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1 Introduction

Approximate Dynamic Programming (ADP) is a powerful technique to solve large scale discrete

time multistage stochastic control processes, i.e., complex Markov Decision Processes (MDPs).

These processes consists of a state space S, and at each time step t, the system is in a particular

state St ∈ S from which we can take a decision xt from the feasible set Xt. This decision

results in rewards or costs, typically given by Ct(St, xt), and brings us to a new state St+1

with probability P(St+1|St, xt), i.e., the next state is conditionally independent of all previous

states and actions. Therefore, the decision not only determines the direct costs, but also the

environment within which future decisions take place, and hence influences the future costs.

The goal is to find a policy. A policy π ∈ Π can be seen as a decision function Xπ(St) that

returns a decision xt ∈ Xt for all states St ∈ S, with Π being the set of potential decision

functions or policies. The problem of finding the best policy can be written as

min
π∈Π

Eπ
{

T∑
t=0

γCt(St, X
π
t (St))

}
, (1)

where γ is a discount factor, and T denotes the planning horizon, which could be infinite.

The problem formulation (1) covers a huge variety of decision problems, found in various

applications also covered in this book, such as health care, production and manufacturing,

communications, and transportation. There is also a wide variety of methods to solve (1),

such as rolling-horizon procedures, simulation optimization, linear programming, and dynamic

programming. Here, we focus on the latter.

Dynamic programming solves complex MDPs by breaking them into smaller subproblems.

The optimal policy for the MDP is one that provides the optimal solution to all sub-problems

of the MDP (Bellman, 1957). This becomes visible in Bellman’s equation, which states that the

optimal policy can be found by solving:

Vt (St) = min
xt∈Xt

(
Ct (St, xt) + γ

∑
s′∈S

P(St+1 = s′|St, xt)Vt+1(s′)

)
. (2)

Computing the exact solution, e.g., by using backward dynamic programming, is gener-
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ally difficult and possibly intractable for large problems due to the widely known “curse of

dimensionality”. As stated by Powell (2011), there are often three curses of dimensionality in

dynamic programming: (i) the state space S for the problem may be too large to evaluate the

value function Vt (St) for all states within reasonable time, (ii) the decision space Xt may be too

large to find the optimal decision for all states within reasonable time, and (iii) computing the

expectation of ‘future’ costs may be intractable when the outcome space is large. The outcome

space is the set of possible states in time period t + 1, given the state and decision in time

period t. Its size is driven by the random information Wt+1 that arrives between t and t + 1.

By capturing all the randomness with Wt+1, we can express the next state St+1 as a function of

the current state St, the decision xt, and the new information Wt+1, using a transition function

St+1 = SM (St, xt,Wt+1). Now, assume that Wt+1 is independent on all prior information, and

let Ωt+1 be the set of possible outcomes of Wt+1 and let P(Wt+1 = ω) denote the probability of

outcome ω ∈ Ωt+1. We now rewrite (2) as

Vt (St) = min
xt∈Xt

Ct (St, xt) + γ
∑

ω∈Ωt+1

P(Wt+1 = ω)Vt+1 (St+1|St, xt, ω)

 , (3)

with St+1 = SM (St, xt, ω). Note that in (2) and (3) the direct costs Ct (St, xt) are assumed to

be deterministic; however, the random information ω could also play a role in this function, see

Powell (2011).

Approximate Dynamic Programming (ADP) is a modeling framework, based on an MDP

model, that offers several strategies for tackling the curses of dimensionality in large, multi-

period, stochastic optimization problems (Powell, 2011). Also for ADP, the output is a policy or

decision function Xπ
t (St) that maps each possible state St to a decision xt, for each stage t in the

planning horizon. Although ADP is used as an umbrella term for a broad spectrum of methods

to approximate the optimal solution of MDPs, the common denominator is typically to combine

optimization with simulation (sampling from Ωt+1), use approximations of the optimal values

of the Bellman’s equations, and use approximate policies. For applications of Approximate

Dynamic Programming (ADP), a more natural form of the Bellman’s equations in (3) is the

expectational form given by:

Vt (St) = min
xt∈Xt

(Ct (St, xt) + γEω {Vt+1 (St+1|St, xt, ω)}) . (4)

To approximate the optimal values of (4), a series of constructs and algorithmic manipula-

tions of the MDP model are needed. The basics of these are presented in this chapter.

ADP can be applied to large-scale instances because it is able to handle two of the three

dimensionality issues. First, the large outcome space can be handled through the construct of

a post-decision state Sx,nt , which we explain in Section 2. Second, the large state space can

be handled by (i) generating sample paths through the states, the so-called “forward dynamic

programming” algorithmic strategy, which solves the Bellman’s equations by stepping forward

in time, and repeating this process for N iterations, and (ii) using approximate value functions

V
n
t (Sx,nt ) that are “learned” through the iterations and that might allow generalization across

states, i.e., instead of learning the values of each state individually, visited states might tell us
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something about the value of states not visited yet. We also elaborate on this strategy in the

next sections.

There are numerous ADP methods and variations available, each having their merits. Varia-

tions particularly consists in the type of value function approximations (e.g., lookup, parameter-

ized, statistical) and policies used (e.g., policy approximations, tree search, roll-out heuristics,

rolling horizon policies). In Section 5 we discuss some of these variations. But first, we explain

the basic concept of ADP by means of examples. We use the examples (i) to explain the basics

of ADP, relying on value iteration with an approximation for the value functions, (ii) to provide

insight into implementation issues, and (iii) to provide test cases for the reader to validate its

own ADP implementations (for the first two examples, we provide all experimental settings,

ADP results, as well as the exact results). We start with two transportation problems in Section

2 and 3 and apply ADP within a healthcare setting in Section 4.

2 The nomadic trucker example

First, we briefly introduce the problem in Section 2.1 after which we present the MDP model

(Section 2.2) and the ADP approach (Section 2.3).

2.1 Problem introduction

The nomadic trucker problem is a stylized transportation problem in which a single truck

observes demands that arise randomly in different locations and moves between these locations

to accept those loads that maximize the long-term reward. This problem, which is similar to

the well known taxicab problem, is described in George and Powell (2006), George et al. (2008),

and Powell (2011). Here, we slightly modify the problem settings to allow repeatability of the

experiments without having to provide extensive data sets.

Our trucker is characterized by its current location lt ∈ L (set of 256 locations), the day

of the week dt ∈ {1, . . . , 7} (Monday till Sunday), and its trailer type kt ∈ {1, . . . , 3} (small,

medium, and large trailer). Every day, the driver observes loads to move from its current

location to another location. The daily decision from a given location i is which location j to

visit next, either through a loaded move (when a load from i to j is available) or an empty

move, or to stay at the current location. After the decision, loads that are not selected are lost

(assumed to be picked up by others). Further, it is assumed that all moves take less then a day,

i.e., the next day a new decision has to be made.

The probability that, on a given day of the week d, a load from i to j will appear is given by

pdij (see the appendix). The trailer type attribute varies in a cyclic fashion, irrespective of the

remaining attributes. For example, if at time period t the trailer type attribute is large, then

at time t+ 1 the trailer type will be small, and at time t+ 2 it will be medium. A larger trailer

type results in higher rewards when traveling loaded or costs when traveling empty. We use

the rewards/costs c(k) = (1, 1.5, 2) per unit distance, for k = 1, . . . , 3. The rewards for loads

leaving location i are further multiplied by the origin probability bi. The distance between i

and j is given by d(i, j).

We denote the described instance where there driver is characterized by a location, trailer
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type, and day of the week as the multi-attribute version. For the single-attribute version, we

omit the trailer type and day of the week and use the settings for trailer type 1 and day of the

week 1, i.e., c(k) = 1 and pd = 1.

2.2 MDP model

We subsequently present the following elements of the MDP model: the state (Section 2.2.1), the

decision (Section 2.2.2), the costs (Section 2.2.3), the new information and transition function

(Section 2.2.4), and the solution (Section 2.2.5).

2.2.1 State

The state St consists of resource and demand information: St = {Rt, Dt}. Rt is a vector of

attributes (lt, dt, kt) representing the current location of the trucker, the current day of the week,

and the trailer type, respectively. Dt is a vector indicating for each location i ∈ L whether there

is a load available from lt to i (Dt,i = 1) or not (Dt,i = 0). The state contains all the information

necessary to make decisions; in this case the resource and demand information. The size of the

state space is given by the number of possible settings of the resource vector Rt, which is 5376

(256× 7× 3), times the number of possible load realizations, which is 2256.

2.2.2 Decision

The decision xt provides the location j where we want to go to. Note that, given the used cost

structure, if we decide to go from lt to j and there is a load available from lt to j, it does not

make sense to travel empty. In other words, from the demand vector Dt we can infer whether

the decision to go to location j will imply an empty or a loaded move. Hence, it is sufficient to

describe the decision xt with the location j, meaning the decision space Xt equals L (256).

2.2.3 Costs

The costs of decision xt are given by

C(St, xt) =

−c(kt)d(lt, xt), if Dt,xt = 0.

c(kt)d(lt, xt)bi, if Dt,xt = 1.
(5)

2.2.4 New information and transition function

After making decision xt and before arrival in state St+1, new information Wt+1 arrives. Here,

the new information gives the load availability at time t+ 1. The transition from St to St+1 is

given by

St+1 = SM (St, xt,Wt+1), (6)

where lt+1 = xt, dt+1 = dt (mod 7) + 1, kt+1 = kt (mod 3) + 1, and Dt+1 = Wt+1. The size of

the outcome space is given by all possible load realizations: 2256.
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2.2.5 Solution

The objective in this example is to maximize profit. Therefore, we need to replace the minimiza-

tion objective in (3) by a maximization objective. However, to be consistent in our presentation,

we use the minimization term throughout this chapter.

Even for this toy problem, the state space and the outcome space is already large. To ease

the computation, we solve the problem for all possible “resource states”, i.e., for each resource

state Rt at each stage t, we calculate its expected value considering all possible load availabilities

with their probabilities. This can be seen as a “post-decision” state as we introduce in Section

2.3.1. Once the values for all “resource states” are determined, we can easily derive the optimal

decision from each “full” state using (4) together with the transition function (6), where the

transition only considers the change from the “full” state to the “resource state”, i.e., the new

information Wt+1 does not play a role in this transition.

For the exact computation of the values of the “resource states”, it is not necessary to

evaluate all possible permutations of the load combinations Wt+1. Within a given resource state

Rt, we can rank on forehand the 2 × |L| = 512 possible decisions (loaded and empty moves).

We then start from the best possible decision and multiply its corresponding probability (if

the decision involves a loaded move, we use the probability of having the corresponding load

available, otherwise we use a probability of one) with its value; with one minus the before

mentioned probability, we consider the second best possible decision and so on. We sum up all

probabilities times the values to compute the expected value under the optimal policy.

We compute the optimal solution for three cases: (i) the infinite horizon single-attribute case,

(ii) the infinite horizon multi-attribute case, and (iii) the finite horizon single-attribute case.

For the finite horizon case, we can easily compute the value functions using backwards dynamic

programming with (3). For the infinite horizon cases, we use value iteration to determine the

optimal values. For the multi-attribute case, we use as initial state S0 = (1, 1, 1) and for the

single-attribute cases we use S0 = (1). Further, for the finite horizon case, we use a discount

γ = 1 and a horizon length T = 20, and for the infinite cases we use γ = 0.9. The optimal

values are: (i) 8364.31 for the infinite horizon single-attribute case, (ii) 11448.48 for the infinite

horizon multi-attribute case, and (iii) 17491.95 for the finite horizon single-attribute case.

2.3 Approximate Dynamic Programming

Even though the introduced version of the nomadic trucker problem is a simplified problem

that can easily be solved exactly, it allows us to introduce the basics of ADP. We introduce the

concept of a post-decision state (Section 2.3.1), the forward dynamic programming approach

(Section 2.3.2), and the use of value function approximations (Section 2.3.3). We give a typical

outline of an ADP algorithm and present experimental results throughout Sections 2.3.2 and

2.3.3.

2.3.1 Post-decision state

The post-decision state, represented by Sxt , is the state immediately after action xt, but before

the arrival of new information Wt+1. The information embedded in the post-decision state
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allows us to estimate the downstream costs. We can assign the expected downstream costs

Eω{Vt+1(St+1|Sxt , ω)} to every post-decision state Sxt , thereby eliminating the need to evaluate

all possible outcomes ω for every action. Consider the following optimality equations:

V x
t−1(Sxt−1) = Eω{Vt(St|Sxt−1, ω)} (7)

Vt(St) = min
xt∈Xt

(Ct(St, xt) + γV x
t (Sxt )) (8)

V x
t (Sxt ) = Eω{Vt+1(St+1|Sxt , ω)} (9)

If we substitute (9) into (8), we obtain the standard form of Bellman’s equation (4). However,

if we substitute (8) into (7), we obtain the optimality equations around the post-decision state

variable

V x
t−1

(
Sxt−1

)
= Eω

{
min
xt∈Xt

(
Ct (St, xt) + γV x

t (Sxt |Sxt−1, ω)
)}

. (10)

The basic idea now is (i) to use the deterministic optimization problem of (8) to make deci-

sions and (ii) to use the resulting observations to update an estimate V
n−1
t−1 (Sxt−1) of V x

t−1(Sxt−1)

thereby approximating the expectation in (10). We update the estimates V
n−1
t−1 (Sxt−1) itera-

tively over a number of iterations n, each consisting of a Monte Carlo simulation of the random

information ω, which will be further explained in Section 2.3.2.

We express our transition from state St with action xt to the post-decision state Sxt by

Sxt = SM,x(St, xt). (11)

For our example, the post-decision state Sxt is determined as if we had already arrived

at the destination xt at time t. That is, we change the location, day of the week, and time

components of the state to represent the day when we will be at the chosen location: lxt = xt,

dxt = dt (mod 7)+1, and kxt = kt (mod 3)+1. Note that, although the concept of a post-decision

state is generally used in the context of ADP only, we already used it to calculate the exact

solution of the MDP (see Section 2.2.5). An illustration of the transition of states can be found

in Figure 1.

A B

C D

A B

C D

A B

C D

St=(l=A,d=3,k=2,
Dt,B=1)

xt=B
Sxt=(l=B,d=4,k=3)

St+1=(l=B,d=4,k=3, 
Dt+1,A=1,Dt+1,C=1)

A B

C D

r=0, k=0
r=0, k=1

A B

C D

A B

C D

Sxt=(              )r=0, k=0
St=(                    )

r=0, k=0
r=0, k=1St+1=(                 )

r=0, k=0xt=(                    )

Figure 1: Transition of states in the nomadic trucker problem.
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2.3.2 Forward dynamic programming

In the forward dynamic programming algorithmic strategy, the Bellman’s equations are solved

only for one state at each stage, using estimates of the downstream values, and performing

iterations n to learn these downstream values. To make clear we are dealing with iterations,

we add a superscript n to the decisions and state variables. We introduce the construct of

approximated next-stage costs (estimated downstream values) V
n
t (Sx,nt ), which replaces the

standard expectation in Bellman’s equations, see (9), with an approximation

V
n
t (Sx,nt ) = Eω

{
Vt+1

(
Snt+1|S

x,n
t , ω

)}
. (12)

Using the post-decision state and the approximated next-stage cost, the original Bellman’s

equations from (4) are converted to the ADP forward optimality equations, as seen in (13).

v̂nt = min
xnt ∈Xt

(
C (Snt , x

n
t ) + γV

n−1
t

(
SM,x (Snt , x

n
t )
))
. (13)

The decision that minimizes (13) is given by

x̃nt = arg min
xnt ∈Xt

(
C (Snt , x

n
t ) + γV

n−1
t

(
SM,x (Snt , x

n
t )
))
. (14)

Note that x̃nt is a pure exploitation decision, i.e., the decision for which we currently

expect it gives the best results. Given that the decision x̃nt relies on the approximation

V
n−1
t

(
SM,x (Snt , x

n
t )
)
, the decision might not be optimal with respect to the MDP solution.

Further, as we will show later on, policies other than pure exploitation might be useful.

For each feasible decision xnt , there is an associated post-decision state Sx,nt obtained using

(11). The ADP forward optimality equations are solved first at stage t = 0 for an initial state

S0, and then for subsequent stages and states until the end of the horizon for the finite horizon

case, or a predetermined number of iterations for the infinite horizon case. In each iteration n,

a sample path ωn ∈ Ω is drawn, with Ω being the set of all sample paths. We use Wt(ω
n) to

denote the sample realization at time t using the sample path ωn in iteration n. To advance

“forward” in time, from stage t to t+ 1, the sample Wt+1(ωn) is used. With this information,

transition in the algorithm is done using the same transition as in the MDP model, see (6).

Immediately after the forward optimality equations are solved, the approximated next-stage

cost V
n−1
t (Sx,nt ) is updated retrospectively. The rationale behind this update is that, at stage

t, the algorithm has seen new arrival information (via the simulation of ωn) and has taken a

decision in the new state Snt that incurs a cost. This means that the approximated next-stage

cost that was calculated at the previous stage t− 1, i.e., V
n−1
t−1 (Sx,nt−1), has now been observed at

stage t. To take advantage of this observation and improve the approximation, the algorithm

updates this approximated next-stage cost of the previous post-decision state Sx,nt−1 using the old

approximation, i.e., V
n−1
t−1 (Sx,nt−1) and the new approximation, i.e., the value v̂nt given by (13).

We introduce UV to denote the process that takes all of the aforementioned parameters and

“tunes” the approximating function as follows:

V
n
t−1(Sx,nt−1)← UV (V

n−1
t−1 (Sx,nt−1), Sx,nt−1, v̂

n
t ) (15)
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Using all ingredients mentioned in this section, the ADP algorithm consists of looping over

iterations n = 1, . . . , N , and within each iteration, sequentially solving a subproblem for each t ∈
T , using sample realizations of Wt, and updating our approximation of ‘future’ costs with (15).

Consecutively, the subproblems are solved using the updated value function approximations in

the next iteration. The output of the algorithm is the approximation V
N
t (Sxt ), for all t ∈ T ,

which can be used to find the best decision for each time period and each state.

A typical outline of an ADP algorithm is shown in Algorithm 1. The infinite horizon version

of this algorithm is basically the same, except (i) all subscripts t are removed, (ii) ωn represents

a single sample instead of a sample path, (iii) the loop over t is removed, (iv) the condition

“if t > 0” is removed, and (v) the previous post-decision state is the one from the previous

iteration, Sx,n−1.

Algorithm 1 Approximate Dynamic Programming algorithm

Step 0. Initialization

Step 0a. Choose an initial approximation V
0
t∀t ∈ T .

Step 0b. Set the iteration counter n = 1, and set the maximum number of iterations N .

Step 0c. Set the initial state to S1
0 .

Step 1. Choose a sample path ωn.

Step 2. Do for t = 0, ..., T :

Step 2a. Solve (13) to get v̂nt and (14) to get x̃nt .

Step 2b. If t > 0, then update the approximation V
n
t−1

(
Sx,n
t−1

)
for the previous post-decision

Sx,n
t−1 state using (15).

Step 2c. Find the post-decision state Sx,n
t with (11) and the new pre-decision state Sn

t+1

with (6).

Step 3. Increment n. If n ≤ N go to Step 1.

Step 4. Return the value functions V
N
t (Sx,n

t )∀t ∈ T , St ∈ S.

Algorithm 1 relies on classical approximate value iteration with a pure forward pass. This

means that at each step forward in time in the algorithm, the value function approximations are

updated. As the algorithm steps forward in time, it may take many iterations before the costs

incurred in later time periods are correctly transferred to the earlier time periods. To overcome

this, the ADP algorithm can also be used with a double pass approach (Powell, 2011) consisting

of a forward pass and a backward pass. In the forward pass, we simulate decisions moving

forward in time, remembering the trajectory of states, decisions, and outcomes. Then, in a

backward pass, we update the value functions moving backwards in time using the trajectory

information. For the double pass algorithm, we remove the computation of v̂nt from Step 2a,

delete Step 2b, and add an extra step just before Step 3 (renaming original Step 3 and Step 4

by Step 4 and Step 5 respectively) given in Algorithm 2:

Algorithm 2 Backward pass to be used in the ADP algorithm
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Step 3. Do for t = T, T − 1, ..., 1:

Step 3a. Compute v̂nt using the decision x̃nt from the forward pass:

v̂nt = Ct(S
n
t , x̃

n
t ) + γv̂nt+1, with v̂

n
T+1 = 0.

Step 3b. Update the approximation V
n
t−1

(
Sx,n
t−1

)
for the previous post-decision Sx,n

t−1 state

using (15).

We now illustrate the working of this basic algorithm using the three variants of the nomadic

trucker problem (infinite horizon single-attribute, infinite horizon multi-attribute, and finite

horizon single-attribute). For the updating function we use a fixed stepsize α = 0.05 given by

UV (V
n−1
t−1 (Sx,nt−1), Sx,nt−1, v̂

n
t ) = (1− α)V

n−1
t−1 (Sx,nt−1) + αv̂nt .

We show two performance measures of the ADP algorithm. First, we show the estimate

V
n
0 (Sx,n0 ) of the initial state Sx,n0 for different number of iterations n. Next, we show the

discounted rewards of using the estimates for different number of iterations n. More precisely,

for a given number of iterations n, we perform a simulation on the side. Each of these simulations

uses O iterations, fixing the value function estimates and following the policy that uses these

values (basically following Algorithm 1 with the initial approximation V
n
0 resulting from the

past n iterations and skipping Step 2b). We perform the simulation every M th iteration, i.e., for

n = M, 2M, . . . , N . Finally, to provide representative results, we repeat the whole procedure K

times and report the averages. The used settings for N , M , O, and K are shown in the figure

captions.

The results of the basic ADP algorithm is shown in Figure 2 under the policy “Expl-F”,

since we follow the pure exploitation policy (13) with a fixed stepsize (F). In addition, we

show the results using two other stepsizes. First, the harmonic stepsize (H) given by αn =

max
{

λ
λ+n−1 , α

0
}

, with λ = 25 and α0 = 0.05. Second, the BAKF stepsize (B), the bias

adjusted Kalman Filter also known as OSA (Optimal Stepsize Algorithm). For a review on

stepsizes we refer to George and Powell (2006) and Powell (2011, Chapter 11). The policy

“OPT” refers to the optimal value.
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Clearly, the value function estimate for the initial state is still far off: more then 90% away

from the optimal value. Especially, the fixed stepsize gives terrible results. The explanation is

that because we initialized all values at zero, the first observation only increases the estimate

with 5% of the observed value. The other two stepsizes start with α1 = 1, resulting in a

faster increase in estimated value. However, when we look at the performance, the “better”

value function estimates result in worse performance. The explanation is that after a couple of

iterations, some states have been visited more often than other states. As a result, for some

states we might still use the initialized approximations (in our case values of zero) whereas

for other states we have a reasonable estimate. When making the pure exploitation decision,

we now tend to visit the states we have visited before, even if this would result in relatively

high direct costs. In this case, we perform worse compared to a myopic policy. The results for

following the myopic policy can be found at n = 0 in the right figure, since we then perform a

simulation with the initial approximation of having zero downstream costs. Although the results

are caused by some simplifications within the used ADP algorithm, the resulting phenomenon

might also be present in more advanced ADP implementations, since the decision what state to

measure next might still be biased by the number of measurements of the different states.

In general, using the ADP algorithm as shown before would not work. Most of the time, we

need to make some modifications. First, within our ADP algorithm we need to make a tradeoff

between exploitation, i.e., making the best decision based on the current value function estimates

using (13), and exploration to learn the value of states frequented less often. Second, we need

a value function approximation that is able to generalize across states, i.e., an observation not

only results in an update for the value of the corresponding state, but also of other states. In

the remainder of this section, we briefly touch upon the exploration issue. The issue of having

a better value function approximation is discussed in Section 2.3.3.

To overcome the problem of limited exploration, we might enforce exploration by stating

that a certain fraction of the time, say ε, the policy should perform exploration using a random

decision instead of exploitation using the decision x̃nt from (14). This decision policy is known as

ε-greedy. When making an exploration decision, it is likely that xnt 6= x̃nt . We now have a choice

whether we use v̂nt (corresponding to decision x̃nt ) to update V
n
t−1

(
Sx,nt−1

)
or to use the estimated

costs corresponding with the actual decision xnt , i.e., C (Snt , x
n
t ) + γV

n−1
t

(
SM,x (Snt , x

n
t )
)
. The

policy to determine the decisions on what state to visit next is often referred to as the behavior

or sampling policy. The policy that determines the decision that seems to be the best, i.e., using

(14) is denoted by learning policy. When the sampling policy and the learning policy are the

same, this is called on-policy learning, otherwise it is called off-policy learning. In most cases,

off-policy learning results in faster convergence; but there are cases where on-policy learning is

preferred, see Powell (2011, Chapter 9) for more information. In the remainder, unless stated

differently, we use off-policy learning.

The results of the ε-greedy policies are shown in Figure 3 under the policy “Epsε-S”, where

ε = 0.25 or ε = 1, and S denotes the stepsize (H for harmonic and B for BAKF). The policies

Hepsε will be introduced later on.

From Figure 3, we see that the ε-greedy policies improve the performance, both with respect

to convergence of value functions (estimated values of the initial post-decision state) and the
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Figure 3: Infinite horizon single-attribute case: resulting estimate V
n
0 (Sx,n0 ) (left) and realized

rewards (right), using N = 250, M = 10, O = 1, 000, and K = 100.

average discounted rewards, when compared to the exploitation policies. However, we also see

that policies with faster convergence in value function not necessarily yield better performance.

Again, this phenomenon will also be present at more advanced ADP implementations. First,

having a good approximation for one state does not necessarily mean we have a good approx-

imation for other states. Particularly when using value function approximations that are able

to generalize across states, we might have states that we consistently underestimate and others

that we consistently overestimate. Second, the (relative) ordering of states might already result

in good performance of the policy (i.e., decision function) itself. In this example, the absolute

values of the downstream costs might be less important when choosing between decisions with

similar direct costs.

Still, we observe that our estimate is far off from the optimal value and we achieve only

about 68% of the rewards under the optimal policy. To further improve the learning rate, i.e.,

increase the performance using the same number of iterations, we are going to use a Value

Function Approximation (VFA) that is able to generalize across states. There are many options

for this, in this chapter we present two specific forms: hierarchical state aggregation and a

basis function approach. For the nomadic trucker problem, we illustrate the state aggregation

approach.

2.3.3 Value function approximation

Although adopting the concept of the post-decision state greatly reduced the computational

burden, (10) still requires a post-decision state to be visited sufficiently often in order to learn

about its associated downstream costs, which would not be possible for realistic sized problem

instances. The reason for this is that the value function approximation used in the previous

section is updated for one state per stage per iteration. This approach is known as the lookup-

table approach. A good value function approximation is able to generalize across states, such

that an observation for one state results in an update of the value of many states.

For this problem, we use an hierarchical aggregation approach as presented by George et al.
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(2008). A standard strategy in ADP is to aggregate the state space. Each state belongs to an

aggregated state, and instead of estimating the value of states, we estimate the value of aggregate

states consisting of multiple states. However, aggregation requires resolving the classic tradeoff

between aggregation error and sampling error. In the hierarchical aggregation approach, we use

multiple aggregation levels and each observation is used to update aggregate states at different

aggregation level. The value of a state is estimated using a weighted combination of the value

of the aggregated states this state belongs to.

For this example, we use the following hierarchical aggregation structure. With respect to

the state variables trailer type k and day of the week d, we either include them or leave them

out. With respect to the location, we use a structure with on the lowest level the 16 × 16

locations, one level up we group sets of 4 locations, resulting in 8× 8 aggregated locations, and

so on. We perform aggregation on one state variable at a time, achieving an almost exponential

decline in the size of the state space. An overview of the aggregation structure is given in Table

1, where a ‘*’ corresponds to a state variable included in the aggregation level and a ‘-’ indicates

that it is aggregated out.

Table 1: Hierarchical aggregation structure
Level Location Trailer type Day of the week Size of the state space

0 (16x16) * * 256x3x7=5376
1 (8x8) * * 64x3x7=1344
2 (4x4) * * 16x3x7=336
3 (4x4) - * 16x1x7=112
4 (2x2) - * 4x1x7=28
5 - - * 1x1x7=7
6 - - - 1x1x1=1

The results of using the hierarchical aggregation approach are shown in Figure 3, policy

Hepsε, with ε = 0.25 and ε = 1. This policy does not require a stepsize, since this is included

in the updating equations of the hierarchical aggregation approach. Clearly, the Hepsε policies

converge faster to the optimal values. The policy Heps1 results in only 8% lower profits compare

to the optimal policy.

Finally, to gain insight into the long term performance, we show the results using 25, 000

iterations, but with fewer replications (K = 10), in Figure 4. After 25, 000 measurements, the

policies Eps1-B and Heps1-B are both within 1% of the optimal performance.

Next, we show the results for the finite horizon case in Figure 5. Here, we both consider

the single pass (SP) and the double pass (DP) version of the ADP algorithm. Here, the pure

exploitation policy does not benefit from a double pass, simply because with the double pass,

the decisions will be even more biased towards states visited before. The same also holds for

the ε-greedy policies, since they explore only 5% of the time. However, the hierarchical ε-greedy

policies do benefit from the double pass. In addition, the hierarchical ε-greedy policies also

benefit from exploration (Heps005). With increasing number of measurements, the hierarchical

ε-greedy policies are eventually outperformed by the single pass ε-greedy policies (Heps005-

Double 2.56% away from optimum and Eps005-Single 1.56% away from optimum). However,

using 25, 000 measurements is not representative for a problem having a state space with size

12
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Figure 4: Infinite horizon single-attribute case: resulting estimate V
n
0 (Sx,n0 ) (left) and realized

rewards (right), using N = 25, 000, M = 10, O = 1, 000 and K = 10. For the rewards resulting
from the simulations, the 2,500 observations are smoothed using a window of 10.

256. In most ADP applications, the number of iterations would be only a fraction of the size of

the state space, say a couple of hundred in this example. Clearly, in these cases the hierarchical

aggregation approach performs best. The results after 200 measurements, for various policies,

including on-policy and off-policy variations, can be found in Figure 6.
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0 (Sx,n0 ) (left) and realized

rewards (right), using N = 25, 000, M = 100, O = 100 and K = 10. For the exploitation and
ε-greedy policies, the BAKF stepsize is used.

The results for the multi-attribute case can be found in the appendix. The results are

similar to the those observed for the single-attribute case. One remarkable behavior is that the

ε-greedy policy shows an initial decline in performance after which it improves. Again, this is

caused by the fact that the decisions are biased towards visiting states that have been measured

before, resulting in relatively high direct costs. Once the value of enough states are known,

the performance improves. Obviously, this behavior is not visible for the Hierarchical ε-greedy

policy since it is able to generalize across states.
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Figure 6: Finite horizon single-attribute case: deviation of the estimate V
n
0 (Sx,n0 ) and realized

rewards from the optimal values, using N = 200, O = 100 and K = 10.

3 A freight consolidation example

First, we briefly introduce the problem in Section 3.1 after which we present the MDP model

(Section 3.2) and the ADP approach (Section 3.3).

3.1 Problem introduction

We now consider another transportation example, with completely different characteristics. We

use this example to (i) illustrate the typical use of ADP for resource allocation problems and

(ii) to illustrate a value function approximation relying on the basis function approach.

We consider the planning problem that arises when a company transports freights from a

single origin to different destinations, periodically, using a high capacity mode. The destinations

of these freights are far away and closer among themselves than to the origin of transportation.

For this reason, the long-haul is the same in every trip, independent of which freights were

consolidated at the origin. However, the last-mile route varies according to the destinations of

the freights that were consolidated at the beginning of the long-haul. In addition, there is an

alternative, low capacity mode that can be used to transport freights directly from the origin

to their destination. Each period, the choice is which freights to allocate in the current period

to the high capacity mode, which ones to transport with the low capacity mode, and which

ones to postpone to a later period. The costs of the long-haul are fixed, but the last-mile costs

depend on the combination of destinations visited. The costs per freight for the low capacity

mode are considerably higher than the high capacity mode. The objective of the company

is to reduce its total costs over time and to use the long-haul, high capacity mode capacity

efficiently. Properly balancing the consolidation and postponement of freights, such that only a

few close-by destinations are visited each day, is therefore a challenge for the company but also

a necessity for its efficient operation.

We consider a dynamic multi-period long-haul freight consolidation problem where decisions

are made on consecutive periods t over a finite horizon T = {0, 1, 2, ..., Tmax − 1}. For simplicity,
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we refer to a period as a day in the remainder of this example. Each freight must be delivered

to a given destination d from a group of destinations D within a given time-window. The time-

window of a freight begins at a release-day r ∈ R = {0, 1, 2, ..., Rmax} and ends at a due-day

r+ k, where k ∈ K = {0, 1, 2, ...,Kmax} defines the length of the time-window. The arrival-day

t of a freight is the moment when all its information is known to the planner. Note that r

influences how long the freights are known before they can be transported, and thus influences

the degree of uncertainty in the decisions.

New freights become available as time progresses. These freights and their characteristics

follow a stochastic arrival process. Between two consecutive days, a number of freights f

arrive with probability pFf , independent of the arrival day. Each freight has destination d with

probability pDd , release-day r with probability pRr , and time-window length k with probability

pKk , independent of the day and of other freights.

Each day, there is only one long-haul vehicle which transports at most Q freights. Its cost

is CD′ , where D′ ⊆ D denotes the subset of destinations visited. There is also an alternative

transport mode for each destination d, which can only be used for freights whose due-day is

immediate (i.e., r = k = 0). The cost of the alternative transport mode is Bd per freight to

destination d, and there is no limit on the number of freights that can be transported using this

mode.

3.2 MDP model

We subsequently present the following elements of the MDP model: the state (Section 3.2.1), the

decision (Section 3.2.2), the costs (Section 3.2.3), the new information and transition function

(Section 3.2.4), and the solution (Section 3.2.5).

3.2.1 State

At each time period t, there are known freights with different characteristics. We define Ft,d,r,k

as the number of known freights at stage t, whose destination is d, whose release-day is r stages

after t, and whose time-window length is k (i.e., its due-day is r + k stages after t). The state

of the system at stage t is denoted by St and is defined as the vector of all freight variables

Ft,d,r,k, as seen in (16).

St = [Ft,d,r,k]∀d∈D,r∈R,k∈K (16)

3.2.2 Decision

The decision at each stage is which released freights (i.e., freights with r = 0) to consolidate

in the long-haul vehicle. We use the integer variable xt,d,k as the number of freights that are

consolidated in the long-haul vehicle at stage t, which have destination d and are due k stages

after t. We denote the vector of decision variables at stage t as xt. Due to the time-window of

freights, the possible values of these decision variables are state dependent. Thus, the feasible
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space of decision vector xt, given a state St, is as follows:

xt = [xt,d,k]∀d∈D,k∈K (17a)

s.t.∑
d∈D

∑
k∈K

xt,d,k ≤ Q, (17b)

0 ≤ xt,d,k ≤ Ft,d,0,k (17c)

3.2.3 Costs

The cost of a decision xt at a state St depends on the destinations visited by the long-haul

vehicle and the use of the alternative mode (i.e., CD′ and Bd, respectively). The costs at stage

t are given by C(St, xt). From the decision xt, we derive the combination of terminals that will

be visited by the high capacity mode (which determines the high capacity vehicle costs) as well

as the number of urgent freights that are not scheduled to be delivered by the high capacity

mode (which determines the low capacity vehicle costs).

3.2.4 New information and transition function

We introduce a single arrival information variable F̃t,d,r,k, which represents the freights that

arrived from outside the system between stages t − 1 and t, with destination d, release-day r,

and time-window length k. We denote the vector of all arrival information variables at stage t

as Wt, as seen in (18).

Wt =
[
F̃t,d,r,k

]
∀d∈D,r∈R,k∈K

(18)

The consolidation decision xt and arrival information Wt have an influence on the transition

of the system between stages t−1 and t. In addition, the relative time-windows have an influence

on the transition between related freight variables. To represent all of these relations, we use

the following transition function:

St = SM (St−1, xt−1,Wt) |t > 0 (19a)

s.t.

Ft,d,0,k = Ft−1,d,0,k+1 − xt−1,d,k+1 + Ft−1,d,1,k + F̃t,d,0,k , |k < Kmax (19b)

Ft,d,0,Kmax = Ft−1,d,1,Kmax + F̃t,d,0,Kmax (19c)

Ft,d,r,k = Ft−1,d,r+1,k + F̃t,d,r,k , |1 ≤ r < Rmax (19d)

Ft,d,Rmax,k = F̃t,d,Rmax,k (19e)

For the transition of the freight variables Ft,d,r,k in (19a), we distinguish between four cases.

First, freights which are already released at stage t (i.e., r = 0) and have a time-window length

of k < Kmax are the result of: (i) freights from the previous stage t − 1 which were already

released, had time-window length k+1, and were not transported (i.e., Ft−1,d,0,k+1−xt−1,d,k+1),

(ii) freights from the previous stage t − 1 with next-stage release-day (i.e., r = 1) and time-

window length k (i.e., Ft−1,d,1,k), and (iii) the new (random) arriving freights with the same
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characteristics (i.e., F̃t,d,0,k) as seen in (19b). Second, freights that are already released at day t

and have a time-window length k = Kmax are the result of freights from the previous stage t−1

that had a next day release and the same time-window length (i.e., Ft−1,d,1,Kmax), in addition to

the freights that arrived between the previous and the current day with the same characteristics

(i.e., F̃t,d,0,Kmax), as seen in (19c). Third, freights which are released at stage t (i.e., r ≥ 1) are

the result of: (i) freights from the previous stage t − 1 with a release-day r + 1 and that have

the same time-window length k, and (ii) the new freights with the same characteristics (i.e.,

F̃t,d,r,k), as seen in (19d). Fourth, freights which have the maximum release-day (i.e., r = Rmax)

are the result only of the new freights with the same characteristics (i.e., F̃t,d,Rmax,k), as seen in

(19e).

3.2.5 Solution

Again, the formal objective of the model is to find the policy π ∈ Π that minimizes the expected

costs over the planning horizon, given an initial state S0, as seen in (1). Following Bellman’s

principle of optimality, the best policy π for the planning horizon can be found solving a set

of stochastic recursive equations that consider the current-stage and expected next-stage costs,

as seen in (3). We can solve (3) plugging in the transition function (19a) and specifying the

probability P(Wt+1 = ω), which can be found in Pérez Rivera and Mes (2015).

Naturally, only very small problem instances can be solved to optimality. The instance

we use in this example has the following characteristics. We consider a planning horizon of a

working week (Tmax = 5), three destinations, (|D| = 3), one release-day (Rmax = 0), three

time-window lengths (Kmax = 2), and at most two freights per day (|F| = 2). The capacity

of the long-haul, high capacity vehicle is Q = 2. All probabilities and costs are given in the

appendix.

The given problem settings result in an MDP model with 2884 states. For simplicity, we

choose to explain more into detail two of these states. The first state, refereed to as “State

1” has only one freight for destination 2 with a time-window length of 2 (i.e. F0,2,0,2 = 1).

The second state, referred to as “State 2”, has a total of six freights: one urgent freight for

destination 2 and 3, three freights for destination 2 with time-window length 1, and one freight

for destination 2 with time-window length 2 (i.e., F0,2,0,0 = F0,3,0,0 = 1, F0,2,0,1 = 3, F0,2,0,2 = 1).

The optimal costs for State 1 and State 2 are 968.15 and 2619.54, respectively. We choose these

two states to show, in the following, the different design challenges arising when applying the

ADP algorithm with basis functions to different initial states.

3.3 Approximate Dynamic Programming

The ADP approach is presented using a similar setup as with the first example. We subsequently

present the post-decision state (Section 3.3.1), the forward dynamic programming approach

(Section 3.3.2), and the use of value function approximations (Section 3.3.3).
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3.3.1 Post-decision state

The post-decision state contains all post-decision freight variables F x,nt,d,r,k:

Sx,nt =
[
F x,nt,d,r,k

]
∀d∈D,r∈R,k∈K

(20)

We use the following function SM,x for the transition from the state Snt to the post-decision

state Sx,nt :

Sx,nt = SM,x (Snt , x
n
t ) (21a)

s.t.

F x,nt,d,0,k = Fnt,d,0,k+1 − xnt,d,k+1 + Fnt,d,1,k , |k < Kmax (21b)

F x,nt,d,0,Kmax = Ft−1,d,1,Kmax (21c)

F x,nt,d,r,k = Fnt,d,r+1,k , |1 ≤ r < Rmax (21d)

(21e)

This function works in the same way as the MDP transition function defined in (19a),

with the difference that the new arrival information Wt is not included. An illustration of the

transition of states can be found in Figure 7.
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Figure 7: Transition of states in freight consolidation problem.

3.3.2 Forward dynamic programming

We can directly apply Algorithm 1 using the lookup-table approach. In a minimization problem,

initializing the values of the lookup-table with zero will automatically result in an “exploration

policy”. In such an initialization, a post-decision state that has not been visited before is more

attractive (zero downstream costs) than one that has been visited before and has resulted in

some costs. In our example, we choose to initialize the values to zero to take advantage of the

exploration behavior. Furthermore, we use the harmonic stepsize (see Section 2.3.2) with λ = 25

and α0 = 0.05. The ADP runs for a total of 250 iterations, using the double pass approach.

The estimated values (i.e., learned costs) for State 1 and State 2 are 1153.85 and 2814.74,

respectively. These values are 19% and 7% higher then the optimal MDP costs, respectively.
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The average costs for State 1 and State 2 (obtained through a simulation of the policy resulting

from the learned values) are 1550.65 and 2852.75, respectively. These average costs are 19%

and 9% higher then the optimal MDP costs, respectively. In the following, we elaborate on how

the performance of the value function approximation can be improved through the use of basis

functions.

3.3.3 Value function approximation

For this example, we introduce a frequently used approximation strategy using basis functions.

An underlying assumption in using basis functions is that particular features, or quantitative

characteristics, of a (post-decision) state can be identified, that explain, to some extent, what

the value of that post-decision state is. In our problem, features such as the number of urgent

freights, the number of released freights that are not urgent, and the number of freights that

have not been released for transport, can explain part of the value of a post-decision state. Basis

functions are then created for each individual feature to quantify the impact of the feature on

the value function.

We define a set of features A for which the value of each feature a ∈ A of a post-decision

state Sx,nt is obtained using a basis function φa(S
x,n
t ). We assume the approximated next-stage

value of a post-decision state can be expressed by a weighted linear combination of the features,

using the weights θna for each feature a ∈ A, as follows:

V
x,n
t (Sx,nt ) =

∑
a∈A

θnaφa (Sx,nt ) (22)

The weight θna is updated recursively in each iteration n. Note that (22) is a linear ap-

proximation, as it is linear in its parameters. The basis functions themselves can be nonlinear

(Powell, 2011).

The use of features and weights for the approximating the value function V
n
t (Sx,nt ) is com-

parable to the use of regression models for fitting data to a (linear) function. In that sense, the

independent variables of the regression model would be the features of the post-decision state

and the dependent variable would be the value of the post-decision state. However, in contrast

to regression models, the data in our ADP is generated iteratively inside an algorithm and not

all at once. Therefore, the updating process UV for the approximating function in (22) cannot

be based only on solving systems of equations as in traditional regression models.

Several methods are available to “fine-tune” the weights θna for each feature a ∈ A after each

iteration. An effective approach is the recursive least squares method, which is a technique to

compute the solution to a linear least squares problem (Powell, 2011). Two types of recursive

least squares methods are available. The least squares method for nonstationary data provides

the opportunity to put increased weight on more recent observations, whereas the least squares

method for stationary data puts equal weight on each observation. For the purpose of learning

the weights within an ADP algorithm, the recursive least squares method for nonstationary

data is more appropriate. The method for updating the value function approximations with the

recursive least squares method for nonstationary data is explained in detail in (Powell, 2011).

Nevertheless, the equations used in this method are given below.
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The weights θna , for all a ∈ A, are updated each iteration (n is the iteration counter) by

θna = θn−1
a −Hnφa (Sx,nt )

(
V
n−1
t−1

(
Sx,nt−1

)
− v̂nt

)
,

where Hn is a matrix computed using

Hn =
1

γn
Bn−1,

and where Bn−1 is an |A| by |A| matrix that is updated recursively using

Bn =
1

αn

(
Bn−1 − 1

γn

(
Bn−1φ (Sx,nt ) (φ (Sx,nt ))

T
Bn−1

))
.

The expression for γn is given by

γn = αn + φ (Sx,nt )
T
Bn−1φ (Sx,nt ) .

Bn is initialized by using B0 = εI, where I is the identity matrix and ε is a small constant.

This initialization works well when the number of observations is large (Powell, 2011). The

parameter αn determines the weight on prior observations of the value. Setting αn equal to

1 for each n would set equal weight on each observation, and implies that the least squares

method for stationary data is being used. Setting αn to values between 0 and 1 decreases the

weight on prior observations (lower αn means lower weight). We define the parameter αn by

αn =

{
1 , stationary

1− δ
n , nonstationary

(23)

where 1− δ
n , with δ = 0.5, is a function to determine αn that works well in our experiments.

For this example, there are a number of possible features, such as:

1. Each state variable: number of freights with specific attributes.

2. Per destination, the number of freights that are not yet released for transport (i.e., future

freights).

3. Per destination, the number of freights that are released for transport and whose due-day

is not immediate (i.e., may-go freights).

4. Per destination, a binary indicator to denote the presence of urgent freights (i.e., must-visit

destination).

5. For each state variable, some power function (e.g., a2) to represent non-linear components

in costs.

We test various combinations of the features mentioned above and name them Value Func-

tion Approximations (VFA) 1, 2 and 3 (see appendix for their settings). Intuitively, the post-

poned freights and their characteristics influence the future costs of a decision. However, mea-

suring how these characteristics influence the costs, and thus determining which VFA is the
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best one to use, is challenging. For small instances of the problem, one option to determine

the best set of features to use is to perform a linear regression between the optimal values of

all states of the MDP and the basis functions corresponding to each set of features, and choose

the set with the highest coefficient of determination R2. Another option, applicable to medium

sized instances of the problem is to calculate the average costs of a subset of states, using each

set of features, in three steps: (i) run the ADP algorithm for a subset of all states, using the

different sets of features, (ii) simulate the resulting policies for a number of iterations, and (iii)

repeat the first and second step a number of replications. In the case of this small example,

we perform the two options and present the results in Table 2 and Figure 8. For the second

option, we simulate the resulting policies of all states and show the average difference between

the average costs of the simulation and the optimum value of each state. Although the differ-

ences among the sets of features in both tests are small, we note that considering them one at

a time would lead to different conclusions. With the coefficient of determination of the linear

regression, VFA 2 would be selected as the best. However, with the average costs approach,

VFA 3 would be selected. In addition to having the lowest average difference, VFA 3 also has

the smallest variance of the three sets of features.

Table 2: Performance of the different VFAs
Test indicator Lookup-table VFA 1 VFA 2 VFA 3

R2 - 0.8897 0.8915 0.8897
Average difference 7.50% 2.67% 2.45% 2.36%
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Figure 8: Average performance of the ADP algorithm for the different VFAs compared to the
optimal values for all states, using N = 250, M = 250, O = 100, and K = 10.

The two aforementioned tests of the various combinations of features consider all states of

the MDP. A third approach to decide which basis functions to use, which is applicable to large

instances, is to pick some initial state (or multiple initial states) and compare (i) the values

learned by the ADP algorithm using various sets of features and (ii) the resulting performance of

the policy resulting from these values. We perform this approach for the two states introduced
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before, and show the results in Figure 9. Since we use a small problem instance, we also show

the optimal value in the figures, as well as the lookup-table approach mentioned earlier in this

section (denoted by “Expl”). For all sets of features (VFAs), the ADP algorithm runs for 250

iterations using a double pass approach. In addition to the tests of each VFA, we also test each

VFA with an ε-greedy approach (ε = 0.05), and denote these on the graphs by “VFAeps”, since

this approach yielded good results in our example.
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Figure 9: Learned values (left) and average cost performance (right) of the ADP algorithm for
the different VFAs for State 1 (top) and State 2 (bottom), using N = 250, M = 1, O = 100,
and K = 10.

For State 1 in Figure 9, we observe some differences among the VFAs estimated (learned)

value and the average costs (performance) of the resulting policy. These differences can lead to

choosing different sets of features. On the one hand, the differences among the learned values

of the three sets of features indicate that VFA1eps is the best. On the other hand, there are no

clear differences among the average costs of all VFAeps, indicating that the three sets perform

equally well when using the ε-greedy approach (and all better than all no-ε VFAs). Furthermore,

we observe that the ε-greedy approach improves the estimated values in VFA1 and VFA2 (i.e.,

VFAeps ≤ VFA), but not in VFA3. In the case of the average costs, the ε-greedy approach

improves all VFAs in a way that their performance is almost the same.

The results for State 1 can lead to the conclusion that a proper tuning of the explo-
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ration/exploitation tradeoff (e.g., via the ε-greedy) can have a larger impact on the performance

than the set of features chosen. However, an explanation on why this is the case for this state

has to do with the state and the sets of features themselves. State 1 is an almost empty state

(i.e., only one freight), which means most basis functions of the three sets we test return zero.

Remind that the updating algorithm can only determine how significant the weight of a basis

function is as long as it observes it. When only one basis function is observed, and this basis

function behaves similarly in all sets of features, the updating algorithm will assign similar

weights and thus the resulting policies will be approximately the same.

For State 2 in Figure 9, we observe significant differences among the estimated values of the

VFAs, but not among the average costs of the resulting policies. Clearly, VFA2 and VFA3eps

have the best estimated value, and VFA3 the worst (even worse than the lookup-table approach).

However, when looking at the average costs, the policy from all three VFAs (without the ε-greedy

approach) seem to achieve the same costs, between 1% and 2% away from the optimal costs.

Moreover, the second-best learning set of features (VFA3eps) is now performing second-worst

of all seven value function approximation methods tested. This indicates that having good

estimates of the value of states do not necessarily result in a good performance.

When looking at all four figures, we can conclude that deciding on which set of features to

use requires careful design and testing, and that the quality of the chosen set of features (basis

functions) is heavily problem/state dependent. An explanation on this situation has to do with

two characteristics of how the basis functions approximate the future costs. First, all weights

of the basis functions, which determine the output policy of the ADP algorithm, can only be

updated (i.e., improved) as long as the basis functions are non-zero. In State 2, which contains

many basis functions with a non-zero value, the performance of all VFAs is significantly better

than in State 1, which contains mostly basis functions with a value of zero. On average, all

six VFAs achieve 2% higher-than-optimal costs in State 2, while they achieve 6% higher-than-

optimal costs in State 1. Second, the magnitude with which the weight is updated depends

on how much the value of the basis function varies among the different iterations of the ADP

algorithm. These might lead to poorly estimating the value itself. In State 2, the difference

between the best and worst learning VFA is larger than in State 1. In this example problem,

1.2 freights arrive on average per day (with at most two freights). This means that State 1 is

a state one can expect on average whereas State 2 is an exceptionally busy state. Additionally,

with the short horizon considered in this problem, the initial conditions (state) can have a large

impact on the optimal costs. Thus, problem/state characteristics must be considered when

using the basis functions approach.

Besides the need for an evaluation methodology, the observed performance differences be-

tween different initial states also gives rise to new VFA designs that use basis functions. For

example, using aggregated designs based on categorization of states can prevent basis function

values of zero and can reduce the variation among basis function values. Designing such a VFA

with the right set of features is both an art and a science. With creativity about potential

causes of future costs, as well as their limits within a problem, efficient and accurate designs

can be developed. With structured evaluation methodologies (e.g., regression analysis, design

of experiment techniques, statistical control methods), these designs can be tested and further
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improved to tune the ADP algorithm to a specific problem.

For further reading on this problem, we refer to Pérez Rivera and Mes (2015). In addition,

we refer to Van Heeswijk et al. (2015) for a similar ADP approach on a completely different

transportation problem.

4 A healthcare example

In this third and final example, we repeat the same steps as with the previous two examples,

with the difference that we only focus on the modeling part. We omit the experimental results

of the MDP and ADP model, for which we refer to Hulshof et al. (2015).

4.1 Problem introduction

The problem concerns tactical planning in a hospital, which involves the allocation of resource

capacities and the development of patient admission plans. More concretely, tactical plans

distribute a doctor’s time (resource capacity) over various activities and control the number of

patients that should be treated at each care stage (e.g., surgery). The objective is to achieve

equitable access and treatment duration for patients. Each patient needs a set of consecutive

care stages, which we denote as a care process. Patients are on a waiting list at each care stage

in their care process, and the time spent on this waiting list is called access time. Fluctuations

in patient arrivals and resource availabilities result in varying access times for patients at each

stage in their care process, and for hospitals, this results in varying resource utilization and

service levels. To mitigate and address these variations, tactical planning of hospital resources

is required.

The planning horizon is discretized in consecutive time periods T = {1, 2, . . . , T}. We

include a set of resource types R = {1, 2, . . . , R} and a set of patient queues J = {1, 2, . . . , J}.
We define J r ⊆ J as the subset of queues that require capacity of resource r ∈ R. Each queue

j ∈ J requires a given amount of time units from one or more resources r ∈ R, given by sj,r,

and different queues may require the same resource. The number of patients that can be served

by resource r ∈ R is limited by the available resource capacity ηr,t in time period t ∈ T . The

resource capacity ηr,t is given in the same time unit as sj,r.

After being treated at a queue j ∈ J , patients either leave the system or join another queue.

To model these transitions, we introduce qj,i, which denotes the fraction of patients that will

join queue i ∈ J after being treated in queue j ∈ J . To capture arrivals to and exits from

outside the “hospital system”, we introduce the element 0 (note that the set J carries no 0-th

element by definition). The value qj,0 = 1−
∑

i∈J qj,i denotes the fraction of patients that leave

the system after being treated at queue j ∈ J .

In addition to demand originating from the treatment of patients at other queues within the

system, demand may also arrive to a queue from outside the system. The number of patients

arriving from outside the system to queue j ∈ J at time t ∈ T is given by λj,t, and the total

number of arrivals to the system is given by λ0,t.

Patients are transferred between the different queues according to transition probabilities

qj,i, ∀j, i ∈ J independent of their preceding stages, independent of the state of the network
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and independent of the other patients. Patients arrive at each queue from outside the system

according to a Poisson process with rate λj,t, ∀j ∈ J , t ∈ T . The external arrival process at each

queue j ∈ J in time period t ∈ T is independent of the external arrival process at other queues

and other time periods. Since all arrival processes are independent, we obtain λ0,t =
∑J

j=1 λj,t,

∀t ∈ T . We introduce U = {0, 1, 2, ..., U} to represent the set of time periods patients can be

waiting, i.e., if we decide not to threat a patient that already waited for U time periods, we

assume his/her waiting time remains U time periods.

4.2 MDP model

We subsequently present the following elements of the MDP model: the state (Section 4.2.1), the

decision (Section 4.2.2), the costs (Section 4.2.3), the new information and transition function

(Section 4.2.4), and the solution (Section 4.2.5).

4.2.1 State

We introduce St,j,u as the number of patients in queue j ∈ J at time t ∈ T with a waiting time

of u ∈ U . The state of the system at time period t can be written as St = (St,j,u)j∈J ,u∈U .

4.2.2 Decision

The decision xt,j,u is how many patients to treat in queue j ∈ J at time t ∈ T , with a waiting

time of u ∈ U . This decision needs to be made for all queues and waiting times, represented by

xt = (xt,j,u)j∈J ,u∈U . The set Xt of feasible decisions at time t is given by

Xt = { xt|
xt,i,u ≤ St,i,u, ∀i ∈ J , t ∈ T , u ∈ U∑

j∈J r sj,r
∑

u∈U xt,j,u ≤ ηr,t, ∀r ∈ R, t ∈ T
xt,j,u ∈ Z+ ∀i ∈ J , t ∈ T , u ∈ U}.

(24)

As given in (24), the set of feasible decisions in time period t is constrained by the state St

and the available resource capacity ηr,t for each resource type r ∈ R.

4.2.3 Costs

The cost function Ct (St, xt) related to our current state St and decision xt is set-up to control

the waiting time per stage in the care process, so per individual queue (j ∈ J ). We choose the

following cost function, which is based on the number of patients for which we decide to wait

at least one time unit longer

Ct (St, xt) =
∑
j∈J

∑
u∈U

cj,u (St,j,u − xt,j,u) , ∀t ∈ T . (25)

In general, higher u ∈ U will have higher costs as it means a patient has a longer total

waiting time.
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4.2.4 New information and transition function

The vector Wt containing the new information, consists of new patient arrivals and outcomes for

transitions between queues. We distinguish between exogenous and endogenous information in

Wt =
(
Ŝet , Ŝ

o
t (xt−1)

)
, ∀t ∈ T , where the exogeneous Ŝet =

(
Ŝet,j

)
∀j∈J

represents the patient ar-

rivals from outside the system, and the endogeneous Ŝot (xt−1) =
(
Ŝot,j,i (xt−1)

)
∀i,j∈J

represents

the patient transitions to other queues as a function of the decision vector xt−1. Ŝot,j,i (xt−1)

gives the number of patients transferring from queue j ∈ J to queue i ∈ J at time t ∈ T ,

depending on the decision vector xt−1.

We use the following transition function:

St = SM (St−1, xt−1,Wt) , (26)

where

St,j,0 = Ŝet,j +
∑
i∈J

Ŝot,i,j (xt−1,i) , ∀j ∈ J , t ∈ T , (27)

St,j,U =
U∑

u=U−1

(St−1,j,u − xt−1,j,u) , ∀j ∈ J , t ∈ T , (28)

St,j,u = St−1,j,u−1 − xt−1,j,u−1, ∀j ∈ J , t ∈ T , u ∈ U\ {0, U} , (29)

are constraints to ensure that the waiting list variables are consistently calculated. Con-

straint (27) determines the number of patients entering a queue. Constraint (28) updates

the waiting list for the longest waiting patients per queue. The state St,j,U , for all t ∈ T and

j ∈ J , holds all patients that have been waiting U time periods and longer. Constraint (29)

updates the waiting list variables at each time period for all u ∈ U that are not covered by the

first two constraints. All arrivals in time period t ∈ T to queue j ∈ J from outside the system

(Ŝet,j) and from internal transitions (
∑

i∈J Ŝ
o
t,i,j (xt−1,i)) are combined in (27).

4.2.5 Solution

Again, the formal objective of the model is to find the policy π ∈ Π that minimizes the expected

costs over the planning horizon, given an initial state S0, as seen in (1). The exact DP-problem

is restricted by limiting the number of patients that can be waiting in each queue to a given

maximum. To illustrate the size of the state space for our problem, suppose that M̂ gives the

maximum number of patients per queue and per number of time periods waiting. The number

of states is then given by M̂ (|J |·|U|). We can solve (4) plugging in the transition function (26)

and specifying the probability P(Wt+1 = ω), which can be found in Hulshof et al. (2015).

4.3 Approximate Dynamic Programming

The ADP approach is presented using a similar setup as used in the previous examples. We

subsequently present the post-decision state (Section 4.3.1), the forward dynamic programming

approach (Section 4.3.2), and the use of value function approximations (Section 4.3.3).
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4.3.1 Post-decision state

The post-decision state Sx,nt represents the expected results of the decision xt taken in state

Snt . More specifically, we subtract the number xt,j,u of patients we decided to treat and use

the expected patient transitions qi,j to determine the next location for each of the patients we

decided to treat.

The transitions take place as follows. In addition to the transition function (26), which

gives the transition from the state Snt to the state Snt+1, we introduce a transition function

SM,x (Snt , xt), which gives the transition from the state Snt to the post-decision state Sx,nt . This

function is given by:

Sx,nt = SM,x (Snt , xt) , (30)

with

Sx,nt,j,0 =
∑
i∈J

∑
u∈U

qi,jxt,i,u ∀j ∈ J , t ∈ T (31)

Sx,nt,j,U =
U∑

u=U−1

(St,j,u − xt,j,u) ∀j ∈ J , t ∈ T (32)

Sx,nt,j,u = St,j,u−1 − xt,j,u−1 ∀j ∈ J , t ∈ T , u ∈ U\ {0, U} . (33)

The transition function (30) closely resembles (26), except that the external arrivals to the

system and the final realization of the patient transitions qi,j are not included.

Due to the patient transfer probabilities, the transition function (30) may result in non-

integer values for the post-decision state. We do not round these values as the post-decision

state is only used to provide a value estimate from a particular combination of a state and

a decision. Hence, the post-decision state is only used as an ‘estimate’ of the future state.

The post-decision state will not be used to compute the transition from state St to state St+1.

Within the ADP algorithm, we use the original transition function (26) to compute the state

in the next time period. As a result, the post-decision state will not cause any state to become

non-integer.

The actual realizations of new patient arrivals and patient transitions in a time period will

be incorporated in the transition to the state in the next time period. An illustration of the

transition of states can be found in Figure 10.

4.3.2 Forward dynamic programming

We use a similar forward dynamic programming approach as in the freight consolidation exam-

ple.

4.3.3 Value function approximation

Again, the challenge is to design a proper approximation for the ‘future’ costs V
n
t (Sx,nt ) that is

computationally tractable and provides a good approximation of the actual values. Similar to

the previous example, we make use of basis functions.
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Figure 10: Transition of states in healthcare problem.

For our application, we make the assumption that the properties of each queue are inde-

pendent from the properties of the other queues, so that we can define basis functions for each

individual queue that describe important properties of that queue. For the basis functions, we

choose to use the features ‘The number of patients in queue j that are waiting for u periods’.

These features result in the following basis functions that will be used in the ADP algorithm:

St,j,u,∀j ∈ J , ∀u ∈ U , t = 1. The basis functions explain a large part of the variance in the

computed values with the exact DP approach (R2 = 0.954) and they can be straightforwardly

obtained from the post decision state. The weights θn in the value function approximations

are initialized to θ0 = 1 for all time periods, and we use the matrix B0 = εI as explained

before. We use the double pass version of the ADP algorithm and determine the stepsize α

using nonstationary least squares with δ = 0.99. All other settings can be found in Hulshof

et al. (2015).

In case there is no independent constant in the set of predictors F in a linear regression

model, the model is forced to go through the origin (all dependent and independent variables

should be zero at that point). This may cause a bias in the predictors. To prevent this bias,

we add a constant term as one of the elements in F . The feature weight θnf may vary, but the

feature value φf (Sx,nt ) of this constant is always 1, independent of the state Sx,nt .

We have calculated the ADP-algorithm for 5, 000 random states and found that the values

found with the ADP algorithm and the value from the exact DP solution converge. For these

5, 000 random states, there is an average deviation between the value approximated with the

ADP algorithm and the value calculated with the exact DP approach of 2.51%, with a standard

deviation of 2.90%, after 500 iterations. This means the ADP algorithm finds slightly larger

values on average than the exact DP approach. This may be caused by the truncated state

space, as explained before. The calculation time of the ADP algorithm is significantly lower

than the calculation of the exact DP solution. Obtaining the DP solution requires over 120

hours. Calculating the ADP solution for a given initial state (with N = 500) takes on average

only 0.439 seconds. For a complete analysis of this approach, we refer to Hulshof et al. (2015).
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5 What’s more

ADP is a versatile framework that is studied and applied to a growing number of diverse

problems. Naturally, diverse problems require a deeper focus on diverse aspects of ADP. In

some problems, a correct design of a value function is of most importance for approximating the

optimal solution of an MDP, whereas in others, the right tuning of exploration vs exploitation

parameters has a higher impact. Furthermore, in some practical applications, approximating

a restricted policy might be better than approximating the values. In this section, we briefly

touch upon some of these aspects. We subsequently present various options for policies (Section

5.1), value function approximations (Section 5.2), and handling the exploration vs exploitation

tradeoff (Section 5.3).

5.1 Policies

In this chapter, we used policies based on value function approximations. There are many

other options, like the use of myopic policies, look-ahead policies (rolling horizon procedures

that optimize over multiple time periods into the future), and policy function approximations

(analytic functions that return an action for each state). And, of course it is possible to use

hybrids.

The approach used in this chapter relies on approximate value iteration. Another option is

approximate policy iteration. In this strategy, we simulate a policy a number of ‘inner’ iterations

over some horizon. During these inner iterations, we fix the policy (typically by fixing the value

function approximation) to obtain a better estimate of the value of being in a state. We refer to

Powell (2011, Chapters 9 and 10) for more information on this. Finally, besides value iteration

and policy iteration, we can also use the linear programming method. This method—that for

MDPs suffers from the curse of dimensionality since we need a decision variable for each state,

and a constraint for each state-action pair—receives attention in the ADP community due to

the work of Farias and Roy (2004), who introduced ADP concepts to this method, incorporating

value function approximations into the linear program and sampling of the constraints.

More information on different types of policies, and ADP modeling in general, can be found

in Powell (2012), Powell and Ryzhov (2013), Powell (2014) and, using examples from trans-

portation and logistics, Powell et al. (2012). In these works, also the relationship between

(approximate) dynamic programming and other techniques as stochastic programming, simu-

lation, and stochastic search, is discussed. A comparison of different ADP techniques, using an

energy storage problem, is given by Jiang et al. (2014).

5.2 Value function approximation

Value function approximations can be divided into lookup tables (including state space ag-

gregation, hierarchical aggregation, and representatives), parametric models (basis functions,

piece-wise linear functions, and neural networks), and nonparametric models (kernel regression

and support vector machines). In general, approximating value functions involves the applica-

tion of statistical methods to estimate the value of being in a state. One specific technique,

applicable to the approaches considered in this chapter, involves the selection of basis functions,
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see Tsitsiklis and Roy (1996). For an overview of statistical learning techniques that can be

used in this setting, we refer to Hastie et al. (2001).

The estimation of value function approximations, however, involves much more than the ap-

plication of statistical methods. A unique setting of ADP is that value function approximations

have to be estimated recursively. Especially during the initial iterations, our decisions are in-

fluenced by the initialized values and might be strongly biased by the number of measurements

taken from the different states. In addition, testing the performance of a VFA design is a task

that requires diverse methods as well, as we illustrated in this chapter.

5.3 Exploration vs exploitation

The exploration vs exploitation tradeoff involves the decisions whether to explore states just to

learn their value or to visit the states that appear to be the best. For this purpose, we introduced

the ε-greedy policy. The disadvantage of this policy is that the learning rate remains constant

and there is no focus on certain areas of the state space. A ‘good’ policy supports the balance

between the estimated value of states and the uncertainty about these values. This problem

received considerable attention by the machine learning community (problems related to the

Multi-armed Bandit Problem, Ranking and Selection, Bayesian Global Optimization, etc.).

These techniques can also be used within ADP. An example can be found in Ryzhov and Powell

(2010), who propose a new exploration strategy based on the knowledge gradient concept, where

the uncertainty about the value function is explicitly expressed using a Bayesian model with

correlated beliefs. The hierarchical aggregation method described in this chapter has also been

extended with a Bayesian belief model by Mes et al. (2011). We incorporated this Hierarchical

Knowledge Gradient method within ADP, using a similar approach as presented by Ryzhov and

Powell (2010), and tested it on the nomadic trucker problem from Section 2. For all iterations

10 ≤ n ≤ 250, this exploration technique consistently outperforms the other policies show in

Figure 3, both with respect to the learned value functions and the resulting performance. For

a more in-depth discussion of strategies to balance exploration and exploitation, we refer to

Sutton and Barto (1998), Powell (2011, Chapter 10), and Powell and Ryzhov (2013).
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A Appendices

A.1 Nomadic trucker settings

Transportation takes place in a square area of 1000× 1000 miles. The locations lie on a 16× 16

Euclidean grid placed on this area, where each location i ∈ L is described by an (xi, yi)-

coordinate. The first location has coordinate (0, 0) and the last location (location 256) has

coordinate (1000, 1000). The minimum distance between two locations is 1000/15.

For each location i ∈ L, there is a number 0 ≤ bi ≤ 1 representing the probability that a

load originating at location i will appear at a given time step. The probability that, on a given

day of the week d, a load from i to j will appear is given by pdij = pdbi(1− bj), where pd gives

the probability of loads appearing on a given day of the week d. The origin probabilities bi are

given by

bi = ρ

(
1− f(xi, yi)− fmin

fmax − fmin

)
, (34)

where ρ gives the arrival intensity of loads, and f(xi, yi) is the Six-hump camel back function

given by f(xi, yi) = 4x2
i−2.1x4

i + 1
3x

6
i +xiyi−4y2

i +4y4
i on the domain (xi, yi) ∈ [−1.5, 2]×[−1, 1].

The highest value is achieved at coordinate (2, 1), with a value of ≈ 5.73, which we reduce to

5 to create a somewhat smoother function (still the second highest value is ≈ 4.72). Next,

the values f(xi, yi) are scaled to the domain (xi, yi) ∈ [0, 0] × [1000, 1000]. The values fmin =

mini∈Lf(xi, yi) ≈ −1.03 and fmax = maxi∈Lf(xi, yi) = 5 are used to scale f(xi, yi) between

[0, 1]. An impression of the resulting origin probabilities Bi is given in Figure 11.
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Figure 11: Origin probabilities for the 256 locations.

We set ρ = 1, which corresponds with an expectation of approximately 93.14 outgoing

loads from the most popular origin location on the busiest day of the week. We use a load

probability distribution pd = (1, 0.8, 0.6, 0.7, 0.9, 0.2, 0.1), for d from Monday till Sunday, which

represents the situation in which loads are more likely to appear during the beginning of the

week (Mondays) and towards the end (Fridays).

The results for the infinite horizon multi-attribute version of the nomadic trucker problem

can be found below.
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Figure 12: Infinite horizon multi-attribute case: resulting estimate V
n
0 (Sx,n0 ) (left) and realized

rewards (right), using N = 25, 000, M = 10, O = 1, 000 and K = 10. For the rewards resulting
from the simulations, the 2,500 observations are smoothed using a window of 10. For the policies
Expl and Eps, the BAKF stepsize is used.

A.2 Freight consolidation settings

Either one or two freights arrive each period (i.e., F = {1, 2}), with probability pFf = (0.8, 0.2)

for f ∈ F . Each freight that arrives has destination d ∈ D = {1, 2, 3} with probability pDd =

(0.1, 0.8, 0.1), is already released for transportation (i.e., r ∈ R = {0} and pRr = 1), and has

time-window length k ∈ K = {0, 1, 2} with probability pKk = (0.2, 0.3, 0.5).

The costs are defined as follows. The long-haul, high capacity vehicle costs (per subset

of destinations visited) are CD′ = (250, 350, 450, 900, 600, 700, 1000) for D′ = ({1}, {2}, {3},
{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}), respectively. These costs are for the entire long-haul vehicle,

independent on the number of freight consolidated. Furthermore, we consider there are no costs

for the long-haul vehicle if no freights are consolidated. The alternative, low capacity mode

costs (per freight) are Bd = (500, 1000, 700) for d ∈ D. There is no discount factor, i.e. γ = 1.

We build three different sets of features based on a common “job” description used in trans-

portation settings: MustGo, MayGo, and Future freights. MustGo freights are those released

freights whose due-day is immediate. MayGo freights are those released freights whose due-

day is not immediate. Future freights are those that have not yet been released. We use the

MustGo, MayGo and Future adjectives in destinations as well, with an analogous meaning to

those of freight. In Table 3 we show the three sets of features, which we name Value Function

Approximation (VFA) 1, 2, and 3. All feature types in this table are related to the freights of

a post-decision state. The symbol ‘*’ denotes a VFA set containing a feature type. All feature

types are numerical, and either indicate (i.e., 1 if yes, 0 if no), count (1,2,...), number (add),

or multiply (i.e., product between two numbers) the different type of freights and destinations.

Between parentheses we show the number of basis functions (i.e., independent variables) that a

feature type has for the test instance. For example, there is one post-decision state variable per

destination, per time-window length, thus all post-decision state variables are 3 ∗ 3 = 9. The

constant feature equals one for all post-decision states, and the weights θna are all initialized
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with one.

Table 3: Various sets of features (basis functions of a post-decision state)
Feature type VFA 1 VFA 2 VFA 3

All post-decision state variables (9) * * *
All post-decision state variables squared (9) * - -
Count of MustGo destinations (1) * * *
Number of MustGo freights (1) * * *
Product of MustGo destinations and MustGo freights (1) * - -
Count of MayGo destinations (1) * * *
Number of MayGo freights (1) * * *
Product of MayGo destinations and MayGo freights (1) * - -
Count of Future destinations (1) * * *
Number of Future freights (1) * * *
Product of Future destinations and Future freights (1) * - -
Indicator MustGo freights per destination (3) - * -
Indicator MayGo freights per destination (3) - * -
Indicator Future freights per destination (3) - * -
Number of all freights (1) * * *
Constant (1) * * *
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