

Reference Architecture for Mobility-Related Services

A reference architecture based on GET Service and SIMPLI-CITY

Project architectures

A. Husak, M. Politis, V. Shah, R. Eshuis, P. Grefen

Beta Working Paper series 477

BETA publicatie WP 477 (working
paper)

ISBN
ISSN
NUR

804

Eindhoven July 2015

Reference Architecture
for Mobility-Related Services

A reference architecture based on
GET Service and SIMPLI-CITY Project architectures

A. Husak, M. Politis, V. Shah, R. Eshuis, P. Grefen

School of Industrial Engineering

Eindhoven University of Technology

1

Table of Contents

 Introduction .. 5

 Overview of GET Service and SIMPLI-CITY projects .. 6

 Overview of GET Service ... 6

 Overview of SIMPLI-CITY ... 6

 Comparison of GET Service and SIMPLI-CITY .. 8

 GET Service Architecture .. 11

 Architecture Overview .. 11

 Components .. 11

3.2.1 Client Platform .. 11

3.2.2 Client Devices .. 12

3.2.3 Infra Platform .. 13

3.2.4 Core GET Service Platform .. 13

3.2.5 Extended GET Service Platform .. 15

 SIMPLICITY Architecture ... 16

 Architecture overview ... 16

 Components .. 16

4.2.1 Vehicle & PMA .. 16

4.2.2 SIMPLI-CITY Server Side .. 18

4.2.3 Developer Support .. 19

4.2.4 External Data Sources ... 20

 Reference Architecture Definition .. 21

 Design of the Reference Architecture ... 23

 Client Side ... 23

 Server Side .. 27

 External Sources .. 31

 Developer Support .. 33

 Projections – Use Cases .. 34

 Client Side ... 34

7.1.1 Client Side – Get Service ... 34

7.1.2 Client Side – SIMPLI-CITY .. 35

 Server Side .. 37

7.2.1 Server Side - GET Service.. 37

7.2.2 Server Side - Simplicity ... 40

2

 External Sources .. 43

7.3.1 External Sources – GET Service ... 43

7.3.2 External Sources - Simplicity ... 44

 Developer Support .. 45

7.4.1 Developer Support - GET Service .. 45

7.4.2 Developer Support - Simplicity ... 45

 Related work ... 46

 Conclusion ... 47

 Bibliography .. 48

 Appendices .. 49

Appendix A .. 50

Appendix B .. 51

Appendix C .. 52

3

Table of Figures

Figure 1: Major Components of the GET Service architecture ... 11

Figure 2: GET Service Client Platform ... 12

Figure 3: GET Service Client Devices ... 12

Figure 4: GET Service Infra Platform ... 13

Figure 5: GET Service Core Platform ... 14

Figure 6: SIMPLI-CITY Architecture ... 16

Figure 7: SIMPLI-CITY Vehicle & PMA Component ... 17

Figure 8: SIMPLI-CITY Server Side ... 18

Figure 9: SIMPLI-CITY Developer Support ... 19

Figure 10: SIMPLI-CITY External Data Sources .. 20

Figure 11: 4+1 aspect framework according to (Kruchter, 1995) ... 22

Figure 12: Three dimensions combined (Grefen, 2014) ... 22

Figure 13: Reference Architecture Overview .. 23

Figure 14: Client Side, aggregation level 0 .. 25

Figure 15: Client Side, aggregation level 1 .. 26

Figure 16: Client Side, aggregation level 2 .. 27

Figure 17: Server Side, aggregation level 0 ... 28

Figure 18: Server Side, aggregation level 1 ... 29

Figure 19: Server Side, aggregation level 2 ... 30

Figure 20: External Data Sources, aggregation level 0 ... 32

Figure 21: External Data Sources, aggregation level 1 ... 32

Figure 22: Developer Support, aggregation level 0 .. 33

Figure 23: Client Side – GET Service projection .. 34

Figure 24: Client Side – SIMPLI-CITY projection .. 35

Figure 25: Client Side - SIMPLI-CITY projection - Aggregation level 4 .. 36

Figure 26: Client Side - SIMPLI-CITY projection - Aggregation level 5 .. 36

Figure 27: Client Side - SIMPLI-CITY projection - Aggregation level 6 .. 37

Figure 28: Server Side - GET Service projection .. 37

Figure 29: Server Side - GET Service projection - Aggregation level 2 .. 38

Figure 30: Server Side - GET Service projection - Aggregation level 3 .. 40

Figure 31: Server Side – SIMPLI-CITY projection ... 40

Figure 32: Server Side – SIMPLI-CITY projection - Aggregation level 2 ... 41

Figure 33: Server Side – SIMPLI-CITY projection - Aggregation level 3 ... 43

Figure 34: External Sources – GET Service projection .. 44

Figure 35: External Sources – SIMPLI-CITY projection .. 44

Figure 36: Developer Support – SIMPLI-CITY projection .. 45

Figure 37: Reference Architecture .. 50

Figure 38: Subsystem Components of the GET Service architecture ... 51

Figure 39: Subsystem Components of the SIMPLI-CITY architecture ... 52

file:///C:/Users/heshuis/Dropbox/BETA%20report_Reference%20Architecture%20for%20Mobility-Related%20Services%20.docx%23_Toc421267445
file:///C:/Users/heshuis/Dropbox/BETA%20report_Reference%20Architecture%20for%20Mobility-Related%20Services%20.docx%23_Toc421267450
file:///C:/Users/heshuis/Dropbox/BETA%20report_Reference%20Architecture%20for%20Mobility-Related%20Services%20.docx%23_Toc421267451
file:///C:/Users/heshuis/Dropbox/BETA%20report_Reference%20Architecture%20for%20Mobility-Related%20Services%20.docx%23_Toc421267461

4

Table of Tables

Table 1: Comparison between GET Service and SIMPLI-CITY projects ... 8

Table 2: GET Service Components - Client Platform ... 12

Table 3: GET Service Components - Client Device .. 13

Table 4: GET Components - Infra Platform ... 13

Table 5: GET Service Components - Core Platform ... 14

Table 6: GET Service Components - Extended Platform ... 15

Table 7: Component Descriptions - SIMPLI-CITY Vehicle & PMA ... 17

Table 8: Component Descriptions - SIMPLI-CITY Server Side ... 18

Table 9: Components Descriptions - SIMPLI-CITY Developer Support ... 20

Table 10: Comparison of GET Service & SIMPLI-CITY (Client side) ... 24

Table 11: Reference Architecture - Major Client Side Components ... 27

5

 Introduction

This report is dedicated to the design of a reference architecture for mobility-related services.The

main aim is to facilitate the design of concrete architectures of business information systems that

realize mobility services using state of the art information technology (Angelov, Grefen, &

Greefhorst, 2012). The reference architecture is designed based on the architectures of the services

of two European projects - Green European Transportation (GET Service) and SIMPLI-CITY.

The Service Platform for GET Service provides transportation planners and drivers of transportation

vehicles with the means to plan, re-plan and control transportation routes efficiently and in a

manner that reduces the emission of CO2. The GET Service project advances current transportation

and route planning systems to the next major level by empowering transport management and

route planning systems with information from multiple sources and enabling the incorporation of

transportation-related tasks into transportation planning. In doing so, GET Service facilitates (Velde,

Saraber, Grefen, & Ernst, 2013):

• real-time aggregated planning
• synchromodal re-planning
• reduction of empty miles
• co-modal planning.

SIMPLI-CITY - The Road User Information System of the Future is a project funded by the European
Commission to promote the usage of road user information systems and help drivers make their
journey safer, more comfortable and environmentally friendlier. SIMPLI-CITY provides the
technological foundation for bringing the “App Revolution” to road users by facilitating data
integration, service development and end user interaction (Abels, 2013).

GET Service and SIMPLI-CITY are thus projects concerning mobility-related services. Both GET Service

and SIMPLI-CITY have their business information system architectures in place. The main aim of this

report is to design a reference architecture for mobility-related services, based on analyses of GET

Service and SIMPLI-CITY architectures. A reference architecture is designed such that it can serve as

a blueprint for projects in which architectures for mobility-related services have to be developed.

The report starts with an overview of the GET Service and SIMPLI-CITY projects. After briefly
discussing the two projects, a comparison is made, based on criteria such as the project vision, main
goal, target users, tools and approaches and expected results/impact. Section 3 focuses on the
architecture of GET Service and the various components of the architecture are described. In Section
4, the architecture of SIMPLI-CITY is described and the components making up the architecture are
explained. The concept of a reference architecture is defined in Section 5. Examples of reference
architecture are provided to give the reader a clearer idea of reference architectures.

Considering the common building blocks and also the unique and important components of the GET
Service and SIMPLI-CITY architectures, a reference architecture is constructed in Section 6. Each of
the components i.e. Client Side, Server Side, External Sources and Developer Support is explained.
The subcomponents that form these components are also described. In Section 7, the architectures
of GET Service and SIMPLI-CITY are projected to the reference architecture. This is done to validate
the proposed reference architecture and to see how the reference architecture is applicable to the
two architectures of GET Service and SIMPLI-CITY. In Section 8, we present a brief overview of
related work. The conclusion is presented in Section 9 and the main contribution of the report is
reiterated.

6

 Overview of GET Service and SIMPLI-CITY projects

This section first provides an overview of GET Service and SIMPLI-CITY projects. After briefly

discussing the GET Service and SIMPLI-CITY projects, an in depth comparison of the two projects is

conducted. The vision, main goal, target users, tools and approaches and the expected

results/impact of both the projects are compared.

 Overview of GET Service

As mentioned in Section 1, the Service Platform for GET Service provides transportation planners

and drivers of transportation vehicles with the means to plan transportation routes more efficiently

and respond quickly to unexpected events during transportation. To this end, it connects to existing

transportation management systems and improves on their performance by enabling sharing of

selected information between transportation partners, logistics service providers and authorities.

Currently, basic systems for transportation and route planning exist. The GET Service platform

(Velde, Saraber, Grefen, & Ernst, 2013) lifts these systems to the next major level, by:

 Enabling improved transportation and route planning, by incorporating transportation and

logistics-related tasks, such as transfer of goods and administrative tasks, into the planning;

 Facilitating more accurate transportation and route planning, by using real-time information

from multiple information sources;

 Facilitating quick effectuation of changes to transportation plans, including the execution of

necessary transportation-related tasks, such as (de-)reservation of necessary resources and

unloading of already loaded goods;

 Enabling holistic planning, where transportation routes and placement of transportation

resources is planned jointly to optimize resource usage.

To achieve these objectives, the GET Service platform is developed, with subsystems for information

aggregation, real-time planning, transportation control and transportation service development.

The project as a whole has the aim to design a service platform for joint transport planning and

execution to improve key performance indicators (KPIs) such as transport costs, CO2 emissions and

customer service. To this end, the project will develop a proof concept service platform in which

planners of transport receive real-time planning options when scheduling their operations. The

options involve inter-modal transport (i.e. road, rail and barge). If unexpected events occur, planners

will receive (re-)planning options, including necessary steps to take to effectuate changes to the

transport plan (for instance communication with customs, terminals, etc.). Furthermore, the

transport execution will be supported by the GET Service Platform by functionalities such as

transport monitoring and control as well as data exchange.

 Overview of SIMPLI-CITY

“SIMPLI-CITY – The Road User Information System of the Future” will foster the usage of full-fledged

road user information systems – helping drivers to make their journey safer, more comfortable, and

more environmentally friendly. Therefore a holistic framework is needed which structures and

bundles potential services that could deliver data from the various sources to road user information

7

systems as well as allows road users to make use of the data and to integrate it into their driving

experience (Abels, 2013).

Thus, by providing such a framework, SIMPLI-CITY will facilitate two main results:

 A next-generation European wide service platform allowing the creation of mobility-related

services as well as creation of corresponding apps. This will enable third party providers to

create a wide range of interoperable, value-added services, and applications for drivers and

other road users.

 An end user assistant allowing road users to make use of the information provided by

applications and to interact with them in a non-distracting way – based on a speech

recognition approach.

To reach these results, SIMPLI-CITY will define tools and approaches in following areas:

 Adding a “software layer” to the hardware driven “product” mobility, analogously to the

“App-Approach”. Thereby, the project will support third party developers to efficiently

realise and sell their mobility-related service ideas by a range of methods and tools,

including the Mobility Services and Application Marketplaces.

 Delivering a Mobility Service Framework as the foundation for all services and end user

applications facilitated by the project. Based on the latest developments in Service-oriented

Computing, the framework will introduce mobility-specific extensions allowing service

invocation on different mobile devices whilst considering connectivity quality and other

context-related information.

 Following the Mobility-related Data as a Service approach allowing data from sensors,

cooperative systems, telematics, open data repositories, user-centric sensing, and media

data streams to be modelled, accessed, and integrated in a unified way. The Mobility-related

Data as a Service approach of SIMPLI-CITY goes far beyond the current possibilities to exploit

data in common apps: It will enable service developers to easily integrate data coming from

arbitrary, technologically heterogeneous sources.

 The elaboration of the SIMPLI-CITY Personal Mobility Assistant (PMA). This PMA will allow

end users to interact with services in an intuitive, non-distracting way. The PMA is a voice-

based, multimodal user interface and execution environment. It allows application

interaction without distracting the potential users, notably drivers, in a much more

convenient and precise way than current solutions are able to do. New applications can be

integrated into the PMA in order to extend its functionalities for individual needs.

While SIMPLI-CITY enables a wide range of mobility-related services, the project will present its real-

world application in two dedicated use cases:

 The “Meeting the Increased Mobility Demand” use case will show how SIMPLI-CITY helps

users in their journeys to big events and also provides the innovative topic “personalised

traffic restrictions”.

 The “Enhancing the Driving Experience” use case will especially focus on the enhancement

of environmental friendliness using services developed in SIMPLI-CITY as well as dedicated

comfort and leisure services like media streaming.

8

 Comparison of GET Service and SIMPLI-CITY

Before starting to build a reference architecture based on the GET Service and SIMPLI-CITY projects,

it is important to make a comparison between them. In this section, a comparison of the GET service

and SIMPLI-CITY projects is provided. Table 1 presents a general comparison of the two projects,

based on different aspects such as vision, main goal, target users, tools and approaches and the

expected results/impact of each project.

Table 1: Comparison between GET Service and SIMPLI-CITY projects

 GET SIMPLI-CITY

Vision

“GET Service - The Service Platform for
Green European Transportation” will
support a European transportation
ecosystem that is demonstrably more
environmentally friendly and efficient
and provides new business
opportunities for transportation
information providers and organizations
that can use this information to provide
innovative services.

“SIMPLI-CITY – The Road User
Information System of the Future” will
foster the usage of full-fledged road
user information systems – helping
drivers to make their journey safer,
more comfortable, and environmentally
friendlier.

Project
coordinator

Eindhoven University of Technology,
The Netherlands

Vienna University of Technology,
Austria

Main Goal

Develop a Service Platform for Green
European Transportation (GET Service)
that facilitates real-time aggregated
planning, synchro-modal (re-planning),
reduction of empty miles and co-modal
planning.

Develop a next-generation European
wide service platform allowing the
creation of mobility-related services as
well as creation of corresponding
applications. An end user assistant will
allow road users to make use of the
information provided by apps and to
interact with them in a non-distracting
way - based on a speech recognition
approach.

Target users

Logistics Service Providers, Transport
Service Providers, Freight Forwarders
and truck drivers

Personal car drivers, disabled drivers,
truck drivers, cyclists, pedestrians,
passengers and application developers

Tools and
Approaches

 Transportation planning & control:
Aggregate real-time data from
multiple sources to enable predictive
planning.
Include transportation-related tasks in
planning and control to support more
efficient (co-modal) planning.

 Service development & composition:
Make existing techniques applicable
in the transportation domain by

 Software layer: Adding a “software
layer” to the hardware driven
“product” mobility, analogously to the
“App-Approach”. The project will
support third party developers to
efficiently realise and sell their
mobility-related service ideas by a
range of methods and tools, including
the Mobility Services and Application
Marketplaces.

9

specializing them, extending them
driven by the domain-specific
requirements and implementing them
for the concrete transportation
scenarios of the project. Develop
domain specific constructs.

 Service composition orchestration
and reconfiguration: Enable dynamic
reconfiguration of service
composition to support advanced
transportation re-planning problems.
Ideally, the project develops dynamic
reconfiguration mechanisms that
support arbitrary adaptations to a
service composition.

 Information aggregation: Exploit
transportation plans and control
structures to automatically derive
aggregate information needs and
missing information.

 Mobility Service Framework:
Delivering a Mobility Service
Framework as the foundation for all
services and end user applications
facilitated by the project. The
framework will introduce mobility-
specific extensions allowing service
invocation on different mobile devices
whilst considering connectivity quality
and other context-related
information.

 Mobility-related Data as a Service:
Allowing data from sensors,
cooperative systems, telematics, open
data repositories, user-centric
sensing, and media data streams to
be modelled, accessed, and
integrated in a unified way. The
Mobility-related Data as a Service
approach of SIMPLI-CITY will enable
service developers to easily integrate
data coming from arbitrary,
technologically heterogeneous
sources.

 Personal Mobility Assistant (PMA):
The PMA is a voice-based, multimodal
user interface and execution
environment that will allow end users
to interact with services in an
intuitive, non-distracting way. It
allows application interaction without
distracting the potential users,
notably drivers, in a much more
convenient and precise way than
current solutions are able to do. The
PMA functionalities can be extended
by integration of new applications
into it.

Main Expected
Results/ impact

 Demonstrable reduction of CO2
emission of transportation: by
developing services that enable
‘green’ planning of transportation and
route planning. Particular usage
scenarios that will be covered by the
planning services include co-modal
planning and efficient planning of
resources to reduce empty miles.
Specific tasks are planned to validate
the potential of the platform to

 Mobility Service Framework: A next-
generation European Wide Service
Platform (EWSP) allowing the creation
of mobility-related services as well as
the creation of corresponding apps.
This will enable third party providers
to produce a wide range of
interoperable, value-added services,
and apps for drivers and other road
users.

10

reduce CO2 emission.

 Optimized planning transportation
algorithms: The GET Service platform
aims to make European
transportation more efficient, using
optimized planning algorithms. Since
the profit margins in this sector are
very small, improvements in
efficiency have a strong impact on the
competitiveness of the transport
industry as a whole.

 Information provisioning services
and services for green transportation
planning: Business models will be
developed for monetizing the services
provided by the GET Service platform.
Particular focus will be on information
provisioning services and services for
green transportation planning. During
the development of these business
models, the markets that benefit
from the GET Service platform and its
services will be determined.

 Mobility-related Data as a Service:
The integration of various,
heterogeneous data sources like
sensors, cooperative systems,
telematics, open data repositories,
people-centric sensing, and media
data streams, which can be modelled,
accessed, and integrated in a unified
way.

 Personal Mobility Assistant: An end
user assistant that allows road users
to make use of the information
provided by apps and to interact with
them in a non-distracting way – based
on a speech recognition approach.
New apps can be integrated into the
Personal Mobility Assistant in order to
extend its functionalities for
individual needs.

11

 GET Service Architecture

This section discusses the various components that make up the GET Service architecture as

described in GET Architecture Definition (Velde, Saraber, Grefen, & Ernst, 2013). Since each

component consists of a number of subcomponents, a brief description of each of these

subcomponents is also given.

 Architecture Overview

The major components of the GET Service architecture are as depicted in Figure 1:

Figure 1: Major Components of the GET Service architecture

In the Figure 1 the highest aggregation level of GET Service is presented. In the following sections

we vertically move down to the lower aggregation levels of the cube (Grefen, Business Information

System Architecture, Spring 2014) exploring each of the levels of the GET Service. A description of

the different components of the GET Service architecture and their subcomponents is provided in

the next section.

 Components

In this section, we describe the main components of the GET Service architecture.

3.2.1 Client Platform

The Client platform provides the Transport Order information to GET Service platform, which is used

in order to generate transport options for the Offline planner. The Client platform receives

12

information from the GET Service platform on the capacity that is booked or is still available.

Multiple Client platforms can be connected to the centralized GET Service platform: a client platform

represents a Transport Management System (TMS) for each participating Logistic Service Provider.

The Client Platform consists of 2 components as presented in Figure 2:

 Backend system

 Planner

 Figure 2: GET Service Client Platform

Table 2: GET Service Components - Client Platform

Components Description

Backend System Existing Transport management System used by the client to
manage the transport orders. The backend system can be directly
coupled to the Client Device

Planner The logic and resulting interfaces between the Extended GET Service
platform and the Backend system for the offline, asset and
execution planner. The planner requests alternative transport plan
options (including updates) from the proposer in the Extended GET
Service platform

3.2.2 Client Devices

Client devices are the on-board systems. A mobile operator sends status and location information

(“whereabouts”) to the GET Service platform by means of on-board devices, apps, and phones. This

information can be sent directly to the GET Service platform, or via the Client Platforms. As shown in

Figure 3, Client Devices consists of:

 Process Client

 Event Source

 Figure 3: GET Service Client Devices

13

Table 3: GET Service Components - Client Device

Components Description

Process Client Provides current status information about the transport process
from on-board device. The client can receive updated instructions
on a running transport process from the client platform
(synchronization interface). This flow takes place outside the GET
Service platform. Adding this flow to the GET Service System will
add complexity, since the GET Service platform will have to be
interoperable with a wide range of existing systems.

Event Source Translates on-board data (static/dynamic) into events and publishes
the events to the Core GET Service platform.

3.2.3 Infra Platform

An Infrastructure Information Provider distributes information on traffic, tides, bridges and locks.

The GET Service platform can subscribe to events that contain infrastructure status information. GET

Service does not send any information back to these parties. As depicted in Figure 4 the Infra

Platform has the Event Source as its subsystem component.

Figure 4: GET Service Infra Platform

Table 4: GET Components - Infra Platform

Components Description

Event Source Translates infrastructure data (static/dynamic) into events, publishes
the events to the Core GET Service platform.

3.2.4 Core GET Service Platform

The Core GET Service platform correlates and aggregates the external events from multiple Infra and

Client platforms. It also contains an Information warehouse which stores static (schedules, master

data) and dynamic (capacity) data. The aggregated events are published or can be retrieved by Client

platforms or the Extended GET Service Platform. The Core GET Service Platform consists of:

 Event Channel

 Event Store

 Information Store

 Event Aggregator

14

 Event Correlator

 Subscription Store

 Log Manager

 Community Passport Manager

 Figure 5: GET Service Core Platform

Table 5: GET Service Components - Core Platform

Components Description

Event Channel Receives & normalizes events from the Event sources through
subscribe interfaces. The Events are stored in the Event Store.

Event Store Stores all raw/aggregated events for a predefined time window.
Aggregated events from the event store can be retrieved by the
Client Platform and also by the Extended GET Service Platform.

Information Store Stores data that can be used in offline planning. Capacity and
schedule data from the backend system is also stored in the
Information store. Static/dynamic data from the Information store
can be retrieved by the Client Platform (Query interface).
Aggregated events from the Information store can be retrieved by
the Extended GET Service Platform (Query interface).

Event Aggregator Events can be combined based on dynamic rules and filters. The
aggregated events are put back into the Event store. The proposer
and orchestration engine subscribe to published aggregated events.

Event Correlator Matching function by using static and dynamic data from the
Information store and the Event store. The Event Correlator uses an
event model to identify events, and a Query language to correlate
them.

Subscription Store The subscriptions for the Extended GET Service platform (proposer
& planner) are stored here.

15

Log Manager The GET Service project will use a Core Platform Component to track
messages. The Log Manager provides interfaces for logging and
listing messages.

Community Passport
Manager

As part of the Core Platform the Community Passport Manager
(CPM) provides service interfaces for registration and authentication
to all GET Service components. The CPM is responsible for a
centralized passport store.

3.2.5 Extended GET Service Platform

The Extended GET Service platform is the part of the platform that combines aggregated events,

capacity and schedule information and initial transport plans from the planners. From this

information, it provides alternative transport plan options which the Execution planner can use. It

also contains a Plan & Process warehouse which stores static (plans) and dynamic instance (process)

data. The Extended GET Service Platform consists of:

 Proposer

 Process Store

 Orchestration Engine

 Process Development Environment

Table 6: GET Service Components - Extended Platform

Components Description

Proposer The Extended GET Service platform proposes a (recalculated)
transport plan to the planner in the Client platform. The proposer
can propose alternatives for running processes that are in the
process store.

Process Store Dynamic instance data is persisted for each running process. This
assures that the process can continue after a system restart The
Client platform can also retrieve dynamic instance (process) data.

Orchestration Engine Is used to orchestrate tasks for a running process. External events
can influence the process path. This can result in a new / updated
transport plan by the proposer.

Process Development
Environment

Used to develop new processes + orchestration steps

A complete picture of the GET Service architecture is depicted in Appendix B.

16

 SIMPLICITY Architecture

In this section we discuss the different aggregation levels of the SIMPLI-CITY architecture. Each

aggregation level is comprised of components and subcomponents. A brief description of each of

these subcomponents is also given.

 Architecture overview

The diagram in Figure 6 gives an overview of the architecture of SIMPLI-CITY. As shown in the figure,

the architecture of SIMPLY-CITY may be split into four major components. These major components

are, the “Vehicle & PMA (Personal Mobility Assistant)”, the “SIMPLI-CITY Server Side”, the “External

Data Sources” and “Developer Support”.

The first major component focuses on the personal mobile device, which will be the most visible

element of SIMPLI-CITY from an end user perspective, this major component is called “Vehicle &

PMA”. The second major component covers subcomponents that are located in the “Server Side”,

meaning that they do not run inside the mobile device. The third major component of the SIMPLI-

CITY architecture represents the “External Data Sources” and the last major component called

“Developer Support” contains subcomponents that support developers in the creation, deployment

and updating of applications and services.

A more detailed diagram of the SIMPLI-CITY architecture can be found in Appendix C where all the

subcomponents of each major component are presented.

 Components

In this section, the four different major components of SIMPLI-CITY architecture are described. A

general overview of each of the subcomponents contained in the four major components is

provided.

4.2.1 Vehicle & PMA

This section describes all components that are located at the mobile device or within the vehicle

environment. All of these components together form the personal mobility assistant which is the

main contact point between SIMPLI-CITY and the end-user. End users will use this mobile device to

access all SIMPLI-CITY functionality by making use of apps. The architecture of the Vehicle & PMA

component of SIMPLI-CITY service, is presented in Figure 7, and described briefly in Table 7.

Vehicle & PMA

(Personal

Mobility

Assistant)

SIMPLI-CITY Server Side

External Data Sources

Developer Support

Figure 6: SIMPLI-CITY Architecture

17

Figure 7: SIMPLI-CITY Vehicle & PMA Component

Table 7: Component Descriptions - SIMPLI-CITY Vehicle & PMA

Components Description

Application Runtime
Environment

Meets the requirement that the central element for user
acceptance is the extendibility of SIMPLI-CITY. The project is not a
closed information system but it rather allows developers to add
own services and apps to it.

Application Marketplace Allows users to find new apps in order to add new functionalities to
the their mobile device – the PMA. Also allows developers to add
their apps to the marketplace.

Dialogue Interface &
Multimodal User Interface

This component is the user interface layer of SIMPLI-CITY, taking
user input in the form of utterances managing the need for further
user input, and transforming them into applications calls. The result
of the application call is then fed back to the user, using speech.

Sensor Abstraction Is the local extension to the sensor abstraction and interoperability
interfaces described in the Table 8. In contrast to that component,
this component is a service running locally on the mobile device.

18

4.2.2 SIMPLI-CITY Server Side

This section describes the server-side component of SIMPLI-CITY. These components will handle

service executions, cloud based storage requests and other issues like data source integration and

access to external sensors. The communication between these components and the apps of SIMPLI-

CITY will be performed via the application runtime environment and the service runtime

environment.

Figure 8 and Table 8 show the components that are not located on the personal mobility assistant.

These components together create the European Wide Service platform, which is a major outcome

of SIMPLI-CITY.

Figure 8: SIMPLI-CITY Server Side

Table 8: Component Descriptions - SIMPLI-CITY Server Side

Components Description

Service Runtime
Environment

Provides a deployment and the execution framework for (composed)
services, which offer the business logic for end user apps in SIMPLI-
CITY, and provides additional features that are required in conjunction
with the execution of services.

Media Data Streams /
Data Prefetching Logic

Handles the data prefetching and media streaming aspects of SIMPLI-
CITY. As such it may be split into two aspects: 1) Streaming and
prefetching (personalized) media information by reacting to app
request and pre-buffering media data. 2) Prefetching information from

19

4.2.3 Developer Support

The Developers Support component is presented in Figure 9, while a brief explanation of the

component is given in Table 9. The component assists developers to develop new applications by

giving them the opportunity to use tools, services and existing applications.

Figure 9: SIMPLI-CITY Developer Support

data services by automatically invoking data services and buffering their
content.

Context- Based Service
Personalization

Deals with services in SIMPLI-CITY that can make use of context
information in order to realize personalized services for a particular
user. Two aspects: 1) Location-based data service selection and 2)
proactive user notification (e.g. in the case there is an important
update)

Monitoring In order to check if services are able to meet these non-functional
requirements, each service invocation is monitors regarding: 1) services
are responsible at all, and 2) service level objectives (SLAs) are being
complied with. It also serves the purpose to generate service execution
statistics and log error messages if they occur.

Service Marketplace It will be used by developers for two main purposes: 1) for providing
services to other developers allowing them to consume them (also
updating service endpoints or activating/deactivating entries.) and 2)
for discovering SIMPLI-CITY enabled services.

Service Registry In general, is used to store information about services and find services
based on some search parameters. Also offers service repository
functionalities.

Cloud – Based
Information
Infrastructure

This infrastructure will act as a service which is dedicated into managing
different types of data in a persistent, scalable and efficient storage.

User – Centric / Open
Data Access

This component comprises sub-components which combine and
process incoming data from different sources: 1) User-centric data, 2)
Open/Governmental data, 3) Sensor data and 4) Historical.

Sensor Abstraction and
Interoperability
Interfaces

Has the role to seamlessly integrate heterogeneous sources of sensor
reading and providing corresponding sensor data to SIMPLI-CITY. It has
to be able to allow pulling of data from several sources and to be able
to deal with event based information systems. Each external data
source will be registered to the system with a specific wrapper that
transforms the external information into a common data format.

20

Table 9: Components Descriptions - SIMPLI-CITY Developer Support

Components Description

Application Design Studio Offers an appropriate step-by-step procedure to app
development.

Service Development API Is a component aimed at third party developers that allows them
to create and configure their own services on the SIMPLI-CITY
platform. These services will be later used within end-user
applications and will be responsible for the provision of the
external data needed during their execution. There are three
types of services: 1) data services, 2) backend services and 3)
external services.

4.2.4 External Data Sources

There is a range of external data sources (Personal Data sources, Sensors and various data sources),

which are shown in Figure 7. These data sources are shown as examples; however, they are provided

by external data suppliers and are therefore not components to be implemented within SIMPLI-CITY.

Figure 10: SIMPLI-CITY External Data Sources

21

Definition 2: A reference architecture is a general design (abstract blueprint) of a structure for a

specific class of information. (Grefen, Business Information System Architecture, 2014)

Definition 1: The architecture of a software

system defines that system in terms of

computational components and interactions

among those components.
(Software Architecture; Shaw & Garlan; Prentice Hall, 1996)

 Reference Architecture Definition

Many projects spend an extreme amount of time

researching, investigating, and pondering

architectural decisions (See Definition 1). This is

inefficient when it is clear that if prior project

teams had taken the time to document their

experiences and build up a reference

architecture.

A reference architecture (See Definition 2) is a resource containing a consistent set of architectural

best practices for use by other teams. It is helpful to have a high-level, general architecture designs

that can be reused and tailored for specific situations – such that the wheel does not need to be

reinvented over and over again.

“Harvesting” of best practices is the first step towards building a strong, versatile architecture (Reed,

2002). Briefly, a reference architecture consists of information accessible to all project team

members that provide a consistent set of architectural best practises.

A reference architecture provides a template, often based on the generalization of a set of solutions,

these solutions may have been generalized and structured for the depiction of one or more

architecture structures based on the harvesting of a set of patterns that have been observed in a

number of successful implementations. Further it shows how to compose these parts together into a

solution. Reference Architectures will be instantiated for a particular domain or for specific projects.

Adopting a reference architecture within an organization accelerates delivery of a new business

information system architecture through the re-use of an effective solution and provides a basis for

governance to ensure the consistency and applicability of technology use within an organization.

The following examples are provided to illustrate the importance of reference architectures. Four

different reference architectures are presented that are used successfully by large companies (e.g.,

IBM Java Platform).

22

Figure 12: Three dimensions combined
(Grefen, 2014)

According to the RUP (Rational Unified Process) (Kruchten, 2000), a reference architecture defines

levels of abstraction, or “views”, thereby providing more flexibility in how it can be used. Ideally,

these views map the 4+1 Views of software architecture outlined in the RUP (see Figure 11) and

embodied in the RUP’s Software Architecture Document.

Note that according to the RUP, only the Use Case and Logical Views are used in all projects. The

other views should be used if the particular system to be constructed requires them (e.g., the

Process View is necessary when there are multiple threads of control; the Deployment View is

necessary when the system is to be distributed across more than one node). To describe the logical

and the use-case view, we follow the three dimensional cube approach (Figure 12).

In this report we use the presented theory to create a

reference architecture based on two architectures described in

sections 3 and 4. Both GET Service and SIMPLI-CITY projects

provide architectures that can be analysed and finally

contribute to the development of a reference architecture. Our

reference architecture will be a blueprint of those two projects

and by following the use-case view (see Figure 11) we will be

able to make the projection of each project. Finally to create

the reference architecture we follow the three-dimensional

design cube (See Figure 12). We start from a concrete,

detailed, Information Technology oriented architecture

specification and in a number of steps, we arrive at a more

abstract, aggregated and Business-oriented specification. Thus

we traverse the cube from the lowest to highest level of abstraction and aggregation.

Examples:

1) The Java Platform, Enterprise Edition (Java EE) architecture is a layered reference

architecture which provides a template solution for enterprise systems developed in Java.

2) The IBM Insurance Application Architecture is a reference architecture for the Insurance

domain.

3) AUTOSAR is a component-based reference architecture for automotive software

architectures.

4) Unisys 3D Blueprints are a collection of reference architectures from Unisys Corp. for diverse

domains such as financial services, communications, public sector, transportation, consumer &

industrial products.
(Wikipedia, 2014)

Logical View

(Functionality)

Implementation View

(Software Management)

Process View

(Performance, Scalability,

Throughput)

Deployment View

(System Topology, Delivery,

Installation Communication)

Use-Case View

Figure 11: 4+1 aspect framework according to (Kruchter, 1995)

23

 Design of the Reference Architecture

While analysing the GET Service architecture and the SIMPLI-CITY architecture, we observed that

both have similar major components. Both GET Service and SIMPL-CITY have a component which

acts as an interface between the client and the server. We define this major component as the Client

Side. Both GET Service and SIMPLI-CITY have a number of components which form a framework for

execution and coordination of services and data storage. This framework offers the business logic for

end users of the services and provide additional features that are required in conjunction with the

execution of services. We define this framework as a major component which is called the Server

Side.

Furthermore, in both architectures, there are components that collect information via personal data

sources and sensors and publish them to the Server side. Together these components can be

defined as External Data Sources. Then, there exists a component called Developer Support in

SIMPLI-CITY. Developer Support will assist developers for creating new services and apps for SIMPLI-

CITY and will also provide a studio to prepare the submission and publication of those services and

apps. Although this component is not present in GET Service architecture, a component with similar

functions is included in the reference architecture.

Thus, we come to the conclusion that there are some common building blocks between the two

architectures. Considering these common building blocks and also important components of each

architecture, the following reference architecture is constructed (See Figure 13). Each component of

the reference architecture is described in detail in the following sections.

Client Side Server Side External Data Sources

Developer Support

Figure 13: Reference Architecture Overview

 Client Side

 As it is described in Sections 3 and 4.2.1 both projects consist of the client side which describes the

components which are used by the user/client and are not part of the server side. For SIMPLI-CITY,

the client side is as presented in Figure 7 whereas for GET service, the client side is composed of two

components (Client Platform and Client Devices) as presented in Figure 1. For the reference

architecture our design decision at the aggregation level zero, is to merge (in the case of GET service)

24

the two components to one. In Table 10 a brief comparison of the two projects’ Client Side

architecture is provided. Hence, it can clarify the decisions about the reference architecture.

Table 10: Comparison of GET Service & SIMPLI-CITY (Client side)

In Table 10 we can observe both similarities and differences of GET Service and SIMPLI-CITY client

side components in a high aggregation level. The two projects have indeed some differences in their

Client Side architecture and the most important one is that the client side of GET service is split into

two different components. However, these two components can be easily seen as one and be

compared with SIMPLI-CITY’s client side as the functionalities of both are similar.

The mapping of the highest possible aggregation level of Client Side to the two projects is presented

in Figure 14. More specifically we have a single component for the client side of our reference

architecture which when we will arrive at the next aggregation level, will be decomposed. Through

Main Functions of the Client Side Similarities Differences

GET Service Client Platform
and Client Device

SIMPLI-CITY Vehicle &
PMA

Provide information
about events from the
truck. (Event Source)

Provide information
from the Car-Sensors
and the current
transport process.
(Car-Sensors)

Provide
information
(Status from the
clients/users
device).

SIMPLI-CITY provides
extra information,
about the current
transport process

Provides current status
information about the
transport from on-board
device. The client can
receive updated
instructions on a running
transport process.
(Process Client)

- - For SIMPLI-CITY, such
information are
provided to the server
by the Car-sensors as
mentioned above in
the table. Furthermore,
the updated
instructions are
provided at the PMA
(see below).

The user can request
transport plan options
from the server. Can also
request alternative
transport plan options
from the server. (Planner)

In the PMA the user
requests information
via the applications to
the server.
(Application Runtime
Environment)

Both have similar
function, to
request
information from
the server.

In GET Service, the
requests are more
specific (Transportation
plan options), whereas
in SIMPLI-CITY the
requests can be for
several purposes.

The Client uses its own
existing Transport
management system to
manage the transport
orders. (Backend System)

The user may have
other applications that
can provide
information similar to
SIMPLI-CITY.

The two services
can be used while
the user/client can
obtain similar
information from
other services.

In the case of SIMPLI-
CITY the backend
system is not included
in the architecture.

25

this figure it is possible to make a visual comparison of the two projects and identify the similarities

and the differences that have been presented in Table 10.

Client Side

Figure 14: Client Side, aggregation level 0

Moving a step lower in the aggregation level of the three dimensional design cube that was

presented in Figure 12, we decompose the Client Side into two components. The two components

are the Status provider and the Client Platform (see Figure 15). We see two subsystems, which

together provide the same functionality as at level 0.

Client Side

Client Side

26

Client Side

Status Provider Client Platform

Figure 15: Client Side, aggregation level 1

Client interface is composed by:

 Status Provider which provides to the Server Side on-board data, events, information about

the transport process and the current status of the vehicle.

 Client Platform is the interface of the end user which can communicate and exchange

information with the Server Side, also contains further services with similar functionalities of

the service which can be used as backend systems.

The decision to decompose the client side into those two different components was made for two

reasons. First of all, these two components can represent the complexity of the GET Service, in

which we have two separated (also physically) subsystems. Moreover, the second reason is that the

two components can exemplify and separate two different functionalities, the data/status provision

and the management of the information (e.g., requesting information).

Finally, the least aggregated level of our reference architecture is presented in Figure 16.

27

Client Platform

Client Side

Process Client Information Source Backend System Client Interface

Status Provider

Figure 16: Client Side, aggregation level 2

Table 11: Reference Architecture - Major Client Side Components

Main Component Inner Component

Status Provider Process Client
Provides current information about the transport process from on-board
device. The client/user can receive updated instructions on a running
transport process from the Server Side via the Client Platform.

Information Source
Provides information from on-board sensors and devices. Publishes the
events and gives the current transport process status.

Client Platform Backend System
Is the existing applications/services (e.g., transport management
systems) that are used by the client/user to manage his requests.

Client Interface
Is the logic and resulting interfaces between the client/user with the
server side. Through Client Interface the client/user can request
information from the server side and ask questions. Moreover, in that
component the type of the application can be selected to be used.

 Server Side

The Server Side of the reference architecture has the main function of handling service executions. It

also receives, integrates and stores data from external sources. Data is processed to provide useful

28

information and services to the end users (Client side). Services that the system provides are also

monitored by the server.

The Server side for SIMPLI-CITY consists of a number of components as shown in Figure 17. The main

component of the server side is the Service Runtime Environment which is responsible for hosting

and controlling all deployed services. It also coordinates communication with the PMA. The server

side also covers data storage facilities and handles communication with external data sources. For

GET Service, the Extended GET Service Platform and Core GET Service Platform together form the

Server side. This is because both components play a fundamental role in service architecture and are

equally responsible for handling service executions.

Server Side

Figure 17: Server Side, aggregation level 0

A lower-level architecture design of the Server side is displayed in Figure 18. The Server side is

decomposed to comprise of the Data Platform, Logic Platform and Developer Web Console.

Server Side

Extended GET

platform

Core GET platform

Server Side

29

Server Side

Logic Platform Data Platform

Developer Console

Figure 18: Server Side, aggregation level 1

Logic Platform is concerned with arranging and structuring services before they can be fed to the

end user (applications). The Logic Platform also makes use of end user context to figure out what

kind of services or data/information could aid the user.

Data Platform collects data or events, processes them and stores them. Data is fed into the Data

Platform by external sources or sources within the system. Processing of data can occur in the form

of filtering, correlating, merging, summarizing and/or splitting. Once data has been processed it can

be passed on to other components or stored in the Data Platform.

Developer Console is a component which provides controlled access to data from the Data and Logic

Platforms for governance of the services. It includes the registration and monitoring of services. It is

a platform or marketplace where developers or service providers can publish the services they have

developed. It can thus be considered to be an evolving catalogue of information about the available

services. If the services will be used by end users through applications, such applications are also

available in the developer web console for download and installation.

The Data Platform and Logic Platform can again be decomposed into further subcomponents as

shown in Figure 19.

30

Server Side

Logic Platform Data Platform

Execution Engine Services

Dynamic Data Handling

Data Channel Data Storage

Data Processing

Developer Console

Service Registry Monitoring

Authorizer

Figure 19: Server Side, aggregation level 2

The Logic Platform consists of:

 Execution Engine is responsible for orchestrating and bundling services. Services are used by

end users through applications and/or user interfaces. Services can deliver data from various

sources to the end user. It can also be the case that such services are coupled to end user

applications.

 The Services component consists of services which are hosted and controlled by the server.

Services can range in number and will have different functions such as providing optimal

transportation routes between 2 points, displaying nearest free parking spaces or suggesting

alternative routes of transport when an unexpected event occurs.

 Dynamic Data Handling persists dynamic instance data. This assures that the process can

continue after a system restart. Moreover, it handles the data prefetching and media

streaming aspects. Finally, it uses context information in order to realize personalized

services for a particular user. Such services can range from asking the user if he wants

information about free parking spaces in a city as he approaches the city, providing

alternative route/transport plan to the user if he reports a highway blockade because of an

accident, to asking the user if he wants to download music in an area where there is free Wi-

Fi.

31

The Data Platform consists of:

 Data Channel basically integrates data coming from different sources, processes them

and/or publishes them. Data Channel deals with different kinds of data such as vehicle

sensor data, on-board data, user profile data, government data, data about certain events,

historical data about specific sensor sources, infrastructure data, etc.

 Data Storage offers persistent, scalable and efficient storage of data. Data can be of

different types - static, dynamic, aggregated, etc. Data can be fed from external data sources

or from applications within the system and can be stored for a fixed time frame.

 Data Processing filters data or events. It can also correlate, merge, summarize and split data

or events. Other components can subscribe to the data or events processed by Data

Processing.

 Authorizer is responsible for validating the user’s login credentials with the saved

information. If these two match an authorization token will be returned to the user. The

user can use other services through this authorization token. The Authorizer is also

responsible for registration of the user.

The Developer Console consists of:

 Service Registry: All services that will be offered have to be registered in the Service

Registry. Thus, the Service Registry acts as a service directory which is used to store

information about services and find services based on some search parameters.

 Monitoring component is responsible for overseeing services that the system should deliver.

It checks if the services are fulfilling their objectives, if they are responsive and respond

within the maximum response time and if any error messages are generated during the

execution of a service. Such error messages can be logged. Monitoring also generates

service execution statistics.

While analysing both architectures, we identified inconsistencies regarding the placement of

components which perform similar functions as Service Registry and Monitoring. In GET Service

architecture, the components – Service Registry and Log Manager are part of the Core GET Platform.

The Core GET Platform corresponds to the Data Platform. However, in SIMPLI-CITY the components

– Service Registry and Monitoring belong to the Developer Console. Developer Console is a

component which exists only in SIMPLI-CITY. Considering this inconsistency we decide to include the

components – Service Registry and Monitoring in the Developer Console of the reference

architecture. In Section 7.2.1, we explain how we deal with this inconsistency while projecting the

GET Service architecture to the reference architecture.

 External Sources

External Data Sources such as sensors and databases are responsible for absorbing information from

the external environment and providing them to the Server Side. There is a range of External Data

Sources and they are provided by external data suppliers. External Data Sources can provide

information related to, for e.g. traffic conditions on a certain highway, whether a certain bridge has

been opened after maintenance, how many vehicles are running within the speed limit on a certain

road, etc. In SIMPLI-CITY, External Data Sources comprise of personal data sources, sensors,

proprietary sensor database and static and historical data sources as shown in Figure 20 below. In

GET Service, the Infra Platform acts as an external data source.

32

External Data Sources

Figure 20: External Data Sources, aggregation level 0

External data sources can be classified into 2 types (Figure 21):

 General Data Sources: These can include sensors (such as traffic cameras, PIR sensors, etc.)

which collect environmental data, databases and data sources containing static, dynamic

and historical information.

 Personal Data Sources: These can include the Gmail calendar of the user and his accounts

on social media sites such as YouTube, Facebook, Twitter and Tumblr or client specific data

obtained from client/company database. The user/client has to authorize the system to

access his personal accounts.

General Data Sources Personal Data Sources

External Data Sources

Figure 21: External Data Sources, aggregation level 1

External Data Sources

External Data Sources

Infra platform

33

 Developer Support

Developer Support is a platform which is used by the system to provide help and support to the

developers of services and application in the form of tools, guidelines and APIs. A step-by-step guide

to service/app development tips on making the service/app compliant and ensuring a holistic feel for

best possible user experience are some of the functions of Developer Support. Developer Support

does not exist in GET Service. In SIMPLI-CITY, it exists in the form show below in Figure 22.

Developer Support

Figure 22: Developer Support, aggregation level 0

Developer Support

34

 Projections – Use Cases

In this chapter, we present projections of GET Service and SIMPLI-CITY services onto the developed

reference architecture. In Section 7.1, we present the client side, in Section 7.2 we present the

server side.

 Client Side

In this section the projections of GET Service and SIMPLI-CITY services for the Client Side will be

presented. As it was mentioned in Section 6.1 and finally visualized in Figure 16, the Client Side is

composed of the Status Provider (Process Client and Information Source) and the Client Platform

(Backend System and Client Platform). Sections 7.1.1 and 7.1.2 are two use cases of the reference

architecture.

7.1.1 Client Side – Get Service

The reference architecture and the architecture of the GET service project for the client side, are in

the same level of aggregation and abstraction so we will not go further in the analysis of that

subsystem. In Figure 23 it is observed that the reference architecture can be applied unchanged for

the GET service project. More specifically, the components Process Client and the Backend System

have similar functionalities with those from the reference architecture (See Table 11). Furthermore,

the Information Source represents the Event Source while the Client Interface the Planner, as it was

presented in the Figure 1.

To go more in detail, the Event Source and Information Source share similar functionalities. The

Event Source publishes events to the Core GET Service platform and provides on-board data. The

Event Source translates information into events before publishing them. Furthermore, the Planner

can be represented by the Client Interface.

Client Platform
(Client Platform)

Client Side

Process Client
(Process Client)

Information Source
(Event Source)

Backend System
(Backend System)

Client Interface
(Planner)

Status Provider
(Client Device)

Figure 23: Client Side – GET Service projection

35

7.1.2 Client Side – SIMPLI-CITY

In this section, the reference architecture will be used to build and present the Client Side of SIMPLI-

CITY service. The architecture of SIMPLI-CITY has more levels of aggregation, so starting from level 2

of the reference architecture we will build the SIMPLI-CITY Client Side step by step.

In Figure 24 it is observed that the reference architecture can be applied with some small changes

for the SIMPLI-CITY service project. More specifically, the components Process Client and the

Backend System are not presented in SIMPLI-CITY architecture though can be applicable (See Table

11). Furthermore, the Information Source represents the Car-Sensors while the Client Interface

represents the Personal Mobility Assistant (PMA) and it will contain the SIMPLI-CITY App and the

Navigation App as it will be discussed further.

More specifically, the Car-Sensors and the Information Source share similar functionalities. The Car-

Sensors provide information from on-board devices to the Client Interface which are then

transferred to the Server Side. Furthermore, the Personal Mobility Assistant (PMA) which includes

the SIMPLI-CITY App and the Navigation App can be represented by the Client Interface. Like the

Client Interface (see definition in Table 11: Reference Architecture - Major Client Side Components),

the PMA will be used by the end users via their mobile device to access all SIMPLI-CITY functionality

by making use of apps.

Client Platform
(Client Platform)

Client Side

Process Client Information Source
(Car - Sensors)

Backend System Client Interface
(Personal Mobility

Assistant)

Status Provider
(Client Device)

Figure 24: Client Side – SIMPLI-CITY projection

As it was mentioned before, the architecture of SIMPLI-CITY has more aggregation levels than the

reference architecture so a further analysis of the use case has to be presented. In the next

aggregation level (level 4) as it is presented in Figure 25 the Client Interface - Personal Mobility

Assistant (PMA) is decomposed into two components, the SIMPLI-CITY App and the Navigation App.

These two components are sharing the functionalities of the Client Interface as it was mentioned

above and can be easily determined by looking at the descriptions in Table 7 and Table 11.

36

Status Provider
(Client Device)

Client Platform
(Client Platform)

Client Side

Process Client Information Source
(Car - Sensors)

Backend System
Client Interface

(Personal Mobility
Assistant)

SIMPLI-CITY
App

Navigation
App

Figure 25: Client Side - SIMPLI-CITY projection - Aggregation level 4

Furthermore, the Client Platform and the SIMPLI-CITY app can be more decomposed into other

components as it was presented in Figure 7. These components combined provide the functionality

of the SIMPLI-CITY app, so the two next figures (Figure 26 and Figure 27) present a more

technical/detailed perception of the Client Side architecture but do not change anything about the

use of the Client Side from the reference architecture. As a result in Figure 26, aggregation level 5 is

presented:

Client Platform
(Client Platform)

Client Side

Process Client
Information Source

(Car - Sensors) Backend System Client Interface (PMA)

SIMPLI-CITY App

Navigation App

Sensor Abstraction

Dialogue Interface &
Multi-modal UI

Application Runtime
Enviroment

Data Prefetching

Apps Store

Status Provider
(Client Device)

Figure 26: Client Side - SIMPLI-CITY projection - Aggregation level 5

In the following figure (Figure 27) aggregation level 6 of the Client Side component of the SIMPLI-

CITY is presented. This level of aggregation is the last level that we can reach as it is the same level

37

that it is provided by the latest SIMPLI-CITY project documents. In that figure all the components of

the Vehicle & PMA component (See Section 4.2.1) are mentioned.

Client Platform
(Client Platform)

Client Side

Process Client Information Source
(Car - Sensors) Backend System Client Interface (PMA)

SIMPLI-CITY App

Navigation App

Sensor Abstraction

Dialogue Interface &
Multi-modal UI

Application Runtime
Enviroment

Data Prefetching

Apps Store

Apps Local Storage

Status Provider
(Client Device)

Figure 27: Client Side - SIMPLI-CITY projection - Aggregation level 6

 Server Side

7.2.1 Server Side - GET Service

Projecting the GET Service architecture onto the reference architecture, two components of GET

Service, the Extended GET Service Platform and the Core GET Service Platform can be considered to

comprise the Server side. Both components play a fundamental role in service architecture and are

equally responsible for handling service execution.

Server Side
(Extended GET Platform
and Core GET Platform)

Figure 28: Server Side - GET Service projection

Moving to a lower level of projection, the Extended GET Service Platform can be seen as the Logic

Platform while the Core GET Service Platform completely covers the Data Platform and partly covers

38

the Developer Console as explained in Section 6.2. Graphical representation of it can be seen in

Figure 29.

The definition of Extended GET Service Platform (Section 3.2.5) fully corresponds to the more

general definition of Logic platform from the reference architecture (Section 6.2). This is because like

the Logic Platform, the Extended GET Service Platform is responsible for final data processing, logic

and execution of services for the end user.

As mentioned in Section 3.2.4, the Core GET Service platform correlates and aggregates external

events from multiple Infra and Client platforms. It also contains an Information warehouse which

stores static (schedules, master data) and dynamic (capacity) data. The aggregated events are

published or can be retrieved by Client platforms or the Extended GET Service Platform. This

definition complies with the definition of Data Platform whose main function is to collect data or

events, process them and store them (Section 3.2.5). The Core GET Service Platform also includes

some elements which belong to Developer Console of the reference architecture. These elements

and the reasons why they belong to Developer Console are described later when we discuss a more

aggregated level of architecture.

Server Side

Logic Platform Data Platform

Developer Console

(Extended GET Platform) (Core GET Platform)

Figure 29: Server Side - GET Service projection - Aggregation level 2

As seen in Figure 30, three components of Extended GET Service Platform, which are the

Orchestration Engine, the Proposer and the Process Store, correspond to Execution Engine, Services

and Process Store of Logic Platform respectively.

Based on the definition of Orchestration Engine, it is used to orchestrate tasks for a running process.

External events can influence the process path and result in a new/updated transport plan. Dynamic

instance data is persisted for each running process by means of Process Store. After that the

39

Proposer proposes a (recalculated) transport plan to the Client platform/end user. Since the

functions of the Orchestration Engine, Process Store and Proposer are contained by the Execution

Engine, Dynamic Data Handling and Services of the Reference Architecture respectively, they can be

considered to be particular cases of these components of the reference architecture.

Process Development Environment is an environment in which the user of GET Service can draw the

process model. This process model then goes to the Orchestration Engine where it is read and

executed. The Process Development Environment is not included in the reference architecture

because it is very specific for GET Service. Thus, it only appears in the projection for GET Service.

Further we project the components of Core GET Service Platform to reference architecture.

Subscription store, Event store and Information store can be seen as one component of reference

architecture which is Data Storage. This is because the main function of Data Storage is to aggregate

and store different types of data that can be classified and organized according to functional

requirements and different criteria. The Event Channel corresponds to the component Data Channel

which is more broadly defined. As it aims to receive and normalize events from Event sources

through subscribe interfaces, the Event Channel represents itself as a particular case of Data

Channel. Data Processing, whose main function is to filter data and/or events, correlate, merge,

summarize and split them, will be covered by Event Correlator and Event Aggregator when

considering Core GET Service Platform. Finally, Community Passport manager is a component which

aims to provide service interfaces for registration and authentication to all GET Service components.

It also responsible for a centralized passport store.

The difference in GET Service architecture and reference architecture occurs when we project

Service Registry and Log Manager to reference architecture as discussed in Section 6.2. The main

functions of these two components fall under the functions of Service Registry and Monitoring of

Developer Console respectively. The decision to build the third block such as Developer Console was

taken after analysing the architectures of both GET Service and SIMPLI-CITY services; it was decided

to include it as an additional component that comprises specific functionalities as defined in Section

6.4.

40

Server Side

Logic Platform Data Platform

Execution Engine Services

Dynamic Data Handling

Data Channel Data Storage

Data Processing

Developer Console

Service Registry

Monitoring

(Extended GET Platform) (Core GET Platform)

 (Orchestration Engine)
(Proposer)

(Process Store)

(Event Channel) (Subscription Store,
Event Store,
Information Store)

(Event Correlator,
Event Aggregator)

(Service Registry)

(Log Manager)

(Process Development
Environment)

Authorizer
(Community Passport

Manager)

Figure 30: Server Side - GET Service projection - Aggregation level 3

7.2.2 Server Side - Simplicity

Considering SIMPLI-CITY architecture and projecting it to the reference architecture, SIMPLI-CITY

Server Side fully corresponds to Server Side component of the reference architecture (Figure 31).

Server Side

SIMPLI-CITY Server Side

Figure 31: Server Side – SIMPLI-CITY projection

41

The lower level projection of the SIMPLI-CITY Server Side to reference architecture is depicted in

Figure 32

The Service Runtime Environment is the fundamental server-side backend component in SIMPLI-

CITY. It provides a deployment and execution framework for services, which offer the business logic

for end user apps in SIMPLI-CITY, and provides additional features that are required in conjunction

with the execution of services. Thus, it can be seen as the Logic Platform of the reference

architecture.

Server Side

Logic Platform Data Platform

Developer Console

(Service Runtime
Environment)

(4 data components (see
level below))

(Developer Web Consoles)

(SIMPLI-CITY Server Side)

Figure 32: Server Side – SIMPLI-CITY projection - Aggregation level 2

The functions of the Developer Web Consoles in SIMPLI-CITY coincide with those of Developer

Console in the reference architecture. This is because the Developer Web Consoles makes it easier

for developers to access information from SIMPLI-CITY including the monitoring of services as well as

submission of bundles to the marketplace.

There are a number of components in the SIMPLI-CITY Server Side that function together and

coincide with the Data Platform component of the reference architecture. Each of these

components will be described in the discussion of the next level of architecture which is depicted in

Figure 33.

After analysing the structure of Service Runtime Environment we establish that Deployed Services

corresponds to Execution Engine of the reference architecture. This is because like Execution Engine,

the Deployed Services is responsible for logical grouping of services deployed in service runtime

environment.

42

In the reference architecture, the Services component consists of services which are hosted and

controlled by the server. Services can range in number and will have different functions. In SIMPLI-

CITY, the Services component structures and bundles potential services that could deliver data from

various sources to road user information systems. Services will provide backend logic which may be

consumed by apps. Thus, the Services component in SIMPLI-CITY is similar to Services component in

the reference architecture.

Two components of SIMPLY-CITY, Context-based Service Personalization and Data Prefetching Logic,

can be considered similar to Dynamic Data Handling of the reference architecture. This is because

the main function of the Dynamic Data Handling is to persist dynamic instance data. It also makes

use of context specific data to come up with options or services which could prove helpful to the

user. In a similar manner, Context-based Service Personalization makes use of context information in

order to realize personalized services for a particular user. Based on the context, the Data

Prefetching component will allow media prefetching and service prefetching. Service prefetching will

invoke services which the user is likely to use in the next time.

The Data Platform of the reference architecture is decomposed into four components - Data

Channel, Data Storage, Data Processing and Authorizer. User-Centric & Open Data Access and Sensor

Abstraction & Interoperability Interfaces of SIMPLI-CITY can be mapped to Data Channel. Both

components collect different types of data from the Client Side and/or External Data Sources and

feed this data to the Data Processing component. Data Processing component is responsible for

semantic description and processing in the form of filtering, correlation, merging, fusion,

summarization and splitting.

The cloud based information of SIMPLI-CITY can be compared to Data Storage of reference

architecture. Like Data Storage, the cloud based infrastructure will act as a service which is dedicated

into managing different types of data in a persistent, scalable and efficient storage. The cloud based

storage will be fed with information from apps (e.g. to store data from users) or from external data

sources such as sensors or user centric data.

Authorizer is not presented as an independent component in SIMPLI-CITY architecture. However,

there is an Authorization Service which has similar functions as that of Authorizer.

In SIMPLI-CITY, there is a Developer Web Console which consists of 4 components - Service Registry,

Monitoring, Apps Store and Service Marketplace. The Service Registry and Monitoring can be

mapped to Service Registry and Monitoring components of reference architecture respectively while

Apps Store and Service Marketplace are specific for SIMPLI-CITY. Thus, Apps Store and Service

Marketplace are not in reference architecture but only appear in the projection.

43

Server Side

Logic Platform Data Platform

Execution Engine Services

Dynamic Data Handling

Data Channel Data Storage

Data Processing

Developer Console

Service Registry

Monitoring

(Service Runtime Environment)

(Deployed Services)
(Services)

(Context-based Service
Personalization,

Data Prefetching)

(User-Centric & Open Data Access,
Sensor Abstraction and

Interoperability Interfaces)

(Cloud-Based Information
Infrastructure)

(Data Processing)

(Service Registry)

(Monitoring)

(Apps Store)

(Service Market Place)

Authorizer

Figure 33: Server Side – SIMPLI-CITY projection - Aggregation level 3

 External Sources

7.3.1 External Sources – GET Service

The Infra Platform serves as the External Data Sources for GET Service. This is because the Infra

Platform distributes information on traffic, tides, bridges and locks. The Core GET Service platform

can subscribe to events that contain infrastructure status information.

44

External Data Sources (Infra Platform)

General Data
Sources (Event

Source)

Personal Data
Sources

Figure 34: External Sources – GET Service projection

The Infra Platform contains the Event Source. As mentioned in Section 3.2.3, the Event Source

translates infrastructure data (static/dynamic) into events and publishes the events to the Core GET

Service platform. It can thus be considered to be similar to General Data Sources. There are no

Personal Data Sources in GET Service.

7.3.2 External Sources - Simplicity

In Simplicity there is a component known as External Data Sources. This component consists of

Personal Data Sources, sensors, proprietary sensor database, static data source and historical data

source. The Gmail calendar of the user and his accounts on social media like Facebook and YouTube

are Personal Data Sources. Sensors, proprietary sensor database, static data source and historical

data source are General Data Sources as shown in Figure 35.

External Data
Sources

General Data Sources

Personal Data Sources

Sensors
Proprietary Sensor Database

Static
Datasource

Historical
Datasource

Gmail Calender Facebook

YouTube

Figure 35: External Sources – SIMPLI-CITY projection

45

 Developer Support

7.4.1 Developer Support - GET Service

There is no such component in GET Service so there is no projection for GET Service.

7.4.2 Developer Support - Simplicity

In Simplicity there is a component known as Developer Support. Developer Support consists of App

Bundle, Service Bundle, App Design Studio, Service Development API and Materials (like Best

Practices). The App Bundle is linked to the App Design Studio and the Service Bundle is linked to the

Service Development API.

The Application Design Studio offers an appropriate step-by-step procedure to app development,

assisting the app developer during the entire development process. It delivers everything that a

developer needs to prepare an app for the usage within SIMPLI-CITY.

The Service Development API is a component aimed at third party developers that allows them to

create and configure their own services on the SIMPLI-CITY platform. These services will be later

used within end-user applications and will be responsible for the provision of the external data

needed during their execution.

Developer Support

App Bundle App Design Studio

Service Bundle Service Development
API

Materials

 Figure 36: Developer Support – SIMPLI-CITY projection

46

 Related work

There are several related efforts in which a reference architecture for Intelligent Transportation

Systems (ITS) is developed. Most of these efforts are initiated by industry. In the discussion, we

adopt the following terminology about reference architectures (Angelov, Grefen, & Greefhorst,

2012). A classical reference architecture can be implemented using current, tested technologies

while a preliminary reference architecture depends on technologies that have been partially

developed but need further development to become useful in practical systems. Next, the goal of a

reference architecture can be standardization among multiple organizations, aiming at system

interoperability, or facilitation of the design of concrete architectures, aiming to provide guidelines

for the design of concrete systems.

In the Netherlands, Dutch Integrated Testsite Cooperative Mobility (DITCM) has developed a

reference architecture for ITS applications in the Netherlands (Sambeek, et al., 2015). The DITCM

reference architecture is based on existing ITS research projects in the Netherlands. It is descriptive,

preliminary - for instance technologies for realizing cooperative driving are still under development -

and supports both standardization and facilitation. The standardization goal is important to enable

interoperability between ITS solutions developed in the Netherlands. The facilitation goal is

important to support individual system development projects in their design efforts. The reference

architecture covers both roadside and traffic management systems, intelligent vehicles, as well as

end user applications. The DITCM reference architecture consists of a system architecture and a

description of the business aspects of an ecosystem with stakeholders from public and private

parties in the Netherlands.

The European Telecommunication Standards Institute (ETSI) has standardized an architecture for ITS

stations (ETSI, 2010). An ITS station is a collaborative functional component in an ITS architecture.

The ETSI reference architecture consists of applications, facilities, communication, interfaces,

security and management entities. Not all parts have to be present in an ITS Station. Examples of ITS

stations are Vehicle ITS, Roadside ITS, Central ITS and Personal ITS. The ETSI ITS architecture is a

classical standardization architecture.

The US Department of Transportation leads a project to develop a standardization reference

architecture for connected vehicles and their environment, also taking into account roadside

infrastructure (ITERIS, 2015). The architecture considers multiple viewpoints: enterprise, functional,

physical and communications. The aim of the project is to define a classical reference architecture,

though some technologies are still preliminary.

From the academic side, a recent initiative discusses a preliminary reference architecture for an ICT-

based intelligent infrastructure based on a collaborative network of ITS stakeholder (Osório,

Afsarmanesh, & Camarinha-Matos, 2010). The reference architecture has two common layers,

shared among the collaborating partners. The first layer is a collaboration-oriented road mobility

infrastructure layer, which supports a network of stakeholders that collaborate to offer services for

users. Next, an intelligent road mobility infrastructure layer supports communication between

vehicles and the first layer. Both layers map to the server layer of the reference architecture

proposed in this report. The architecture supports facilitation.

47

 Conclusion

The goal of this work has been to design a reference architecture for mobility-related services (both

freight and travellers) by analysing the architectures developed in two European projects - GET

Service and SIMPLI-CITY. The reference architecture can be used as a blueprint that facilitates the

development of new mobility-related services in the future. After an in-depth analysis of the GET

Service and SIMPLI-CITY architectures, the similarities and differences between the architectures of

the two projects were considered. Keeping these in mind we propose a design for a reference

architecture (an overview is presented in Appendix A) which is flexible and clearly defined.

The proposed reference architecture has been further evaluated by investigating its usage in the

context of the re-development of two architectures. The two architectures used to evaluate the

reference architecture were the architecture of GET Service and SIMPLI-CITY which can be seen as

use cases/projections. Using the reference architecture as a pattern, we have re-built the existing

architectures of GET Service and SIMPLI-CITY. This shows the usability of the reference architecture

and shows that it can be beneficial for developers who want to design architectures for mobility-

related services.

The proposed reference architecture is approached in a mostly intuitive way but with a clearly

structured background. We therefore believe that this work will contribute to the better

understanding of the domain of reference architectures and to the design of more successful

architectures for mobility-related services.

Aknowledgments

We thank Stefan Schulte of Vienna University of Technology and Paul Saraber of Portbase B.V.,

Rotterdam for their support during the execution of the project leading to this report.

48

 Bibliography

Abels, D. S. (2013). WP3 - Architecture, Functional & Technical Specification, Security & Privacy

Concet, Integration. Simpli-City.

Angelov, S., Grefen, P., & Greefhorst, D. (2012). A Framework for Analysis and Design of Software

Reference Architectures. Information and Software Technology, 54(4), 417-431.

Arne-Jorgen Berre, et al. (March 24, 2006). Component and Model-based development Methodology.

SINTEF ICT.

ETSI. (2010). Intelligent Transport Systems (ITS): Communications Architecture. ETSI.

Grefen, P. (Spring 2014). Business Information System Architecture. Eindhoven.

Grefen, P., & Vries, R. R. (1998). A reference architecture for workflow management systems. Data &

Knowledge Engineering, 31-57.

ITERIS. (2015). Connected Vehicle Reference Implementation Architecture. Retrieved from Connected

Vehicle Reference Implementation Architecture: http://www.iteris.com/cvria/

Kruchten, P. (2000). The rational Unified Process: An Introduction, 2nd Edition. Addison-Wesley.

Kruchter, P. (1995). Architectural Blueprints - The "4+1" View Model of Software Achitecture. IEEE

Software 12 (6), 42-50.

Osório, A., Afsarmanesh, H., & Camarinha-Matos, L. (2010). Towards a Reference Architecture for a

Collaborative Intelligent Transport System Infrastructure. PRO-VE (pp. 469-477). Springer.

Reed, P. (2002, September 15). Reference Architecture: The best of best practices. Retrieved from

developerWorks: http://www.ibm.com/developerworks/rational/library/2774.html

Sambeek, M., Ophelders, F., Bijlsma, T., Kluit, B. v., Turetken, O., Eshuis, R., . . . Grefen, P. (2015).

Towards an Architecture for Cooperative ITS Applications in the Netherlands.

Saraber, P. (November 22, 2013). Standardized Interface Definitions (Deliverable 2.2.2). GET Service.

Treitl, Stefan, et al. (May 31, 2013). Requirements analysis (Deliverable D1.2). GET service.

Velde, M. v., Saraber, P., Grefen, P., & Ernst, A. C. (2013). GET Architecure Definition (Deliverale

D2.2.1). GET Service.

Wikipedia. (2014, June 9). Reference architecture. Retrieved from

http://en.wikipedia.org/wiki/Reference_architecture#cite_note-3

49

 Appendices

50

Appendix A

Figure 37: Reference Architecture

51

Appendix B

Figure 38: Subsystem Components of the GET Service architecture

52

Appendix C

Figure 39: Subsystem Components of the SIMPLI-CITY architecture

	Voorblad WP 477
	Beta_wp477
	477

