,∀p,∀j ∈N \ {wPp ,wQr } (28)

DQ
qi,D

P
pi,A

Q
qi,A

P
pi ≥ 0 ∀q, p, i (29)

ypj ∈ {0,1} ∀p, j (30)

Constraints (14)-(33) concern the capacity and time related issues. Constraints (14) are capacity

constraints for the drivers. Constraints (15) calculate the arrival times of drivers based on the asso-

ciated departure times. Constraints (16) and (17) ensure that each parcel that is to be delivered by

the crowd departs after the corresponding earliest departure time and arrives before the correspond-

ing latest arrival time. Clearly, the departure time cannot be earlier than the arrival time at the

same station, which is considered by Constraints (18). Similarly, the time compatibility issues for the

drivers are enforced by Constraints (19)-(21). Constraints (22) and (23) ensure that the departure

time of a parcel equals the departure time of the driver who will carry it. Constraints (24) and (25)
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guarantee that the arrival time of a parcel equals the departure time of the driver who will carry it.

Thus, Constraints (22)-(25) ensure the time consistency of a parcel and all the drivers carrying it.

Constraints (26) ensure that the departure time of the driver who brought the parcel to a particular

node is no earlier than the departure time of the parcel. Constraints (27) deal with the boundary

situation of Constraints (26) that the driver who has arrived at his destination with a parcel has to

stay until the parcel departs again. Constraints (28) guarantee that the arrival time of the driver

who will carry the parcel arrives earlier than the parcel. If y = 0, then only Constraints (26) and (27)

hold, and if ypj = 1 then only Constraints (28) hold. This either/or behavior ensures that parcels are

never left unattended. Constraints (29) and (30) are domain constraints.

Valid inequalities

In addition, we add the following valid inequalities to the model that help us find the solution.

Although these five sets of constraints are not necessary, the scenarios we tested show that they can

reduce the run time by up to 11.6%.

∑
j

Zqij = 1 ∀q, j =wQq (31)

DQ
qi ≤M

∑
j

Zqij ∀q,∀i∈N \ {wQq } (32)

AQqi ≤M
∑
j

Zqij ∀q,∀i∈N \ {oQq } (33)

DP
pi ≤M

∑
q

∑
j

Ypqij ∀p,∀i∈N \ {wPp } (34)

APpi ≤M
∑
q

∑
j

Ypqij ∀p,∀i∈N \ {oPp } (35)

Constraints (31) ensure each driver will visit the destination once and only once. Constraints (32)-

(35) prevent assigning arrival and departure times to the non-visited nodes of drivers and parcels.

In fact, Constraints (6) are also valid inequalities, the purpose of which is to restrict a driver from

traveling via the other drivers’ possible paths on the subgraph. This set of constraints effectively

reduce the actual size of the ILP model.

5. Algorithms
The MDMPMP is an extension of the Share-A-Ride Problem, which is an NP-hard problem. The

computational complexity of the MDMPMP motivated us to develop heuristics to efficiently solve

the problem. In Section 5.1, we describe the procedure of finding possible routes for drivers given the

maximum detour δ. This procedure is used to obtain the x matrices in solving the ILP from Section

4 and to build the subgraph in the time compatibility based heuristic (TC-heuristic) presented in
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Section 5.2. The basic idea of the TC-heuristic is to assign each parcel to the shortest feasible path

in the subgraph, yet checking the time compatibility on the basis of every assignment. These time

compatibility checks can be computationally costly, as the dependency of the assignments increases.

In Section 5.3, we propose the time-expanded graph based heuristic (TEG-heuristic), the basic idea

of which is to use a more stable structure to model the timetable information.

5.1. Finding possible routes

Taking the maximum detour into account, the goal of this subsection is to find all the possible paths

for drivers in terms of travel distance. For any driver q, the shortest path SPq is found through

the unidirectional A* algorithm. Then, a variant of the depth-first search (DFS) strategy is used

to enumerate all possible paths that are no longer than the maximum detour, with respect to the

shortest path that the driver is willing to take. These possible paths constitute a subgraph of the

original graph. Figure 1 provides an illustrative example for two drivers. Figure 1(a) is the original

graph with 10 stations, where driver 1 needs to travel from Station 1 to Station 8 and driver 2 needs

to travel from Station 1 to Station 9. The number associated with each edge represents the travel

distance between the two nodes connected by the edge. Each driver is willing to take a detour of

at most 10% of his/her shortest path. There are three options to travel from Station 1 to Station

8, which are 1→ 2→ 7→ 8, 1→ 2→ 6→ 8 and 1→ 3→ 8, and the corresponding travel distances

are 9, 9.5 and 16, respectively. Since the maximum distance driver 1 is willing to travel is 9.9(=

1.1× 9), only 1→ 2→ 7→ 8 and 1→ 2→ 6→ 8 are possible paths for driver 1. Therefore, we obtain

x1,1,2, x1,2,7, x1,7,8, x1,2,6, x1,6,8 = 1, and 0 for the rest of the elements. Similarly, the only possible path

for driver 2 is 1→ 4→ 5→ 9, and thus x2,1,4, x2,4,5, x2,5,9 = 1, and 0 for the rest of the elements.

Figure 1(b) describes the resulting subgraph for the MDMPMP. This procedure efficiently reduces

the size of the problem by removing unnecessary edges.

Figure 1 An example of building subgraph
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5.2. Time compatibility based heuristic

The basic idea of the TC-heuristic is to assign each parcel to the shortest feasible path on the

subgraph described in Section 5.1, where feasibility is based on the time compatibility and capacity

availability between the parcel and the associated drivers on the path. For each object (either a parcel

or a driver), there exists a time interval associated with a node, a time range between the earliest

possible time to arrive at this node from the origin and the latest possible time to depart from this

node in order to arrive at the destination on time. Time compatibility refers to the existence of an

intersection between the time interval of drivers and parcels, either two drivers or a driver and a

parcel. Figure 2 describes the major steps of the TC-heuristic.

Figure 2 Flowchart of the TC-heuristic

The parcels are sorted in decreasing shipping cost if delivered by the shipping company. As such,
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the more costly parcels will have bigger chances of being assigned to the crowd. Having the subgraph

built, the TC-heuristic finds the shortest path of each parcel on the subgraph. Finding a physical

path through the subgraph is not a sufficient condition for a match. In addition to the car capacity

constraints, the time constraints of a parcel must also fit those of the drivers’. The major challenge

of this heuristic is how to evaluate the time compatibility issue of a parcel and all the drivers who

are assigned to deliver the parcel along the way. To this end, we need to construct time intervals of

parcels and drivers on each node.

The TC-heuristic utilizes the bidirectional A* search to solve the shortest paths of parcels. For

each step, forward and backward, it checks the time compatibility. The lower-bound of a parcel’s time

interval in the forward A* search (the upper-bound of a parcel’s time interval in the backward A*

search) at a node is represented by the earliest arrival time departing from the origin (destination).

Since the path from the current node to the sink in each search direction has not been fixed yet, the

time needed to travel to the sink is approximated by the time needed if traveling through “airplane

distance”. As such, the exact value of the upper-bound of a parcel’s time interval in the forward A*

search (the lower-bound of a parcel’s time interval in the backward A* search) can be estimated as

above.

To solve the time compatibility issue for drivers, we introduce the concept of the equivalent time

interval associated with a driver at a node, which is the possible time interval for the driver if he

would pass the node as part of his route. These nodes do not necessary belong to the feasible paths

of the driver. In order to become a “time-compatible” node on a parcel path, the intersection of the

parcel’s time interval and the equivalent time intervals of those drivers who have carried the parcel

must be non-empty. Figure 3 provides an illustrative example of the time compatibility check. A

parcel (P ) is requested to be shipped from Node 1 to Node 4. Drivers 1, 2, 3 and 4 (D1,D2,D3,

and D4) travel from 1 to 5, 2 to 6, 3 to 7, and 3 to 7, respectively. The numbers in italic are inputs

and the rest are obtained via calculation. The time intervals of the parcel and the equivalent time

intervals associated with the drivers are calculated. The parcel has been carried by D1 and D2 to

Node 3. Spatially, either Driver 3 or Driver 4 can take the parcel from Node 3 to Node 4. By checking

the time compatibility at Node 4, P ∩D1∩D2∩D3 = ∅ while P ∩D1∩D2∩D4 = (240,250) 6= ∅.

Therefore, Node 4 is a time-compatible node associated with P,D1,D2 and D4. It is important to

mention that the arrival time and the departure time at a node are assumed to be equal, which

implies that the drivers do not wait after departure.

The time compatibility is checked at each step of the algorithm with approximated values and it

is checked with exact values when a path is found. If the final check of a path fails, the algorithm
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Figure 3 Time compatibility

keeps searching for more paths, and stops when a feasible path is found or all possible paths have

been checked. If no feasible path is found, the parcel will be delivered by the shipping company.

5.3. Time-expanded graph based heuristic

The pairwise time compatibility checks in the TC-heuristic might lead to a combinatorial explosion

in realistic problems with more potential meeting points and more transfers. The computational

complexity of the TC-heuristic motivated us to develop a second heuristic for solving larger-scale

problem instances. In particular, we engineer the MDMPMP by exploiting a dynamic time-expanded

graph that is typically used in public transportation to model timetable information.

Given the information associated with a driver q (i.e., EQ
q , LQq , oQq and wQq ), we define l =

{s1, s2, t1, t2, q} as an offer with s1, s2 ∈ S, q ∈Q, t1 < t2, s1 6= s2, meaning that driver q needs to drive

from s1 to s2, departing at the earliest t1 and arriving at the latest t2. Each offer corresponds to

a set of possible paths that satisfy this offer. Figure 3 provides an illustration of what an offer is.

D4 travels from Node 3 to Node 7, and thus his initial offer is {3,7,50,300,4}. After Parcel P is

assigned to D4, he has to go from Node 3 to Node 7 through Node 4 within a certain time window,

considering of the schedule of D1,D2 and P . Accordingly, his offers are updated as {3,4,170,250,4}

and {4,7,240,300,4}.

A delivery request contains an origin oPp , destination wPp , earliest departure time EP
p , and implicit

service window LPp −EP
p . The time expanded graph can be defined by time nodes and time edges. A

time node is denoted by a triple (n, l, t), representing this driver’s offer l at node n at time t. There

exists a time node for every departure or arrival of a driver. Each time edge is associated with a

weight that is the travel time. Note that on a TEG, a station node is represented by a set of time

nodes, which are sorted according to the time of the event they represent. The time-ordered nodes of

a station can be connected by so-called transfer edges that model the waiting within the station. For
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the details of this technique we refer to Drews and Luxen (2013). Here, we focus on the differentiating

feature of the TEG-heuristic, compared to the typical TEG method.

The proposed TEG-heuristic can be divided into two parts. First, to use the drivers’ information

to build a TEG based on graph G. Second, to greedily assign parcels to drivers’ offers. The critical

feature of this approach is that a parcel delivery request is answered by applying some shortest-path

algorithm (A* algorithm in our case) to a suitably constructed bigraph (i.e., timetable). As discussed

above, parcels may be carried by multiple drivers but cannot be left unattended during the transfer.

Hence, either the driver who carries the parcel to the transfer point or the driver who is going to

pick up the parcel from there is required to wait. Given that the drivers do not have predetermined

routes and schedules, this requirement makes the time that a driver has to spend on each transfer

point highly uncertain, not only depending on the path he travels, but also on the path of the driver

whom he is going to hand over the parcel to. In order to localize the procedure of finding the possible

paths for each driver, we apply a fixed “hold time” to each driver who needs to hand over a parcel.

Any transfer that takes longer than the “hold time” is not possible. At a potential price of finding

less possible paths, forcing the drivers to wait a “hold time” at each transfer enables us to find the

possible paths for each driver by considering only his/her own detour and time constraints, which

can be efficiently done by any shortest-path algorithm. As we discuss later on, post-processing can

be used to reduce the negative impact of the fixed “hold time”. Similar to slotted TEGs, on the

other hand, the fixed “hold time” adds some reliability to making transfers and thus reflects arguably

more realistic scenarios (Drews and Luxen, 2013). Following this idea, we propose a greedy heuristic

that incorporates the TEG procedure for the MDMPMP. Figure 4 describes the major steps of the

TEG-heuristic.

The TEG-heuristic simplifies the MDMPMP by letting drivers depart at their earliest departure

times. In fact, for the realistic MDMPMP drivers are fine with any postponement of departure as

long as they can arrive on time. This discrepancy leads us to develop an improved version of the

basic TEG-heuristic, which we call the constrained randomized TEG-heuristic (CR-TEG heuristic).

In this algorithm, the initial solution obtained by the TEG-heuristic is then improved by attempting

to randomize the departure times of the drivers who have not yet had any parcel assignment. The

results are also compared with a fully randomized version (R-TEG heuristic) where we attempt to

find the best solution among the independent iterations of the basic TEG-heuristic with randomly

generated departure times for all drivers, including those that already have parcels assigned to.
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Figure 4 Flowchart of the time expanded graph based heuristic

5.4. Discussion

In the previous subsections, we proposed two very different approaches that solve the MDMPMP

as shortest-path problems in weighted graphs. The TC-heuristic applies a routing algorithm in a

road network, while the TEG-heuristic utilizes the time-expanded graph approach that is typically

used to model timetable information in public transportation where the routes and schedules are

usually predetermined. As such, the most differentiating feature of the two approaches is whether

the decision on a driver’s route and the corresponding time schedule affects the feasibility of another

driver’s decision.

Given that drivers’ timetable information are not modeled explicitly in the TC-heuristic, a driver’s

time interval at a node not only depends on the path he travels, but also on the paths of the drivers

who previously carried the same parcel. Thus, the pairwise time compatibility has to be checked

at every step of the heuristic. Such time compatibility checks can be computational costly. Even

worse, the fulfillment of all the checks with approximate values cannot guarantee the feasibility of the

candidate path in the final check. Very differently, the TEG-heuristic creates a fixed “hold time” as

a buffer between any two consecutive drivers along a parcel’s path in order to localize the procedure

of finding possible paths for each driver. At a potential price of finding less possible paths, forcing
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the drivers to wait a “hold time” at each transfer enables us to find the possible paths for each driver

by considering only his own detour and time constraints.

In order to reduce the computational complexity, The TC- and TEG-heuristics are not designed

to consider all the possible paths of each driver. Under the assumption that drivers do not wait

after departure, the TC-heuristic loses feasible solutions with transfers that require waiting time, the

impact of which is controlled by adjusting the departure time based on the assignment results, and

by minimizing the number of drivers assigned to a parcel. The TEG-heuristic loses possible paths in

two ways. First, due to the fixed “hold time” at each transfer, drivers’ effective travel time decreases.

Second, drivers are assumed to depart at the earliest departure time in the original TEG-heuristic.

Although it cannot regain the lost paths, post-processing may improve the objective value of the

existing driver-parcel assignments by re-optimizing the time schedule of the given assignment. To this

end, we can run the ILP by using the resulting Zqij , Ypqij and Wp from the TEG-heuristic as input.

Moreover, these two approaches are greedy algorithms in the sense that they give matching priority

to parcels that are more expensive to deliver. As such, the locally optimal assignments eliminate a

subset of drivers’ possible paths, which may include the global optimum. In addition, as a starting

point, a shortest path algorithm is used by both heuristics as an efficient way to generate possible

paths for parcels, which deviates from the fact that parcels are not as time sensitive as people.

The heuristics might lead to a better results without this rule. From a different angle, the shipping

company may view it as a business opportunity to segment customers by providing even more speedy

delivery service.

To summarize, the search spaces of the two heuristics intersect. However, the TC-heuristic tends

to be able to generate more possible paths, and thus, it is more likely to find a better solution at

the cost of computational effort, especially in small-to-medium instances where number of transfers

are rather limited. Considering the potential shortcomings of the TEG-heuristic, we proposed two

variants to generate different departure times aiming at mitigating the loss of possible paths, the

benefits of which are shown in Section 7.

6. Experimental settings
In this section, the experimental settings are described. Our goal of the numerical experiments is

two-fold. First, we present the features of the MDMPMP and the efficiency gain by integrating

crowdshipping. Second, we show that our solution methods can obtain high quality solutions in

reasonable time.

Three basic factors affect the complexity of the problem: the number of drivers, the number of

parcels, and the maximum detour. Two additional factors that affect the behavior of the model are
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the spatial distribution of the network and the planning horizon. The experiments reported here

are to test the influence of these five factors. The results are analyzed from the standpoints of the

shipper, drivers, parcel senders, and the society. From the shipper’s perspective, the most important

performance indicator is the total cost spent on delivering all the parcels on time, either by the

crowd or by itself. The compensation for drivers relates to the kilometers traveling with parcel(s),

the number of parcel transfers, the waiting time during transfer, and the detour distance. Another

performance indicator that can show the benefit of our model is the match rate, a ratio between

the number of parcels delivered by the crowd and the total number of parcels to be delivered. For

drivers, we record the maximum, minimum and mean values of drivers’ extra travel time, as well as

the average capacity utilization of a driver’s car. For parcels, the average number of hops is the only

performance indicator. In terms of social welfare, we use the kilometers saved as an indicator for the

reduction of traffic congestion and CO2 emission. Considering the difficulty in estimating the extent

of consolidation for unmatched parcels in practice, we assume that these parcels are delivered by

the shipper using a traditional parcel delivery service. As such, this indicator provides an optimistic

estimation of the potential social benefit of crowdsourced shipping.

We start the numerical experiments with small-scale networks with graphs of 25 nodes. Two dif-

ferent spatial distributed sets with 25 nodes generated from the Solomon’s benchmark problem R101

are considered: the scattered set and the clustered set. In particular, customer locations 26-50 are

used to generate the scattered set, while customer locations 76-100 are used to generate the clustered

set. The scattered set nicely represents the characteristics of the evenly-distributed cities, while the

clustered set represents a network with city clusters. We multiply the coordinations of these nodes

by 3, resulting in an area of 210× 210 kilometers (roughly the size of the Netherlands) and connect

them by generating the Delaunay graph (Delaunay, 1934) for the two sets of 25 nodes. A Delaunay

graph for a set of nodes in a plane is a graph such that no node is inside the circumcircle of any

triangle in the graph. It is a geometric spanner with the best upper bound known, that is, the short-

est path between any two nodes, along Delaunay edges, is known to be no longer than 4π
3

√
3 ≈ 2.418

times the Euclidean distance between them. This property can be exploited to compute shortest

paths efficiently, which allows us to focus on the efficiency of the main operations such as the time

to compute a match and the time to add an offer. The Delaunay graph is also used to construct road

networks on given sets of nodes by Vckovski et al. (1999), Baccelli et al. (2000) and Liu (2014). The

resulting graphs are depicted in Figure 5.

The Euclidean distance is used to calculate the distances between the connected nodes. The average

speed of the drivers is assumed to be 60km/h. Each driver’s earliest departure time is uniformly
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(a)Scattered network (SC) (b)Clustered network (CL)

Figure 5 The two networks used in smaller-scale test problems

distributed between 0 and 120 (representing the time window between 8am and 10am); his/her latest

arrival time is the summation of the corresponding earliest arrival time plus a time slack. Any time

slack is assumed to be dependent on the associated driver’s shortest travel distance rq. We assign

a time slack of 30 minutes to the driver who has the shortest shortest path and a time slack of

120 to the driver who has the longest shortest path. For the rest of the drivers, the corresponding

time slack is calculated proportionally based on the length of his/her shortest path. These numbers

are reasonable regarding the network used in the experiment. A driver’s car capacity for parcels is

assumed to be an integer uniformly distributed between 5 and 10 units, and a parcel’s volume is an

integer varying between 1 and 4 units with equal probability. As a benchmark, we assume that the

earliest departure time and the latest arrival time are 0 and 450 for all the parcels; representing the

time window between 8am and 5pm. This policy can be related to the next-day delivery service, as

all the parcels have to be ready at the beginning of the day and delivered by the end of the day.

In order to study how parcels’ time windows affect the matching performance, we also consider

two variations of the parcels’ time windows under the dependent time slack assumption, the main

difference being the earliest departure time of the parcels. In the case of half-day time windows,

the earliest departure time is randomly generated between 0 and 180 for all the parcels, which is

equivalent to being ready by noon. It can be related to the same-day delivery service. We also consider

the case of 3-hour time windows, where the earliest departure time is randomly generated between

0 and 270. The corresponding maximum time duration is the maximum between 3 hours and the

time needed for the parcel to be delivered to the destination through its shortest path, as it is simply

impossible for some of the parcels to be delivered within the 3-hour time window, especially those in
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remote areas. These numbers are chosen to ensure that the parcel departing at the upper bound of

the time window can be delivered on the same day.

The value of the cost parameters that are used in the experiments are inspired by the real life

situation in the Netherlands. They are as follows. The cost cp for same-day delivery of a parcel by

the shipping company is given by 20 + 0.1× SP euros, where SP is the shortest distance between

the parcel’s origin and destination. This results in an average tariff of approximately 30 euros in

our networks (35.5 and 27.8 euros for the scattered and clustered networks, respectively), which

corresponds to the tariffs for same-day delivery and 12-hour emergency shipments charged by the

major Dutch shipping companies for lightweight (≤5kg) parcels. A driver’s average cost of driving

a car in the Netherlands, taking into account gas, taxes and insurance is about 0.30 €/km. We

assume that the drivers are compensated for 30% of the total travel cost on the routes where they

carry at least one parcel. Thus, w1 = 0.09 €/km. Note that the compensation is additive if multiple

parcels are carried simultaneously. The cost of transferring a parcel between drivers is €2 (€1 for each

driver), i.e., w2 = 2. We further assume that the cost of a driver waiting on the way is 10 €/hour,

i.e., w3 = 0.167€/min. Since the time spent on detour is compensated by w3, w4 = 0.3 €/km is used

to compensate the additional travel cost due to detours.

In order to understand the efficiency of integrating crowdshipping in a more realistic setting, we

consider a case that might be faced by a shipping company operating in the Netherlands using the

proposed heuristics. The network used in this more realistic case consists of 39 big cities in the

Netherlands. Each city is represented by a node on the graph. We assume that transfers can only

happen in the cities. All crossings/mergings of the roads within a 5-kilometer radius of each city

center are also assumed to be located at the city center as a potential transfer point. The edges

between each city pair represent the travel route chosen by Google Maps under the criteria of shortest

driving time. The resulting graph is depicted in Figure 6.

7. Numerical results
Test instances are solved on an Intel Core i7-4790 3.60GHz, CPU 8 GB RAM computer. The ILP is

solved by using the standard CPLEX 12.4 MIP solver in AIMMS. The TC-heuristic is implemented

using Delphi XE7. In order to take advantage of existing open-source libraries and frameworks to

build the time-expanded graph structure, the TEG-heuristics (i.e., TEG, CR-TEG and R-TEG)

are implemented in Java. Statistically, Delphi XE6 is found to be at least 3 times as fast as Java

(Arudchelvam et al., 2013; Karaci, 2015). Due to the performance gap between the two compilers

in terms of run time, our analysis of the performance of the two heuristics concerning run time will

focus on the increments rather than the absolute values.
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Figure 6 The network used in the realistic case

Sections 7.1 and 7.2 study the features of the MDMPMP based on the optimal solution for different

scenarios. A scenario refers to a problem setting with respect to the number of drivers and parcels,

the maximum allowed detour, the set of delivery windows, and a certain network, the results of which

are averaged over 10 instances. Section 7.1 analyzes the impact of crowdsourced shipping in different

spatial distributions of the network from different stakeholder’s viewpoints. Section 7.2 highlights the

influence of the planning horizon. In Section 7.3, we compare the performance of the two proposed

heuristics. In Section 7.4, we study the more realistic case.

7.1. Results of the ILP

In this subsection, we illustrate the performance of the ILP with different maximum detours and

different number of drivers and parcels, the results of which are compared with the current situation

where all the parcels are delivered by the shipping company. Figure 7 presents the total costs with

varying maximum detour δ for 15 drivers and 30 parcels. The total cost of the default situation

provides an upper bound of the driver-parcel matching system; the total cost obtained by the ILP

provides the best lower-bound. As δ increases, more parcels can be delivered by the crowd, at the

expense of increasing travel distances, which becomes a source of CO2 emission and traffic flow. A

higher driver participation could be a socially responsible alternative, given that the drivers who

participate in this problem need to travel anyway. Besides, Figure 8 shows its economic viability.
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Figure 8 The comparison of varying δ given #driver= 15, and varying #driver given δ= 0.05

In order to illustrate the ideas in a transparent manner, the results of varying δ in Figure 8 is a

reorganization of the results obtained by the ILP in the scattered and clustered networks that are

shown in Figure 7. Starting from the benchmark case of #driver=15, #parcel=30 and δ = 0.05, it

compares the total cost of 15 participating drivers at δ = 0.05,0.1,0.15,0.2, and the total cost of

15, 20, 25, and 30 participating drivers who are willing to deviate at δ = 0.05. The total cost is

plotted as a function of δ and #driver, respectively. In the scattered network (SC), we find that the

total cost function of #driver always has a steeper slope. Since we start from the same benchmark

case, this means that the total cost of having 5 additional participating drivers is always lower than

a 5 percentage points increase in the driver’s willingness to deviate from their shortest path; the

difference is increasing with increasing #driver and δ. Such a cost advantage does not always exist

in the clustered network (CL).

Tables 2 and 3 report on the numerical results with varying number of drivers and parcels using

a maximum detour of 10%. Table 2 shows that the total cost decreases with increasing number of

drivers, because the parcels can be delivered by the most appropriate driver(s) among a larger pool
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of them. Table 3 shows that the total cost increases with increasing number of parcels, because more

parcels need to be delivered. Moreover, increasing number of drivers and parcels are both more socially

desirable since the overall cost efficiency of the assigned parcels and drivers increases with increased

number of parcels and drivers in the candidate pool. In order to present some joint observations in

Tables 2 and 3, we define the driver-parcel (DP) ratio, the ratio between the number of drivers and

the number of parcels. It seems to suggest the existence of a critical DP ratio (1 in SC and 0.33

in CL), below which, the percentage cost saving remains stable. Although the potential cost saving

from the crowd is relatively robust in this case, the overall vehicle-miles traveled constantly increases.

This is because more suitable parcels among a relatively larger parcel pool can be assigned to the

crowd. Fleet consolidation leads to a significant reduction in overall vehicle-miles traveled, and thus

reduced CO2 emission and traffic congestion. Above the critical DP ratio, the percentage cost saving

increases as the DP ratio increases, which results from assigning parcels to more suitable drivers

among a relatively larger driver pool. Note that this increased driver-parcel ratio can be translated

into either an increased number of drivers or a decreased number of parcels. Although the maximum

extra travel time (the average over the maximum values of each instance) for a driver varies from

6.5 to 17.8 minutes, the average extra time is less than 4 minutes for all the scenarios. Based on the

basic results presented in Table 3, 9 studies the correlation between capacity utilization and vehicle

miles saved, both resulting from varying the number of parcels. It suggests that a positive correlation

exists between the vehicle miles saved and the capacity utilization, and the correlation coefficient is

larger in SC.

Table 2 The exact solutions by varying the number of drivers (#parcel= 15, δ= 0.1)
extra travel

# DP total cost time (min) avg. cap. match #hops mile
Network driver ratio EA current saving max mean utilization rate max min mean saved

SC 15 1.00 404.1 489.9 17.5% 6.5 0.8 0.08 0.30 1.8 0 0.01 405.3
30 2.00 303.3 487.9 37.8% 15.8 1.5 0.10 0.67 2.9 0 0.02 1091.9
45 3.00 374.3 494.5 44.3% 17.3 0.9 0.07 0.78 2.7 0 0.02 1375.5

CL 15 1.00 276.0 423.0 34.8% 11.2 1.6 0.13 0.50 1.4 0 0.6 445.2
30 2.00 191.3 413.1 53.7% 13.1 1.3 0.10 0.75 2.6 0 0.9 731.6
45 3.00 142.9 416.7 65.7% 7.8 0.3 0.09 0.91 3.8 0 1.2 998.5

We observe that the cost performance and the match rate in CL is better than in SC. For instance,

given the same number of drivers and parcels, the average cost reduction in CL is about 70% higher

than in SC. The match rate in CL can reach 91%, when the DP ratio is 3. The average number of hops

for a parcel to reach its destination is also larger in CL. These phenomena can be explained by the



25

Table 3 The exact solutions by varying the number of parcels (#driver= 15, δ= 0.1)
extra travel

# DP total cost time (min) avg. cap. match #hops mile
Network parcel ratio EA current saving max mean utilization rate max min mean saved

SC 15 1.00 404.1 489.9 17.5% 6.5 0.8 0.08 0.30 1.8 0 0.01 405.3
30 0.50 820.3 974.7 15.8% 14.6 2.2 0.15 0.27 2.7 0 0.01 758.6
45 0.33 1209.9 1455.8 16.9% 15.6 2.9 0.22 0.30 3.1 0 0.02 1382.1
60 0.25 1606.7 1953.4 17.8% 17.8 3.7 0.31 0.31 3.0 0 0.03 1784.5
75 0.20 2095.2 2475.8 15.4% 16.8 3.2 0.33 0.27 3.5 0 0.03 2075.8
90 0.17 2490.6 2915.5 14.6% 15.8 2.9 0.38 0.25 3.0 0 0.03 2190.1

CL 15 1.00 276.0 423.0 34.8% 11.2 1.6 0.13 0.50 1.4 0 0.6 445.2
30 0.50 553.6 835.4 33.8% 12.8 2.6 0.25 0.48 2.9 0 0.5 916.6
45 0.33 936.3 1271.5 26.4% 11.4 2.8 0.25 0.37 3.8 0 0.4 1006.7
60 0.25 1233.3 1662.7 25.9% 14.1 3.1 0.32 0.36 5.1 0 0.4 1175.5
75 0.20 1580.0 2099.1 24.7% 13.9 3.2 0.41 0.35 6.5 0 0.4 1646.8
90 0.17 1879.3 2531.0 25.8% 13.4 3.8 0.46 0.37 7.6 0 0.4 1924.6

fact that the majority of drivers’ and parcels’ origins and destinations are close to each other within

the clusters, leading to a denser subgraph consisting of drivers’ possible paths for these parcels. We

also find that different key parameters in SC and CL have a different effect on the total cost. For

instance, the maximum allowed detour has more impact on the total cost in CL (see Figure 7), while

the total cost in SC reacts stronger to increasing car capacity utilization (see Figure 9). In addition,

implementing crowdsourced shipping saves more vehicle miles in SC in 6 out of the 8 scenarios. This

is mainly because SC is more geographically spanned, that is, the average distance between any two

nodes in SC is about 48% longer than in CL. The vehicle miles saved is larger in CL only when its

match rate is significantly higher, i.e., the DP ratio between 0.5 and 1 in Figure 10).
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Figure 9 Impact of driver’s capacity utilization on the miles saved
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Figure 10 Impact of the DP ratio on the match rate

7.2. Impact of delivery time windows

The same-day delivery option is rare and expensive in the Netherlands. The goal of this subsection

is to show that by using crowdsourced shipping, a shipper can provide affordable same-day delivery

services to its customers.

Tables 4 and 5 provide a summary of the results obtained under different delivery options, including

next-day delivery, same-day delivery, and 3-hour emergency delivery services. We observe similar

trends of the cost reduction and the match rate in the same-day delivery and the 3-hour delivery

service by varying the number of parcels and drivers. In Table 5, although the delivery window

in the same-day delivery is only 1.5 hours less on average compared to the next-day delivery, the

cost saving drops 4.7% (7.9%) on the SC (CL), which is 1.2 (1.4) times more than the cost saving

reduction from the same-day delivery to the 3-hour delivery service. This seems counter-intuitive

at first glance. However, it can be explained by the fact that the shipper mainly use the morning

commute (8-10am) of the crowd to deliver parcels, yet the parcels that are delivered via the same-day

delivery option are ready at 9:30am on average. It results in a drastic decrease in available drivers.

Therefore, it is important for the shipper to fully understand the feature of the crowd’s schedule and

select the delivery options that are compatible with crowdsourced shipping. Otherwise, the shipper

may lose not only the benefit of crowdsourced shipping but also the opportunity of in-house resource

consolidation. Tables 4 and 5 also show that if crowdsourced shipping can be efficiently implemented,

faster delivery service options can be provided with lower costs.

7.3. Performance of the algorithms

In this subsection, we illustrate the computational performance of both the TC-heuristic and the

TEG-heuristic in the small-scale numerical setting with different maximum detours as well as different
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Table 4 Results under different delivery options varying the number of drivers (δ= 0.1)
Cost saving (%) Match rate

Network #driver #parcel Current Next day Same day Urgent Next day Same day Urgent
SC 15 15 489.9 17.6 12.2 8.9 0.30 0.21 0.15

30 487.9 37.8 33.3 23.9 0.67 0.56 0.37
45 494.5 44.3 33.9 21.4 0.78 0.57 0.35

CL 15 15 423.0 34.8 26.8 18.8 0.50 0.39 0.27
30 413.1 53.7 33.9 30.4 0.75 0.59 0.42
45 416.7 65.7 55.3 34.5 0.91 0.76 0.47

Table 5 Results under different delivery options varying the number of parcels (δ= 0.1)
Cost saving (%) Match rate

Network #driver #parcel Current Next-day Same-day 3-hour Next-day Same-day 3-hour
SC 15 15 489.9 17.6 12.2 8.9 0.30 0.21 0.15

30 974.7 15.9 11.6 7.9 0.27 0.20 0.13
45 1455.8 16.9 13.1 8.4 0.30 0.23 0.14
60 1953.4 17.8 12.3 8.0 0.31 0.22 0.13
75 2475.8 15.4 10.7 6.8 0.27 0.19 0.11
90 2915.5 14.6 10.4 7.5 0.25 0.18 0.12

CL 15 15 423.0 34.8 26.8 18.8 0.50 0.39 0.27
30 835.4 33.8 23.1 17.9 0.48 0.33 0.25
45 1271.5 26.4 19.1 14.8 0.37 0.27 0.21
60 1662.7 25.9 18.2 12.6 0.36 0.25 0.18
75 2099.1 24.7 19.9 12.7 0.35 0.28 0.18
90 2531.0 25.8 16.9 12.6 0.37 0.25 0.18

number of drivers and parcels, the results of which are compared with the exact solution, and the

current situation where all the parcels are delivered by the shipping company.

Compared to the exact solution given by the ILP, the optimality gap varies between 2.9% (2.5%)

and 49.9% (39.4%) for the TC (TEG) heuristic. Based on the percentage difference from the exact

solution, Figures 11 and 12 depict the quality of the solutions obtained by the TC, TEG, CR-TEG

and R-TEG heuristics by varying the number of parcels and drivers. Given a fixed number of drivers

(i.e., #driver = 15), Figure 11 shows that the performance of every solution method is robust to

changes in the number of parcels, compared to the best possible practice. This means that as the

number of parcels increases, the percentage difference between the solution obtained by a certain

heuristic and the exact solution obtained by solving the ILP does not vary a lot. In contrast, the

heuristics perform less with increasing number of drivers (see Figure 12). This is mainly due to the

neglect of the increasing number of possible paths for the drivers, as the previous analysis has shown

that the number of drivers is a dominant source of the computational complexity. Even so, all the

proposed heuristics can be used to obtain a solution that performs much better than the current

situation. Arguably, the R-TEG heuristic outperforms the other methods in all these scenarios and
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its deterioration rate is the lowest among the four heuristics, as the number of drivers increases.

The above results are computed using a maximum detour of 0.1. Interestingly, as seen before, Figure

7 shows that when δ is small, the TC-heuristic performs better than the three TEG heuristics,

but it gets behind quickly as either the number of drivers or the maximum detour increases. This

demonstrates the fact that when the subgraph that is constructed by drivers’ possible paths becomes

better connected, the number of potential transfers for each parcel increases. As such, not being able

to wait at transfer points becomes the most influential adverse factor that affects the quality of the

solution. Figure 13 also shows that the TEG approaches perform consistently well as the maximum

detour increases.
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The run time of each solution method spent in solving the different scenarios is summarized in

Tables 6 and 7. We see that the number of drivers is a major source of computational complexity,

compared to the number of parcels. For each instance, the CR-TEG and the R-TEG heuristics run
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Figure 13 Impact of δ, compared to the exact solutions

for 100 iterations and 1000 iterations, respectively. Obviously, these two heuristics achieve a better

solution at the cost of having a 100-1000 times longer run time. Therefore, we study the number

of iterations needed for CR-TEG (R-TEG) to achieve a certain percentage improvement on the gap

between the TEG objective and the objective of the CR-TEG (R-TEG) after 100 (1000) iterations.

The results of using #driver = 15,#parcel = 90, δ = 0.1 are shown in Figure 14. We see that the

CR-TEG heuristic reaches 90% improvement after 8 iterations in SC and after 10 iterations in CL.

The R-TEG heuristic obtains 90% improvement after 98 iterations in SC and after 23 iterations in

CL. We also studied the other scenarios and found similar patterns. The fast convergence of the

heuristics shows the added value of using even more iterations is limited.

Table 6 Summary of the run time by varying the number of drivers (δ= 0.1)
run time (sec)

Network #driver #parcel TC TEG CR-TEG R-TEG EA
SC 15 15 0.006 0.003 1.255 2.813 1.846

30 0.028 0.007 2.191 6.604 2367.392
45 0.029 0.010 2.869 9.688 12852.460

CL 15 15 0.006 0.005 1.925 5.385 28.355
30 0.019 0.011 3.177 11.103 4610.559
45 0.032 0.019 4.019 18.515 16539.498

7.4. Realistic case

In this subsection, we solve a larger-scale problem setting that a Dutch shipping company might face

when using crowd based shipping within the Netherlands using the proposed heuristics. We compare

the efficiency of each heuristic and also compare the results with the default scenario that the shipper

delivers all the parcels itself. Our goal is two-fold. First, we want to show that the proposed heuristics
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Table 7 Summary of the rum time by varying the number of parcels (δ= 0.1)
run time (sec)

Network #driver #parcel TC TEG CR-TEG R-TEG EA
SC 15 15 0.006 0.003 1.255 2.813 1.846

30 0.008 0.004 1.514 3.878 30.873
45 0.011 0.006 2.249 6.381 88.961
60 0.006 0.007 2.351 7.090 37.831
75 0.014 0.006 2.062 6.326 196.111
90 0.016 0.008 2.577 8.115 76.930

CL 15 15 0.006 0.005 1.925 5.385 28.355
30 0.014 0.008 2.550 8.137 1627.549
45 0.019 0.009 3.019 8.649 3130.300
60 0.015 0.009 2.959 9.227 4391.117
75 0.019 0.011 3.190 11.388 22442.349
90 0.020 0.011 3.405 11.345 7008.197
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Figure 14 Convergence speed of the CR-TEG and R-TEG heuristics

are capable of solving real life problems in reasonable run time. Second, the MDMPMP could be an

economically sound alternative for a shipper, and can lead to socially desirable results.

Since the number of drivers is a major source of computational complexity, we consider scenarios

with 300 parcels and varying number of drivers ranging between 100 and 900. The results are shown

in Table 8. As explained at the beginning of Section 7, we focus on the increments rather than the

absolute values concerning the run times. We see that the run time of the TC heuristic increases

super-linearly with respect to the number of drivers, whereas the run time of the TEG-typed heuristics

increases linearly. For the largest scenario that we test (i.e., 900 drivers, 300 parcels, 0.1 maximum

detour and 3-hour delivery window), the use of the TC (TEG) heuristic leads to 53.4% (38.5%)

average reduction in the overall cost compared to the default shipping option, with a run time of

43.9 (3.2) seconds. There is almost no impact on the run time between the next-day delivery and the
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same-day delivery, but we see a run time increment between the same-day delivery and the urgent

delivery for the scenario of 900 drivers.

As the problem scale increases, the CR-TEG outperforms the R-TEG in both quality and run time.

Due to the substantial increase in the solution space, the CR-TEG has a steeper and more steady

descent by fixing the existing parcel-driver assignments. Similar to a random walk, the R-TEG is

better at escaping from a local minimum and achieve better solutions in principle, but the limited

number of iterations compared to the solution space becomes a barrier. Furthermore, the impact of

shortening the time window has the least impact on the CR-TEG, mainly because the solution is

obtained based on an initial solution where drivers are considered to depart at the earliest departure

time.

To conclude, we recommend the CR-TEG heuristic for the larger-scale problems based on its overall

performance with respect to quality and run time.

Table 8 Results of a realistic case under different delivery options (#parcel=300, δ= 0.1)
Relative difference in objective value

Delivery # compared to current Run time (sec)
option driver TC TEG CR-TEG R-TEG TC TEG CR-TEG R-TEG

Next-day 100 16.9% 11.4% 12.5% 13.6% 2.045 0.171 12.275 34.127
300 46.9% 25.3% 29.4% 29.2% 9.738 0.993 65.736 198.648
500 52.1% 34.2% 39.0% 38.1% 15.656 1.839 101.066 367.745
700 53.2% 39.0% 42.2% 42.4% 28.938 2.723 167.474 544.695
900 53.4% 38.5% 40.4% 39.3% 43.878 3.220 131.794 643.949

Same-day 100 15.3% 9.7% 11.3% 11.7% 1.735 0.173 12.254 34.585
300 40.2% 22.6% 27.2% 27.4% 9.482 0.925 60.059 184.925
500 49.2% 29.2% 37.4% 34.8% 17.545 1.769 100.447 353.868
700 52.0% 32.3% 42.7% 39.1% 29.717 2.565 144.293 512.900
900 52.2% 33.4% 43.8% 38.7% 46.388 3.320 144.990 664.015

Urgent 100 13.5% 7.8% 9.7% 10.8% 1.391 0.172 11.115 34.466
300 30.5% 17.2% 23.1% 22.2% 9.377 1.021 67.539 204.139
500 37.2% 22.5% 31.7% 29.3% 21.043 1.523 114.407 304.521
700 42.0% 24.8% 36.5% 36.0% 37.027 3.324 167.370 664.809
900 43.2% 25.2% 39.4% 32.5% 60.435 4.510 231.232 901.989

Note: Due to the increase of run time, 50 iterations are applied to the CR-TEG and 200 iterations
are applied to the R-TEG.

8. Conclusion
In this paper, we consider the problem where a shipper (or a consortia of shippers) uses crowdsourced

shipping for home deliveries of small-to-medium freight volumes. In particular, we take advantage

of the spare capacity in the private vehicles from crowdsourced drivers along their scheduled trips.
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We provide a general ILP formulation for the multi-driver multi-parcel matching problem, which can

be viewed as an extension of the multi-hop ride sharing problem. The model incorporates driver’s

maximum allowed detour, vehicle capacities, and the option of transferring parcels between drivers.

Due to the high computational complexity of the problem, the ILP can be solved to optimality

only for small instances. This motivates us to develop two heuristics: the time compatibility heuristic

and the time-expanded graph heuristic. The time compatibility heuristic assigns each parcel to the

shortest feasible path on a network that consists of drivers’ possible physical paths, yet checking the

time compatibility for each step can be computationally costly. The time-expanded graph heuristic

uses an approach that is typically used to model timetable information in public transportation

where the routes and schedules are usually predetermined. The most differentiating feature of the two

approaches is whether the decision on a driver’s route and the corresponding time schedule affects the

feasibility of another driver’s decision. We explain the pros and cons of both heuristics and provide

an extensive experimental comparison of the two approaches.

Assuming the participating drivers need to travel anyway, the numerical results show that an

increasing number of participating drivers is beneficial for the shipper, and socially desirable due to

reduction in CO2 emissions and traffic congestion. In addition, the results suggest that it is desirable

to analyze the characteristics of the system before implementing a crowdsourced shipping service.

For instance, the spatial characteristics of the logistical network, and the spatial distribution of the

origin and destination of the participating drivers and parcels can affect the performance of the

matching system as well as the response to key parametric changes. Finally, we show that the TC-

heuristic performs well in the small-to-medium sized problems, while the CR-TEG is recommended

for larger-scale problems.

Future research can be done in three lines. First, future work can be done in finding a search direc-

tion regarding the choice of departure time that gives a faster convergence for the TEG approach.

Second, as an extension towards a semi-online model environment, a rolling-horizon approach can be

introduced. Finally, a shipping company may consider to collaborate with companies that provide

storage services (e.g., locker systems) at convenient locations, which can loosen the time synchro-

nization restriction among drivers and parcels.
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