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Abstract

We study the problem of scheduling freight transportation in a syn-
chromodal network considering stochastic freight arrivals. In a synchro-
modal network, freights can be transported using any mode and any route
as long as they arrive to their destination within their time-window. Fur-
thermore, transportation plans can change at any decision moment given
the actual circumstances. Performance is measured over the entire net-
work and over time. We model this problem as a Markov Decision Process
and propose a heuristic solution based on Approximate Dynamic Pro-
gramming (ADP). Due to the multi-period nature of the problem, the
one-step look-ahead perspective of traditional ADP designs can make the
heuristic flounder and end in a local-optimum. To tackle this, we study
the inclusion of Bayesian exploration using the Value of Perfect Informa-
tion (VPI). In a series of numerical experiments, we show how VPI sig-
nificantly improves a traditional ADP algorithm. Furthermore, we show
how our proposed ADP-VPI combination achieves more than 20% gains
over the profit achieved by common practice heuristics. Finally, we dis-
cuss our experience with merging VPI into ADP and elaborate on further
research directions in the anticipatory scheduling of freight in a synchro-
modal transportation network.

Keywords: synchromodal transportation, anticipatory scheduling, ap-
proximate dynamic programming.

1 Introduction

In recent years, the interest of Logistic Service Providers (LSPs) in intermodal
freight transportation has increased due to its potential savings in cost [16]
and emissions [6] when compared to road transportation. However, economi-
cal and environmental benefits are not alone the precursors of a change from
road to intermodal transportation. The organization and synchronization of
the various transportation services in an intermodal network can further ease
or impede this change. Increasingly, LSPs are opting for cooperation and inte-
gration approaches among different processes for planning and controlling the
transportation of freight in an intermodal network [35]. In this paper, we focus
on one of those approaches: synchromodal transportation.

Synchromodal transportation is intermodal transportation where the LSPs
employ the available services synchronously, to bring freights to their destination
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at agreed conditions such as time, costs, emissions, etc. [30]. In synchromodal
transportation, any service (transportation mode with specific attributes such
as schedule, duration, capacity, cost, etc.) and any transfer (change from one
service to another in a terminal) can be used for any freight [30]. This increased
flexibility allows LSPs to select, or to change, the next part of a freight’s route
as late as possible, with the possibility of including the latest information about
the transportation network. As a result, there are more consolidation options
throughout the network and throughout time than in traditional intermodal
transportation. However, identifying which of these consolidation opportunities
are good is more challenging than in intermodal transportation.

1 6

BargeTrain TerminalTruck Origin Destination

0

2

12

10

11

4 9

3 8

5 7

Figure 1: Example of an intermodal network with seven terminals

To exemplify the consolidation opportunities and their complexity in syn-
chromodal transportation, consider a freight that has to be transported from
1 to 10 in Figure 1. This freight can be transported using 24 combinations of
services across the seven terminals. In traditional intermodal transportation,
freights usually have a pre-defined mode. If this would be the case for our
freight, say barge only, then only 3 out of the 24 combinations would be fea-
sible. Moreover, in intermodal transportation, freights usually require a fixed
plan at the moment they are picked up at their origin. If this would be the case
for our freight, say using the barge from 4 to 6 and subsequently from 6 to 8, a
last-minute change at 6 would not be possible. This change may be desirable,
for instance, if there is an unforeseen delay between 6 and 8, or when the train
from 6 to 7 suddenly has cheaper space for transportation upon arrival at 6.
Naturally, estimating whether a delay or cheaper space will occur at a future
transfer in the network is challenging. However, looking ahead for these better
consolidation opportunities can pay-off.

In this paper, we investigate scheduling methods that look ahead for con-
solidation opportunities in synchromodal transportation. The objective of our
investigation is threefold: (i) to model the scheduling of freight in a synchro-
modal transportation network as a stochastic finite horizon optimization prob-
lem, (ii) to design a solution approach that handles the uncertainty and the time
relations among parameters and variables in synchromodal scheduling, and (iii)
to explore the use of our approach under various network configurations and
freight demand patterns. The contribution of our work, following our objective,
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is threefold. First, we model the scheduling problem using a Markov Decision
Process (MDP) model, which maximizes the expected reward over time. Sec-
ond, we design a heuristic solution algorithm for the MDP model using the
framework of Approximate Dynamic Programming (ADP) and incorporating
Bayesian learning, using the concept Value of Perfect Information (VPI), to
cope with the exploration versus exploitation tradeoff in ADP. Our algorithm
iteratively estimates the impact of the scheduling options in immediate and
posterior performance, and constructs a solution policy that anticipates on the
stochastic freight demand and the network-wise performance over time. Third,
we characterize how traditional ADP designs can make the algorithm flounder
and end in a local-optimum and we analyze how VPI elements can help the
algorithm to overcome those problems. More specifically, we describe, test, and
show the benefits of various modifications to the VPI concept in ADP.

The remainder of this paper is organized as follows. We begin by describing
our problem, its characteristics and its challenges in Section 2. In Section 3,
we examine relevant literature about scheduling synchromodal transportation.
We formulate an MDP model for our problem in Section 4. Subsequently, we
present our approach to solve the model using ADP and VPI in Section 5. In
Section 6, we test our approach under different network settings and discuss
the results. We finalize in Section 7 with our main conclusions and insights for
further research.

2 Problem Description

We study the problem of scheduling freight in a synchromodal transportation
network with the objective of maximizing performance over a multi-period hori-
zon. In this problem, there are no restrictions on the services or transfers used to
bring a freight to its destination and there are no fixed plans for freights. How-
ever, the destination, release-day and due-day of freights are fixed and known
upon arrival of the freight. The number of freights that will arrive each period
of the horizon and their characteristics are uncertain, but there is probabilistic
information about their arrival (which may vary between periods of the hori-
zon). On the supply side, we consider that all available services and transfers
are fixed, but not necessarily the same, for each period of the horizon. We
consider that a single network-wise LSP decides over all services and transfers
even if they are not its own. We consider that the duration, cost, and revenue
of any service may be spread over multiple periods in the horizon.

In general, the complexity of scheduling freight in synchromodal transporta-
tion lies in the relation between the possible decisions, and their effect on the
performance over time. At any given period of the horizon (which we refer to as
day in the remainder of this paper), there are three possibilities for scheduling
a freight, independent of where it is located. The scheduler can either (i) trans-
port a freight to its destination today, (ii) transport it to an intermodal terminal
using a service available today, or (iii) postpone its transportation to another
day. Part of the impact of these scheduling options on the performance can be
measured immediately (e.g., transportation costs, revenue, holding costs, CO2

emissions, capacity utilization). However, another part of their impact occurs
on a posterior moment. For example, transporting a freight to its destination
today reduces the number of freights to be considered for consolidation in the
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future; transporting a freight to an intermodal terminal defines the future ser-
vices that can be used for transporting it; and postponing a freight may reduce
its feasible transportation options due to its time-window, or may saturate the
network. The future impact of each scheduling option is dependent on posterior
decisions, as well as the freights that will arrive in the future and their charac-
teristics (which are uncertain). It is therefore essential to estimate the impact
of current scheduling decisions on the future performance, and to anticipate on
it.

Before formulating a model and solution approach, we study the relevant
literature about the characteristics and challenges of scheduling decisions in
synchromodal transportation in the following section.

3 Literature Review

In this section, we review literature related to scheduling freight in synchro-
modal transportation. First, we perform a brief literature review specifically
on scheduling problems in synchromodal transportation. Since this literature
is scarce, we subsequently focus our review on scheduling problems arising in
dynamic and flexible inter/multi-modal transportation. These problems can
conceptually be seen as precursors for synchromodal transportation. We briefly
review the problem characteristics and proposed solutions of relevant intermodal
transportation studies, and identify their shortcomings with respect to synchro-
modality. For an in-depth review of the scheduling problems arising in in-
termodal transportation, we refer the reader to [5], [35], and [10]. Third, we
focus on literature using Approximate Dynamic Programming (ADP), a suit-
able approach for solving large-scale transportation problems with stochastic
freight arrivals, and inspect its necessary changes when applied to our problem.
We finalize this section by stating our contribution to the literature related to
scheduling synchromodal and intermodal transportation, as well as using ADP
for transportation problems.

Scheduling problems in synchromodality deal with flexibility in mode choice
and with decisions based on real-time information [35]. These characteris-
tics require that there is coordination between multiple network actors and
an overview of transportation supply and freight demand in the network for its
scheduling [10], and that a balance between demand and supply is made every
time new information becomes known [30]. Most studies specifically about syn-
chromodal scheduling, focus on the flexibility aspect while somewhat ignoring
the real-time information aspect. For example, Behdani et al. [2] and Riessen
et al. [31] determine the schedules of modes and the assignment of containers to
the various modes assuming a deterministic demand without incorporating the
effect of real-time information and previous decisions in their models. In other
words, they take a reactive approach and assume that re-planning can be done by
solving the model again once the new information becomes known. Studies that
explicitly consider re-planning (e.g., due to new demand or disruptions), such
as Zhang and Pel [45] and [22], have taken a more proactive approach towards
re-planning but not explicitly anticipate on future real-time information. How-
ever, the studies that consider re-planning in intermodal transportation have
shown that significant gains can be achieved with more proactive approaches.

Scheduling problems in intermodal transportation that are closely related
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to synchromodal transportation can be categorized into two groups: (i) those
that include dynamic and flexible assignment of freights to services and (ii)
those that include anticipatory decisions on information that becomes known
over time. A combination of these two constitutes scheduling synchromodal
transportation. In the first group, problems fall under the intermodal scheduling
family of Dynamic Service Network Design (DSND). In DSND methods, freights
are assigned to transportation services and modes in a network where least one
feature varies over time [35]. Graph theory and (integer) linear programming
methods are commonly used to model DSND problems due to their time-space
nature. However, these methods have limitations for large and complex time-
evolving problems [43], which are common to synchromodality [30]. To tackle
these limitations, decomposition algorithms [11], receding horizons [17], and
model predictive control [23], have been combined with DSND models in the
literature. One disadvantage of combining these constructs with DSND models
is that the relation between new stochastic information and the decisions is
harder to include. This may explain why the majority of DSND studies considers
deterministic demand only [35] although the need to incorporate uncertainty in
demand has been recognized [18].

In the second group, most studies have been about extending DSND models
with stochastic demand to anticipate on new information that becomes known
over time. For example, [18] and [7] have used scenario generation methods
to create schedules that are robust to the various demand realizations (i.e.,
new freights arriving). However, the resulting schedule does not adapt to new
information dynamically as other methods do. Adapting dynamically means
new schedules depend on the information that became know. Methods such
as two-stage stochastic programming [19, 1] and ADP [8, 24], which include
re-planning with the new information that became known, have been shown to
have benefits over static decisions. However, when considering synchromodal
scheduling, some limitations arise. In two-stage stochastic programming, ex-
plicit probabilistic formulations and computational complexity limit the size of
problem instances that can be solved. In ADP, the design and validation of the
approximation algorithm is problem specific. Nevertheless, ADP reduces the
computational complexity while providing a close-to-optimal solution and has
been shown to work well in the scheduling of freights in intermodal transporta-
tion [25, 26] and single-mode transportation problems [34, 12, 39, 40]. Although
ADP seems to be an ideal candidate to fill the gap in the literature about an-
ticipatory scheduling of freight in synchromodal transportation, our problem
requires more than its mere application.

In transportation problems such as ours, the complex, time-revealing, and
stochastic nature of the network makes the application of ADP difficult [29].
To begin with, the multi-period traveling times are a known issue to traditional
ADP algorithms in transportation problems [13]. Furthermore, when trans-
portation services have multiple attributes (in our case, different capacities,
durations, costs, revenues, beginning and ending locations), the design of the
Value Function Approximation (VFA) and its learning-phase play a crucial role
in ADP [34]. In the design of the VFA, additional methods to the common
post-decision state in ADP, such as aggregation of post-decision attributes [4]
and sampling [14], may be necessary. In the learning phase of the VFA, a funda-
mental challenge that arises is the exploration versus exploitation problem [27].
The problem consists on whether to let ADP make the best decision according
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to its current estimate of the VFA (exploit) or let it make a different decision
that may lead to an improvement of the VFA (explore).

The exploration versus exploitation dilemma has been widely studied in
the reinforcement learning [37] and optimal learning communities [28]. The
dilemma arises when a machine/agent tries to maximize its rewards by in-
teracting with its environment through a series of actions. A widely studied
optimization problem facing this dilemma is the so-called multi-armed bandit
problem [21, 42]. Two approaches that have been applied to this problem, and
the exploration versus exploitation dilemma, are evolutionary algorithms [41]
and Bayesian learning methods [21, 36]. Bayesian learning methods usually
rely on the concept of value of information [9], which appears under different
names, among which expected improvement and knowledge gradient [33]. Al-
though many real-life problems can be modeled as mutli-armed bandit problems
or solved using evolutionary algorithms and Bayesian learning methods, there
are several difficulties to translate these approaches to a transportation prob-
lem and to an ADP method as a solution approach. Among those difficulties we
find the so-called “physical” state where decisions depend on the state of our
physical resources, such as containers and barges, and the correlation of values
of alternative decisions (e.g., economies of scale in adding more containers to
a barge) [33]. These difficulties are incorporated by [33] assuming an infinite
horizon, whereas our problem deals with a finite horizon. To the best of our
knowledge, the application of Bayesian learning techniques within finite hori-
zon ADP has not been studied before. Nevertheless, ADP can benefit from a
translation of the knowledge on Bayesian learning to deal with the exploration
versus exploitation dilemma [27, 33].

Overall, we observed in the literature that DSND models and methods pro-
vide a useful base for synchromodal scheduling with some additional work. We
believe that our contribution to DSND methods and synchromodal scheduling
has three focus points. First, we design an MDP model and solution method
based on ADP that incorporates stochastic freight demand characteristics and
complex time and performance evolution of the transportation network. Sec-
ond, we explore the use of new exploration strategies for ADP based on Bayesian
exploration, and provide design and validation insights. Third, we compare our
best ADP design against a benchmark heuristic, under different problem char-
acteristics, and specify further research directions based on the insights.

4 Markov Decision Process Model

In this section, we formulate the problem of scheduling freights in synchromodal
transportation using a Markov Decision Process (MDP) model. An MDP model
analyzes the performance over time as been partly under the control of the
decision maker and partly random. We begin by introducing the notation and all
required input parameters. Subsequently, we formulate the elements of the MDP
model: stages, states, decisions, transitions, and objective function. Finally, we
examine the relations between the various elements of our model and identify
challenges that these relations bring for heuristic approaches to solve the model.
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4.1 Notation

We consider a finite horizon T of Tmax days, i.e., T = {0, 1, 2, . . . , Tmax − 1}.
Although we refer to a period in the horizon as a “day”, it is important to
note that time can be discretized in any arbitrary interval as long as all time-
dependent parameters are measured in that same interval. Each day t ∈ T , the
transportation network is represented by a directed graph Gt = (Nt,At), as it is
usually done in DSND models. Nodes Nt denote locations where services begin
or end, and arcs At denote the services running from one location to another.
To ease the formulation, we categorize nodes into three types: (i) origin nodes
NO
t , (ii) destination nodes ND

t , and (iii) intermodal terminal nodes N I
t , such

that Nt = NO
t ∪ND

t ∪N I
t ; and we index all nodes in Nt by i, j, and d. In this

categorization, the sets of origin and destination nodes represent the possible
starting and ending locations of freights, respectively, and are mutually exclusive
with the set of intermodal terminals nodes. This separation of nodes applies to
our model, but not necessarily to our problem. We further elaborate on this
assumption, and how to overcome it, in Appendix A.

Each day t, new freights with different characteristics arrive to the network.
Each freight that arrives has a known origin i ∈ NO

t , destination d ∈ ND
t ,

release-day r ∈ Rt, and time-window k ∈ Kt. The release-day of a freight
counts the number of days in which a freight will be released after its arrival.
The set Rt = {0, 1, 2, . . . , Rmax

t } ranges from immediate release to Rmax
t days

before release. The time-window of a freight measures the number of days in
which a freight must be at its destination after it has been released. The set
Kt = {0, 1, 2, . . . ,Kmax

t } ranges from the same day a freight is released to Kmax
t

days after it is released. Although freights are unknown before they arrive, there
is probabilistic knowledge about their arrival in each origin i ∈ NO

t . In between
two consecutive days t − 1 and t, for origin i ∈ NO

t , a total of f ∈ N freights
arrive with probability pF

f,i,t. A freight that arrives between days t− 1 and t in

origin i ∈ NO
t has destination d ∈ ND

t with probability pD
d,i,t, release-day r ∈ Rt

with probability pR
r,i,t, and time-window k ∈ Kt with probability pK

k,i,t.
In a similar fashion to the categorization of nodes, we categorize arcs into

three types: (i) arcs between an origin and an intermodal terminal node AO
t ={

(i, j)|i ∈ NO
t and j ∈ N I

t

}
, (ii) arcs between two intermodal terminal nodes

AI
t =

{
(i, j)|i, j ∈ N I

t

}
, and (iii) arcs between an origin or an intermodal node,

and a destination AD
t =

{
(i, d)|i ∈ NO

t ∪N I
t and d ∈ ND

t

}
. For services begin-

ning at an origin or ending at a destination (i.e., AO
t and AD

t ), we assume there
is unlimited capacity every day. In other words, we assume that the pre- and
end-haulage operations of our synchromodal network are not restrictive. Typ-
ically, LSPs use trucks for their pre- and end-haulage operations and are able
to hire additional trucks if required. However, for each service between two in-
termodal terminals (i.e., AI

t), we consider there is a maximum capacity of Qi,j,t
freights and a transportation duration of LAi,j,t days. In addition to the duration
and capacity of each service, we consider that for each location i ∈ Nt, there
is a transfer duration of LNi,t days, which includes all handling operations, and
we assume unlimited handling capacity. Consequently, the total time required
for the service between two locations Mi,j,t = LNi,t + LAi,j,t + LNj,t. Finally, we
consider that between any two nodes, there is at most one arc (i.e., one ser-
vice between two locations) and that all service durations are at least one (i.e.,
Mi,j,t ≥ 1∀(i, j) ∈ At). To represent more services between two locations, nodes
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and services can be modified as explained in Appendix A.
With respect to the objective, we define a generic reward function Rt(·) to

capture the immediate reward (i.e., reward at day t) of transporting freight in
the network. For each arc (i, j) ∈ At, or service between i and j, we include
three components in the reward function: (i) a revenue Ai,j,d,t per freight with
destination d, (ii) a setup cost Bi,j,t independent of the number of freights
using the service, and (iii) a variable cost Ci,j,d,t per freight with destination
d. These components can also have a value of zero to model different financial
conditions such as receiving the entire revenue of a freight at the beginning of
transportation (i.e., Ai,j,d,t = 0∀i /∈ NO

t ) or constant cost for reserved space in a
service (i.e., Bi,j,t > 0 and Ci,j,d,t = 0 for the reserved service (i, j)). Although
various optimization criteria can be modeled using these three components, we
note that the reward function Rt(·) is not limited to them and can other key
performance indicators.

4.2 Formulation

The stages at which decisions are made in our MDP model correspond to the
days in the horizon, i.e., t ∈ T . The state of the system St ∈ S is modeled as
the vector of all freights, and their characteristics, that are present at each node
and each arc of the network (i.e., freights available at a location or traveling
to a location) at stage t. In the state vector, we denote freights at location
i ∈ NO

t ∪ N I
t , that have destination d ∈ ND

t , release-day r ∈ R′t, and time-
window k ∈ Kt with the integer variable Fi,d,r,k,t. Hence, the state is given by
(1).

St = [Fi,d,r,k,t]∀i∈NO
t ∪N I

t ,d∈ND
t ,r∈R′

t,k∈Kt
(1)

Note that we use a different set R′t for the release-day r to model freights
that are being transported to location i using Fi,d,r,k,t in a computationally

efficient way. We define R′t =
{

0, 1, 2, . . . ,max
{
Rmax
t ,max(i,j)∈AI

t
Mi,j,t

}}
and

use a virtual time-window to model freights that are en route. For example,
if a freight is being transported to location i using a service that departs on
Monday and arrives at i on Thursday, then this freight will be modeled in the
state of Tuesday as a freight that will be available at i in two days, i.e., a freight
with release-day r = 2. Furthermore, if the freight has a deadline of Friday, its
time-window on Tuesday will be k = 1, i.e., one day after it arrives or, in terms
of our virtual time-windows, it is virtually released. So, on Tuesday, instead of
modeling the freight that is already released and being transported with r = 0
and k = 4, we model it with r = 2 and k = 1. We further elaborate on the use
of virtual time-windows to capture the evolution of the network later on in this
section.

At every stage, the planner decides which of the released freights (i.e., r = 0)
to transport using a given service and which ones to postpone. Remind that if
the planner decides to transport a freight, only the part of a freight’s route to
the first destination is fixed, which may be an intermodal terminal or its final
destination. We model the decision with the vector xt consisting of all freights
that will be transported at stage t, as shown in (2a). We denote the number of
freights that will be transported from location i to location j (i.e., using service
(i, j) ∈ At), that have destination d ∈ ND

t , and time-window k ∈ Kt, with the
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integer variable xi,j,d,k,t. Naturally, the decision xt is bounded by the feasible
decision space Xt described by constraints (2b) to (2f).

xt = [xi,j,d,k,t]∀(i,j)∈At,d∈ND
t ,k∈Kt

(2a)

s.t.∑
j∈N I

t∪{d}
xi,j,d,k,t ≤ Fi,d,0,k,t, ∀i ∈ NO

t ∪N I
t , d ∈ ND

t , k ∈ Kt (2b)

xi,d,d,LA
i,d,t,t

≥ Fi,d,0,LA
i,d,t,t

, ∀(i, d) ∈ AD
t , k ∈ Kt (2c)

xi,j,d,k,t = 0, ∀(i, j) ∈ AO
t ∪ AI

t, d ∈ ND
t , k ∈ Kt|k < Mi,j,t + M̃j,d,t (2d)∑

d∈ND
t

∑
k∈Kt

xi,j,d,k,t ≤ Qi,j,t, ∀(i, j) ∈ AI
t (2e)

xi,j,d,k,t ∈ N ∪ {0}, ∀(i, j) ∈ At, d ∈ ND
t , k ∈ Kt (2f)

Constraints (2b) ensure that, for every origin and intermodal terminal, only
freights that are released can be transported. Constraints (2c) guarantee that
freights whose time-window is as long as the duration of direct transportation
(i.e., trucking) are transported using this service. Note that with this constraint,
we assume that trucking to a destination is faster than going via an intermodal

terminal, i.e., LAi,d,t < minj∈N I
t

{
Mi,j,t + LAj,d,t

}
,∀(i, d) ∈ AD

t . Equations (2d)

ensure that freights are not transported to a terminal j if the fastest “inter-
modal” route to their destination after arriving at that terminal (whose dura-

tion we denote with M̃j,d,t), is longer than the freight’s time-window. This strict
definition of transportation options means that two trucking services cannot be
used sequentially (e.g., bring a freight from its origin to an intermodal terminal
by truck and then transport it with truck from that intermodal terminal to its
destination). The value of M̃j,d,t is case dependent: (i) if a freight is at an

origin (i.e., i ∈ NO
t ), then M̃j,d,t includes the duration of the shortest service

from terminal j to terminal j′ and the duration of the trucking from j′ to the
destination d; (ii) if a freight is at an intermodal terminal (i.e., i ∈ N I

t ) then

M̃j,d,t = Mj,d,t since the intermodal service (i, j) ∈ AI
t already accounts for the

intermodal part. Constraints (2e) ensure that the capacity of each service is not
exceeded. Finally, constraints (2f) define the domain of the variables.

After making a decision xt−1 and before entering the state St, exogenous
information on new freights arrives. We denote the number of new freights
with origin i ∈ NO

t , destination d ∈ ND
t , release day r ∈ Rt, and time-window

k ∈ Kt that arrive in between two consecutive stages t−1 and t with the integer
variable F̃i,d,r,k,t. Hence, we model this exogenous information with the vector
Wt, as seen in (3).

Wt =
[
F̃i,d,r,k,t

]
∀i∈NO

t ,d∈ND
t ,r∈Rt,k∈Kt

(3)

The transition from state St−1 to state St depends on (i) the decision xt−1,
(ii) the exogenous information Wt, and (iii) the various time relations involving
freights and services. We capture this transition using the function SM , as
seen in (4). First, and most naturally, decisions shift freights from one location
to another through time. However, this shift can take longer than one stage,
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i.e., when a service duration spans more than one day. To avoid remembering
decisions of services spanning more than one day (i.e., earlier decisions than
xt−1), we use the virtual time-windows. As exemplified before, virtual time-
windows increase the release-day and reduce the time-window of freights that are
transported using a service with a duration longer than one day, i.e., Mi,j,t > 1.
Second, the exogenous information increases the number of freights of a certain
type that are present in the network. Third, various time relations apply to
different types of freight. For example, released freights that are not transported
remain at the same location and their time-window decreases. To capture all
these relations, SM categorizes freight variables Ft,i,d,r,k into seven equations,
as shown in (4b) to (4h). We now elaborate on each category specifically.

St = SM (St−1, xt−1,Wt) (4a)

s.t.

Fi,d,0,k,t = Fi,d,0,k+1,t−1 −
∑
j∈At

xi,j,d,k+1,t−1 + Fi,d,1,k,t−1 + F̃i,d,0,k,t, (4b)

∀i ∈ NO
t , d ∈ ND

t , k + 1 ∈ Kt
Fi,d,0,Kmax

t ,t = Fi,d,1,Kmax
t ,t−1 + F̃i,d,0,Kmax

t ,t, (4c)

∀i ∈ NO
t , d ∈ ND

t

Fi,d,0,k,t = Fi,d,0,k+1,t−1 −
∑
j∈At

xi,j,d,k+1,t−1 + Fi,d,1,k,t−1

+
∑

j∈At|Mj,i,t=1

xj,i,d,k+Mj,i,t,t−1,
(4d)

∀i ∈ N I
t , d ∈ ND

t , k + 1 ∈ Kt
Fi,d,r,k,t = Fi,d,r+1,k,t−1 + F̃i,d,r,k,t, (4e)

∀i ∈ NO
t , d ∈ ND

t , r + 1 ∈ Rt|r ≥ 1, k ∈ Kt
Fi,d,Rmax

t ,k,t = F̃i,d,Rmax
t ,k,t, (4f)

∀i ∈ NO
t , d ∈ ND

t , k ∈ Kt
Fi,d,r,k,t = Fi,d,r+1,k,t−1 +

∑
j∈At|Mj,i,t=r+1

xj,i,d,k+Mj,i,t,t−1, (4g)

∀i ∈ N I
t , d ∈ ND

t , r + 1 ∈ R′t|r ≥ 1, k ∈ Kt
Fi,d,|R′

t|,k,t =
∑

j∈At|Mj,i,t=|R′
t|+1

xj,i,d,k+Mj,i,t,t−1, (4h)

∀i ∈ N I
t , d ∈ ND

t , k ∈ Kt

Equations (4b) define freights that are released (i.e., r = 0), at an origin
(i.e, i ∈ NO

t ), and with a time-window smaller than Kmax
t (i.e., k + 1 ∈ Kt),

as the sum of two types of freights from the previous stage at that origin with
the same destination: (i) freights with a time-window of one stage longer that
were not transported (i.e., Ft−1,i,d,0,k+1−

∑
j∈At

xt−1,i,j,d,k+1), (ii) freights that
had a release-day of one (i.e., Ft−1,i,d,1,k) meaning that they would be released
at the current stage, in addition to the new arriving freights in between the
stages that had the same characteristics (i.e., F̃t,i,d,0,k). Equations (4c) define
freights that are released, at an origin, and have the maximum time-window
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as the sum of freights with a release-day of one and the new arriving freights
with the same characteristics. Equations (4d) define freights that are released,
at an intermodal terminal, and with a time-window smaller than the maximum
one, as the result of three types of freights from the previous stage at that
terminal with the same destination: (i) freights with a time-window of one
stage longer that were not transported, (ii) freights that had a release-day of
one, and (iii) inbound freights from all locations j whose service duration was one
period (i.e., Mj,i,t = 1) and whose time-window was the current freight’s time-
window plus the service duration (i.e., a reduced time-window from k + Mj,i,t

to k) at the moment of the decision xt−1 (i.e.,
∑
j∈At|Mj,i,t=1 xt−1,j,i,d,k+Mj,i,t).

Remind that, due to our separation of nodes, no new arriving freights come to
intermodal terminals and that, due to our assumption of a minimum of one day
service duration, no freights at intermodal terminals can have the maximum
time-window. Equations (4e) define freights at an origin node that are still
not released and do not have the maximum release-day, as the sum of two
types of freight from the previous stage at that origin with the same destination
and time-window: (i) freights with a release-day of one period longer than the
current freight’s release-day, and (ii) new arriving freights that had the same
characteristics. Freights of the previous type that have the maximum release-day
are the result of only the new arriving freights with the same characteristics, as
shown in Equations (4f). Equations (4g) define freights that are at an intermodal
terminal and that are not released but do not have the maximum release-day,
as the sum of two types of freight from the previous stage at that terminal:
(i) freights with a release-day of one period longer than the current freight’s
release-day and the same time-window, and (ii) freights sent in the decision
of the previous stage, from all other locations to that terminal, whose service
duration was equal to the release-day of the current freight plus one period
and whose time-window was equal to the current freight’s time-window plus
the aforementioned service duration. Finally, freights at an intermodal terminal
with the maximum release-day of the virtual time-windows are the result of
inbound freights to that location following the virtual time-windows reasoning,
as shown in Equations (4h).

The immediate rewards of a decision Rt (xt) are calculated as shown in
Equation (5a). Remind that Ai,j,d,t and Ci,j,d,t are the revenue and variable
cost of using service (i, j) ∈ At for one freight with destination d, respectively,
and that Bi,j,t is the setup cost for using the aforementioned service independent
of the number of freights.

Rt (xt) =
∑

(i,j)∈At

∑
d∈ND

t

(
(Ai,j,d,t − Ci,j,d,t)

∑
k∈Kt

xi,j,d,k,t

)

−
∑

(i,j)∈At

(Bi,j,t · yi,j,t)
(5a)

where

yi,j,t =

{
1, if

∑
d∈ND

t

∑
k∈Kt

(xi,j,d,k,t) > 0

0, otherwise
, ∀(i, j) ∈ At (5b)

Since the decision xt depends on the state, and the state is partially random,
the objective is to find a policy that maximizes the expected discounted reward
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over the planning horizon. We denote a policy with π ∈ Π, and define it as
a function that determines a decision xπt ∈ Xt for each possible state St ∈ S.
Thus, the objective can be expressed as shown in (6), where γt is the discount
factor balancing the impact of future and present rewards and S0 is the initial
state of the system.

max
π∈Π

E

[∑
t∈T

γtRt (xπt )

∣∣∣∣∣S0

]
(6)

Finite horizon MDP models such as ours can be solved using linear program-
ming or dynamic programming. To design our solution approach, we focus on
the latter. In dynamic programming, the optimal expected rewards can be esti-
mated using a set of recursive equations and Bellman’s principle of optimality,
as shown in Equations (7). These equations can be solved backwards, from the
end of the horizon towards the beginning. In Equations (7a), the state St+1 is
partially random and partially the result of decision xt. Using the transition
function SM , we can express St+1 as a function of the current state, decision,
and a realization of the exogenous information, as shown in Equations (7b).
Assuming that the possible realizations of the exogenous information Ωt+1 (i.e.,

Wt+1 ∈ Ωt+1) are finite, and defining p
Ωt+1
ω as the probability of realization

ω ∈ Ωt+1, we can recursively solve our MDP as shown in Equations (7c). The
solution to these last equations yield the optimal policy π∗. However, solving
these equations is challenging for various reasons. In the following, we elaborate
further on those solution challenges.

Vt (St) = max
xt∈Xt

(Rt (xt) + γtE [Vt+1 (St+1)]), ∀St ∈ S (7a)

Vt (St) = max
xt∈Xt

(
Rt (xt) + γtE

[
Vt+1

(
SM (St, xt,Wt+1)

)])
, ∀St ∈ S (7b)

Vt (St) = max
xt∈Xt

Rt (xt) + γt
∑

ω∈Ωt+1

pΩt+1
ω

(
Vt+1

(
SM (St, xt, ω)

)), ∀St ∈ S

(7c)

4.3 Solution Challenges

As with most MDP models, ours suffers from the so-called three curses of dimen-
sionality [27]. Equations (7c) hold for the entire state space S, decision space
Xt, and exogenous information space Ωt, which grow larger with an increasing
size of the transportation network and demand parameters. In addition to the
curses of dimensionality, the assumption of a finite horizon in our MDP model
brings additional challenges compared to an infinite horizon MDP. For exam-
ple, in an infinite horizon MDP, the resulting policy is independent of the stage
opposed to the finite horizon where it depends on the stage. In other words,
infinite horizon MDPs yield one policy instead of Tmax policies in the finite
case. Even if we are only interested in the policy for the first decision moment
in the finite case, we still need to learn the values for |S| states for Tmax stages.
However, the stationary-information assumption of the infinite horizon MDPs
is not desired in our problem, where freight demand can have seasonality effects
(e.g., different demand distributions on different stages) and services can change
(e.g., increased capacity of a train, disruptions, etc.) over time. Although this
stage-dependent information can be added to the state and transition definition
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in an infinite horizon, at the price of a larger state space, the finite horizon
MDP allows us to start from the current state and use up-to-date information
of what might happen in the finite period that lies ahead. In other words, it is
easier to use the MDP for re-planning purposes once the information changes,
which is a key characteristic of synchromodality.

Another solution challenge arises due to the interaction among the model’s
reward function, transition function, and the finite horizon; and the need for
heuristic/approximation solution methodologies. In the freight transportation
industry, the revenue of a freight is usually received at a single point in time (e.g.,
at the pick-up or at the delivery) while the costs for the entire route are accrued
in several points in time depending on the route. Although this is not an issue
for the MDP model, it may result in strange behavior of heuristic approaches.
When revenue is received at the pick-up, heuristics might prefer to pick up a
freight as soon as possible, to receive the revenue, and then take it to the closest
location and leave it there in order to avoid costs. In the opposite case, when
the revenue is received at the delivery, heuristics might prefer to take a freight
to its destination, as soon as possible, to receive the revenue, and avoid longer
transportation options which might be cheaper. These two behaviors accentuate
more when considering the end-of-the-horizon effects. When revenue is received
at the pick-up at the origin, heuristics might tend to postpone the transportation
of freight till the end of the horizon. When revenue is received at the delivery
to the destination, heuristics might aim for an empty network at the end of the
horizon. Consequently, the “greedy” nature of heuristics may lead to a poor
performance in our finite horizon look-ahead model.

Although our MDP model brings various solution challenges, its compo-
nents (e.g., transition function, decision constraints, exogenous information)
can be used within the approximate dynamic programming framework to de-
sign a heuristic solution for them. We elaborate on this design, and how to
overcome the challenges, in the following section.

5 Approximate Dynamic Programming Solution

To solve the MDP model from the previous section, we use a heuristic approach
based on the framework of Approximate Dynamic Programming (ADP). In
ADP, the solution to the Bellman’s Equations in (7) is approximated using sim-
ulation, along with other optimization and statistical techniques, in an iterative
manner. In this section, we elaborate on two ADP designs. In Section 5.1, we
describe a traditional design using basis functions and ε-greedy exploration, that
has worked in other intermodal transportation problems [26]. Furthermore, we
comment on how the characteristics of our problem can make this traditional
design flounder in apparent local-optima. In Section 5.2, we present ways to
avoid these local-optima using ideas from Bayesian exploration and implement-
ing them into a hybrid ADP design. Before elaborating on the traditional and
hybrid ADP designs, we briefly describe the workings of the ADP algorithm.
For an in-depth explanation of the ADP algorithm and its parts, we refer to
[27].

The ADP algorithm consists of various parts of the MDP model, such as the
state, decision, and transition function definition, as shown in Algorithm 1. The
ADP algorithm runs for a number of iterations N and hence has all its variables
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Algorithm 1 ADP Algorithm

1: Initialize
[
V

0

t

]
∀t∈T

2: for n = 1 to N do
3: Sn0 := S0

4: for t = 0 to Tmax − 1 do

5: xn∗t := arg max
xn
t ∈XR

t

(
Rt (xnt ) + γtV

n−1

t

(
SM,x (Snt , x

n
t )
))

6: Sn,x∗t := SM,x (Snt , x
n∗
t )

7: v̂nt :=
(
Rt (xn∗t ) + γtV̄

n−1
t

(
Sn,x∗t

))
8: Wn

t+1 := Random (Ω)
9: Snt+1 := SM

(
Snt , x

n∗
t ,Wn

t+1

)
10: end for
11: for t = Tmax − 1 to 0 do
12: V

n

t (Sn,x∗t ) := Unt (V
n−1

t (Sn,x∗t ), Sn,x∗t , [v̂nt ]∀t∈T )
13: end for
14: end for
15: return

[
V
N

t

]
∀t∈T

indexed with n, as shown in Line 2. The overall idea of ADP is to replace the
expectation of future rewards in (7a) with an approximation V

n

t and to update
this approximation over the iterations. At the end, the algorithm yields the
approximation of the last iteration, for all stages, as shown in Line 15. Thus,
the output of ADP is a decision-making policy, based on the approximation[
V
N

t

]
∀t∈T

of the expected rewards, in a similar way to the MDP.

The approximation V
n

t is a function of the so-called post-decision state Sx,nt .
The post-decision state is the state of the system after a decision has been made
but before the new exogenous information becomes known and the next stage
state is realized, i.e., Sn,xt = SM,x (Snt , x

n
t ). The transition SM,x to the post-

decision state works in a similar way as the transition function SM , see (4), with

the only difference that no exogenous information is considered, i.e., all F̃i,d,r,k,t
variables are omitted in (4b) to (4h). To update the approximation V

n

t , the
algorithm simulates the use of its resulting policy for all stages. In contrast
to backwards dynamic programming, ADP moves forward in the stages, as
shown in Line 4. In each stage, the optimality equations in (7) are transformed
into one single equation (using V

n

t ), as shown in Line 7. Furthermore, the
decision that attains the maximum reward v̂nt , as well as its corresponding post-
decision state, are stored as shown in Lines 5 and 6. To advance to the next
stage t+ 1, the algorithm uses a sample from Ωt+1, obtained through a Monte
Carlo simulation, and the transition function SM defined in (4), as shown in
Line 8. After all stages are processed, a function Unt−1 is used to update the
approximation in a backward manner, as seen in Lines 11 to 13. This function
uses the information stored throughout the stages. The entire procedure just
described is then repeated N times.

The benefit of having the approximation V
n

t in ADP is two-fold. First, it
avoids enumerating all possible realizations of the exogenous information Ωt.
Second, it allows the optimality equation in Line 7 to be solved for one state
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at a time, instead of for all states. These two benefits eliminate two of the
curses of dimensionality. However, the large decision space must be tackled
separately. For this, we propose the use of a Restricted Policy (RP). We design
two RPs by adding more constraints to the feasible decision space Xt described
by constraints (2b) to (2f). All restrictions significantly reduce the number of
feasible decisions to evaluate; some restrictions do so without harming solution
quality whereas others limit the solution quality that ADP can attain. We
elaborate more on this issue in Section 6.4. For now, we describe the two RPs.

The first RP, denoted by XRP1
t and defined in (8), works with three ad-

ditional constraints to the feasible decision space. First, freights that are not
urgent (i.e., k > LAi,d,t) cannot use direct trucking to their destination (i.e., ser-
vice (i, d)), as shown in Restriction (8b). Second, all freights that are at the
same location and go to the same destination must be transported together, as
shown in Restriction (8c). To achieve this, we use the binary variable xRG

i,j,d,t,
which gets a value of 1 if freights at location i with destination d are sent using
service (i, j) ∈ AI

t and 0 otherwise, and the binary parameter MR
i,j,d,k,t, which

gets a value of 1 if the fastest intermodal route for freights at location i with
destination d and time-window k is longer than the freight’s time-window (i.e.,

k < Mi,j,t+M̃i,d,t). Third, we consider that all freights that arrive at an origin,
independent of their characteristics, must be either transported to the same
intermodal terminal or postponed, as shown in Restriction (8d). To achieve
this, we use the binary variable xRO

j,t , which gets a value of 1 if the chosen in-
termodal terminal is j and 0 otherwise. Naturally, we assume with this last
restriction that there is at least one terminal to which freight from all origins
can be brought to.

xt ∈ Xt (8a)

xi,d,d,k,t = 0, ∀i ∈ NO
t ∪N I

t , d ∈ ND
t , k ∈ Kt|k > LAi,d,t (8b)

xi,j,d,k,t ≥ (Fi,d,0,k,t)
(
xRG
i,j,d,t −MR

i,j,d,k,t

)
, (8c)

∀i ∈ NO
t ∪N I

t , j ∈ N I
t , d ∈ ND

t , k ∈ Kt∑
d∈ND

t

∑
i∈NO

t

xi,j,d,k,t =
∣∣ND

t

∣∣ ∣∣NO
t

∣∣xRO
j,t , ∀j ∈ N I

t |∃∀i∈NO
t

(i, j) ∈ AI
t (8d)

The second RP, denoted by XRP2
t and defined in (9), works similarly to RP1

with one difference. Instead of grouping all freights that arrive in all origins,
as in (8d), we group all freights that arrive in all origins that go to the same
destination, as seen in (9d). This means that all freight that arrives to any
origin with a given destination must either be brought to the same terminal
or postponed. To achieve this, we use the binary variable xRO2

j,d,t , which gets a
value of 1 if the intermodal terminal j is chosen for freights with destination
d and 0 otherwise. RP2 is computationally more expensive than RP1 but also
gives more options to choose from at the pick-up of freight, possibly resulting in
better solutions. We analyze the solution quality of both RPs in the Section 6.
It is important to note that, if computational resources allow, these restricted
policies can be omitted.

xt ∈ Xt (9a)

xi,d,d,k,t = 0, ∀i ∈ NO
t ∪N I

t , d ∈ ND
t , k ∈ Kt|k > LAi,d,t (9b)
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xi,j,d,k,t ≥ (Fi,d,0,k,t)
(
xRG
i,j,d,t −MR

i,j,d,k,t

)
, (9c)

∀i ∈ NO
t ∪N I

t , j ∈ N I
t , d ∈ ND

t , k ∈ Kt∑
i∈NO

t

xi,j,d,k,t =
∣∣NO

t

∣∣xRO2
j,d,t , ∀j ∈ N I

t |∃∀i∈NO
t

(i, j) ∈ AI
t, d ∈ ND

t (9d)

5.1 ADP with Basis Functions and Epsilon-Greedy Ex-
ploration

In our first ADP design, we use basis functions for the approximation V
n

t (Sx,nt ).
The overall idea of basis functions is to quantify characteristics of a post-decision
state that explain the expected future rewards to a certain degree. We denote
the basis function of a characteristic b ∈ Bt with φb,t : Sx,nt → R and the
degree (i.e., weight) with which it explains the future rewards by θnb,t ∈ R.
The approximated future rewards are the result of the product between all
basis functions and their weights, as shown in (10). Using matrix notation, we

define φt (Sx,nt ) =
[
φ1,t (Sx,nt ) , ..., φ|Bt|,t (Sx,nt )

]T
as the column vector of basis

functions, and θnt =
[
θn1,t, ..., θ

n
|B|,t

]T
as the column vector of weights at iteration

n and stage t. We will use these vectors to describe the updating procedure later
on.

V
n

t (Sx,nt ) =
∑
b∈B

θnb,tφb,t (Sx,nt ) = φt (Sx,nt )
T
θnt (10)

At each stage t, the set of characteristics Bt counts two types of freights
per location-destination pair: (i) freights whose time-window is shorter than
the duration of the shortest intermodal path of the entire network, which we
denote as ψ, as shown in (11a), and (ii) freights whose time-window is at least
the duration of the shortest intermodal path of the entire network, as shown in
(11b). Furthermore, we also count the total number of freights going to each
destination, independent of their current location, release-day, or time-window,
as shown in (11c). Finally, we add a constant as shown in (11d). We have a
total number of characteristics |Bt| = 2

(∣∣NO
t

∣∣ ∣∣N I
t

∣∣)+
∣∣ND

t

∣∣+1. To index them,
we use the functions b, b′′, and b′′′, with range [1, ..., |Bt|].

φb(i,d),t (Sx,nt ) =
∑

k∈Kt|k<Ψ

∑
r∈R′

t

F x,ni,d,r,k,t, ∀i ∈ NO
t ∪N I

t , d ∈ ND
t (11a)

φb′(i,d),t (Sx,nt ) =
∑

k∈Kt|k≥Ψ

∑
r∈R′

t

F x,ni,d,r,k,t, ∀i ∈ NO
t ∪N I

t , d ∈ ND
t (11b)

φb′′(d),t (Sx,nt ) =
∑

i∈NO
t ∪N I

t

∑
k∈Kt|k≥Ψ

∑
r∈R′

t

F x,ni,d,r,k,t, ∀d ∈ ND
t (11c)

φ|Bt| (S
x,n
t ) = 1 (11d)

The basis functions φt(S
x,n
t ) are fixed for all iterations, changing value only

with respect to the post-decision state Sx,nt and the network at stage t. The
weights θnb,t, however, depend on an iteration n and stage t. The idea is that,
throughout the iterations, the observed rewards for each stage can be used to
update the weights, and thus the approximation V

n

t (Sx,nt ). For the updating
function Unt−1, we use recursive least squares for non-stationary data. This
method uses three variables to update the weights: (i) the difference between the
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next-stage estimate from the previous iteration V
n−1

t−1

(
Sx,nt−1

)
and the observed

reward v̂nt at the current iteration, (ii) the value of each basis function φb (Sx,nt ),
and (iii) the optimization matrixHn, as shown in (12). This optimization matrix
can put more emphasis on recent observations. This can be beneficial when
in early iterations the approximation is far from optimal or when the initial
conditions of the system may bias the approximation. For a comprehensive
explanation on the recursive least squares method for non-stationary data we
refer to [27].

V
n

t (Sn,x∗t ) := Unt (V
n−1

t (Sn,x∗t ), Sn,x∗t , [v̂nt ]∀t∈T ) (12a)

s.t.

θnt = θn−1
t − (Hn

t )
−1
φt (Sx,nt )

(
V
n−1

t−1

(
Sx,nt−1

)
−
Tmax−1∑

t

v̂nt

)
(12b)

Hn
t = λnHn−1

t + φt (Sx,nt )φt (Sx,nt )
T

(12c)

λn = 1− λ

n
(12d)

The ADP design presented before uses the so-called exploitation decision
strategy. Exploitation decisions are those that take us to the best post-decision
state given our estimate of the downstream rewards at that iteration, as seen in
Line 5 of Algorithm 1. If these estimates are far from good, the post-decision
state they take us too can also be far from optimal, and since the estimates are
updated with the post-decision state we saw (i.e., using the basis functions), we
might end-up in a chain reaction for the worse. A different approach to make
decisions, which aims to avoid such cycles during the learning phase of ADP,
is to consider exploration decisions. As their name states, exploration decisions
are those that take us to post-decision states that we might not have seen before,
even if they are not the best ones given. In analogy to local search heuristics,
exploration decisions can be seen as moves that prevent ADP from getting
stuck in local optima. The benefit of making exploration decisions in our basis
functions approach is that we may observe post-decision state characteristics we
had not seen before (i.e., basis function values different than zero), or not that
often, and therefore improving the approximation of the downstream rewards.
One way to consider exploration decisions is the ε-greedy strategy [27]. In this
strategy, a fraction ε of the decisions through the iterations should be exploration
ones. In other words, a random decision from XR

t is chosen with probability ε.
To implement it, Line 5 in Algorithm 1 must be exchanged with Algorithm 2.

Algorithm 2 ε-greedy strategy for exploration

1: if Random [0, 1) < ε then
2: xn∗t := Random

(
XR
t

)
3: else
4: xn∗t := arg max

xn
t ∈XR

t

(
Rt (xnt ) + γtV̄

n−1
t

(
SM,x (Snt , x

n
t )
))

5: end if

Although exploration decisions may take us to possibly better post-decision
states, we also run the risk of deteriorating our approximation and thus making
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worse exploitation decisions. This is caused by updating the weights of basis
functions that we have already seen (for which we may have reasonable values)
using values resulting from possibly far-from-optimal decisions. Although one
could update the approximation using the exploitation decision rather than the
exploration one (known as off-policy updating), in a finite horizon problem this
results in a larger propagation of error across the stages since the observed post-
decision states (and hence the value of the basis functions we use for updating
our approximation) depend on the exploration decision and not the exploitation
one. In the following section, we introduce a different exploration strategy that
aims to balance the trade-off between going to relatively unknown post-decision
states and deteriorating the current approximation.

5.2 ADP with Bayesian Exploration

Exploration decisions have the potential to improve our approximation when the
approximation is not good. Exploitation decisions have the potential to improve
our approximation further once the approximation is good. Since there is uncer-
tainty on whether we already have a good approximation, the balance between
exploration and exploitation decisions can be seen as a stochastic optimization
sub-problem. A way to quantify the uncertainty and balance this tradeoff in
ADP is through Bayesian exploration, using the concept of Value of Perfect
Information (VPI), as proposed in Ryzhov et al. [33]. Although this technique
has been recently applied successfully to infinite horizon problems, applying it
to finite horizon problems such as ours comes with several challenges. As far as
we know, this has not been considered before. In this Section, we introduce the
general idea of Bayesian exploration and subsequently present the challenges
and possible modifications to apply it to finite horizon problems in what we
call a hybrid ADP design. For in-depth explanation of Bayesian exploration we
refer the reader to Powell and Ryzhov [28].

During the early iterations of the ADP algorithm, there is a lot of uncer-
tainty about the approximation of the downstream rewards. As the algorithm
progresses, and more post-decision states are observed, this uncertainty is re-
duced. However, if the same post-decision states are observed over and over
again, there could be a bias towards these post-decision states just because we
have good estimates about their downstream rewards (i.e., due to updating the
corresponding basis function weights). The general idea of Bayesian exploration
is to prevent such a bias in the algorithm by making decisions that will pro-
vide information about which post-decision states are actually better than the
ones we thought were best. In contrast to the way of making decisions in ε-
greedy exploration, in Bayesian exploration we make the decision that provides
the maximum value of exploration vE,nt at stage t and iteration n, as shown
in (13). In (13), Kn

t represents the knowledge about the uncertainty in the

approximation of the downstream rewards. We now describe vE,nt and Kn
t in

more detail.

xn∗t = arg max
xn
t ∈XR

t

(
vE,nt (Kn

t , S
n
t x

n
t )
)

(13)

In the VPI concept applied to ADP, the value of exploration vE,nt of a deci-
sion xnt is defined as the expected improvement in the approximated downstream
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reward that arises from visiting the post-decision state corresponding to xnt . It
is defined as “expected” because the true value of the approximation is consid-
ered to be a random variable for which we have an initial distribution of belief
[28]. The best estimate of the mean of this random variable at iteration n and
stage t is V

n

t (Sn,xt ). Recall that in our basis function design, V
n

t (Sn,xt ) is the
scalar product of the values of the basis functions for post-decision state Sn,xt
and the weights. Thus, the variance of V

n

t (Sn,xt ) is dependent on the weights θnt
and the basis functions φt. We define Cnt as the |Bt| by |Bt| covariance matrix
at iteration n and stage t. The uncertainty knowledge Kn

t of the approximated
downstream rewards is defined as the tuple shown in (14).

Kn
t = (V

n

t , C
n
t ) = (φt, θ

n
t , C

n
t ) (14)

The value of exploration of a decision should be larger for those decisions
that lead us to choosing a better decision in future iterations, given that we are
at the same state in the same stage, than for the decision that we currently think
is the best. Furthermore, the value of exploration should decrease as we explore
though the iterations since the uncertainty of the estimated downstream rewards
is also reduced with increasing number of observations. Eventually, when we
are confident of discriminating between optimal and non-optimal decisions, only
exploitation decisions should be made in order to improve the approximation
V
n

t (Sx,nt ). To achieve this, VPI (as applied by Ryzhov et al. [33] in the context
of infinite horizon ADP) builds upon the notion of the value of information in

reinforcement learning systems [9] and defines vE,nt using the elements of Kn
t

as shown in (15). In (15), the function f quantifies the knowledge gain of an
exploration decision based on the initial belief distribution, and is defined using
f(z) = zΦ(z) + ϕ(z) where Φ is the cumulative distribution function and ϕ the
probability density function of a standard Gaussian distribution. Furthermore,
σ2,n
t (Sx,nt ) represents the prior variance of V

n

t (Sn,xt ) and is computed as shown
in (15c). For the comprehensive description and derivation of (15), we refer the
reader to Ryzhov et al. [33].

vE,nt (Kn
t , S

n
t , x

n
t ) =

√
σ2,n
t (Sx,nt )f

− δ(Sx,nt )√
σ2,n
t (Sx,nt )

 (15a)

s.t.

δ(Sx,nt ) =

∣∣∣∣V x,nt (Sx,nt )− max
ynt ∈Xt|ynt 6=xn

t

V
x,n

t (Sy,nt )

∣∣∣∣ (15b)

σ2,n
t (Sx,nt ) = φ (Sx,nt )

T
Cnt φ (Sx,nt ) (15c)

In (15), we observe that the larger the uncertainty σ2,n
t (Sx,nt ) about the

impact of decision xnt , the larger the value of exploration is. Besides the uncer-
tainty, the difference between the approximated downstream rewards of decision
xnt (given by V

x,n

t (Sx,nt )) and the best decision of the remaining feasible deci-
sions ynt ∈ Xt|ynt 6= xnt (given by V

x,n

t (Sy,nt )) is considered. The larger this

difference is, the lower the value of exploration vE,nt corresponding with de-

cision xnt becomes. Thus, the definition of vE,nt (Kn
t , S

n
t , x

n
t ) in (15) has the

desired characteristic of reducing the risk of deteriorating our approximation
through exploration decisions. To implement it, Line 5 in Algorithm 1 must be
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exchanged with (13). In addition, the covariance matrix Cnt must be initialized
for all stages t ∈ T before Line 2 in Algorithm 1. Since it is difficult to define
an initial distribution of belief about the true value of the approximation, the
covariance matrix is usually initialized with a large number χC on the diagonal
and with zero on its other entries [32]. This initialization resembles the case of
no prior knowledge about the relation between between the weights of the basis
functions.

The approximation and the belief about its distribution must be updated
after each iteration. To update the approximated downstream rewards (i.e.,
update the weights of the basis functions), we use (16) where v̂nt is the value
of the exploration decision in (13), as calculated in Line 7 in Algorithm 1, and
σ2,E is a noise term due to the measurement error. This updating procedure
is identical to the analogous recursive least squares method [33], and consid-
ers the difference between approximated and observed downstream rewards as
well as the current uncertainty knowledge through the covariance matrix. Nat-
urally, besides using the observed rewards, the observed basis functions can be
used to update the covariance matrix. Remind that, with increasing number
of observations of a post-decision state Sx,nt (i.e., observed basis functions), the
uncertainty about the approximated downstream rewards of that post-decision
state decreases. We update the covariance matrix as shown in (17), again using
the noise term σ2,E. To implement these updating methods, we replace Line 12
in Algorithm 1 with (16) and (17).

θnt = θn−1
t −

(
θn−1
t

)T
φ (Sx,nt )−

Tmax−1∑
t

v̂nt

σ2,E + σ2,n−1
t (Sx,nt )

Cnt φ (Sx,nt ) (16)

Cnt = Cn−1
t − Cn−1

t φ (Sx,nt )φ (Sx,nt )
T
Cn−1
t

σ2,E + σ2,n
t (Sx,n−1

t )
(17)

In the updating procedure explained above, we use the downstream rewards
from the exploration decisions. This differs from Ryzhov et al. [33], where the
approximated downstream rewards of the exploitation decision are being used
instead of the exploration decision. The use of one decision, and its value, to up-
date the approximation and a different decision in the transition of the system is
known as off-policy updating, as mentioned before. Although off-policy updat-
ing can be useful to prevent exploration decisions harming the approximation
in infinite horizon problems, such as the one of Ryzhov et al. [33], it is difficult
to apply it to finite horizon problems, especially in combination with backwards
updating [37, 38]. To prevent exploration decisions affecting our approximation
in a negative way, we propose to be slightly more conservative in three aspects of
exploration: (i) the definition of “gain” in the value of exploration, i.e., δ(Sx,nt )
defined in (15b), (ii) the use of the value of exploration in making decisions, i.e.,
xn∗t defined in (13), and (iii) the updates resulting from exploration decisions
using the noise term σ2,E as shown in (16) and (17). We now elaborate on each
of these aspects.

5.2.1 The Gain in Value of Exploration

To be more conservative with the value of exploration vE,nt , we can incorporate
more aspects of the exploitation decision. The first aspect we note is the exclu-
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sion of the direct rewards Rt (xnt ) in the calculation of the value of exploration
of decision xnt , as shown in (15). On the one hand, it is reasonable to use only
the expected downstream rewards V

x,n

t (Sx,nt ) in (15) because the post-decision
state corresponding to decision xnt and its basis functions might be observed
without, or with different, direct rewards at a later iteration. Remind that
different states and different decisions at stage t might still lead to the same
post-decision state and thus the same basis function values. On the other hand,
if observing basis function values would always involve direct rewards (as in the
“online” use of ADP which we describe at the end of the next section), it makes
sense to include them in the value of exploration. Thus, we can add Rt (·) to
(15b), as seen in (18).

δ(Snt , x
n
t ) =

∣∣∣∣Rt (xnt ) + V
x,n

t (Sx,nt )− max
ynt ∈XR

t |ynt 6=xn
t

(
Rt (ynt ) + V

x,n

t (Sy,nt )
)∣∣∣∣
(18)

5.2.2 The Exploration Decision

Although the idea from the previous modification decreases the value of explo-
ration for decisions with relatively low direct rewards, the exploration decision
itself, as given by (13), is still solely based in the value of exploration. Another
way to be conservative with the exploration decisions is to directly include, in
addition to the value of exploration, some aspects of the exploitation decision
(i.e., Line 5 in Algorithm 1). Naturally, there are many forms to include these
aspects. We propose three forms of doing so.

First, we can include the approximated downstream reward when making a
decision as proposed by Dearden et al. [9] and shown in (19). This modifica-
tion overcomes the disadvantage of making decisions that are far-from-optimal
with respect to downstream rewards due to solely focusing on the value of ex-
ploration. Nevertheless, if vE,nt � V

x,n

t we might explore only seldom and
therefore converge to a “locally optimal” policy.

xn,E2
t = arg max

xn
t ∈XR

t

(
V
x,n

t (Sx,nt ) + vE,nt (Snt ,K
n
t , x

n
t )
)

(19)

Second, both the direct and the approximated downstream rewards can be
added to the value of exploration when making a decision as proposed by Ryzhov
et al. [33] and shown in (20). This modification ensures that towards the last
iterations, when the value of exploration is approximately the same for many
decisions, the exploitation decision is chosen. Exploitation in the last iterations
will improve the downstream estimates if the policy learned is close to optimal.
However, in this approach we need to be even more careful that the value of

exploration is scaled properly, i.e., vE,nt ∼
(
Rt (Snt , xt) + V

x,n

t

)
, such that we

actually do some exploration.

xn,E3
t = arg max

xn
t ∈XR

t

(
Rt (Snt , xt) + V

x,n

t (Sx,nt ) + vE,nt (Sx,nt ,Kn
t , x

n
t )
)

(20)

Third, we use the same rationale of the second modification but with a
tighter control over the amount of exploration throughout the iterations. To
achieve that in early iterations decisions are made according to traditional VPI
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exploration, i.e., (13), and in later iterations follows pure exploitation, i.e., Line 5
in Algorithm 1, we introduce a weight αn ∈ [0, 1], as shown in (21). This
iteration-dependent weight is close to one in early iterations and close to zero
in later ones.

xn,E4
t = arg max

xn
t ∈XR

t

(
(1− αn)

(
Rt (Snt , xt) + V

x,n

t (Sx,nt )
)

+ αnvE,nt (Sx,nt ,Kn
t , x

n
t )
)

(21)

The idea of exploring using the traditional VPI exploration decision in (13)
is suitable as long as we are able to improve our approximation and it does not
“cost” anything. However, some of the applications for which the idea was intro-
duced have costs associated with exploration. This can happen, for instance, if
the algorithm uses real-life observations of the exogenous information, or if the
simulation of the exogenous information is so expensive that there is a limit on
the number of iterations in ADP. This is the so-called “online” use of ADP [33],
and for this case, the proposed modification in (20) seems reasonable. Although
in our problem we use the “offline” version of ADP, which means we first learn
the approximation without making real costs and then use the approximation
to make decisions in real-life, we still suffer from exploration due to our finite
horizon setting. Since we use backwards updating, exploration decisions at the
final stages will affect the updates of the approximation at early stages. These
effect would repeat over the iterations and hence the approximation that would
be used after the ADP algorithm is finished would also suffer. This issue brings
us to our last proposed modification: to be more conservative with updates
resulting from exploration decisions.

5.2.3 The Update of the Approximation

The last modification we propose deals with the updates resulting from explo-
ration decisions. Specifically, we propose adjusting the noise term σ2,E in the
updating equations (16) and (17). The general idea is that the higher this noise
term is, the less the observed error (i.e., difference between the approximated
downstream rewards and the observed ones) affects the approximations, since
the difference can be partly attributed to “noise”. Noise, in our context, has
two causes: (i) fluctuations in the downstream rewards due to realizations of
the random demand, and (ii) changes in the the policy (i.e., decisions made)
due to the changing approximation V

n

t (Sx,nt ). Typically, this noise term is as-
sumed known and constant across all stages in an infinite horizon problem. In
our problem, however, this would mean that σ2,E = ηE ∀t ∈ T , where ηE is the
problem specific noise. This is not desirable as we explain below.

Suppose that we are at the same state and stage at iterations n and n +
1 in the ADP algorithm. Although in both situations the feasible decision
space is the same, decision xn+1,∗

t might differ from decision xn,∗t because, from
iteration n to iteration n+1, either the approximation V

n

t (Sx,nt ) changed or the
uncertainty knowledge Kn

t used to make exploration decisions changed. Since
at earlier iterations changes in both the approximation and the uncertainty
knowledge can be large due to their initialization, changes in the aforementioned
decisions can be large. Furthermore, in a finite horizon problem with backward
updates, changes in decisions at later stages would accumulate to earlier stages
of the horizon, meaning that at early stages noise would be larger than at late
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stages. To account for this decreasing nature of noise across the stages in the
horizon, or across the iterations in our ADP algorithm, we propose three forms
of modifying the noise term σ2,E.

First, we can let the noise term σ2,E
t depend on the stage t as a linearly

decreasing function of the constant noise term ηE, as shown in (22). The noise
term ηE must, nevertheless, be tuned for the problem.

σ2,E2
t =

Tmax − t
Tmax

ηE (22)

Second, to deal with the noise due to changes in policy across the itera-
tions, as well as stages, we can let the noise term depend on the uncertainty
σ2,n
t (Sx,nt ) about the impact of a decision, as shown in (23). The logic behind

this modification is that, if we choose a decision that leads us to a highly un-
certain post-decision state (i.e., high variance of the approximated downstream
rewards of that post-decision state), then the resulting observation will have a
lesser impact on our update. In VPI, the decision to visit a highly uncertain
post-decision state is likely to be an exploration decision, and these decisions
we typically want to contribute less since they can be far from optimal.

σ2,E3
t (Sx,nt ) = σ2,n

t (Sx,nt ) (23)

Third, we can combine the two previous ideas, as shown in (24). This is the
most conservative of our proposals to modify the update of the approximation.

σ2,E4
t,n (Sx,nt ) =

Tmax − t
Tmax

ηE + σ2,n
t (Sx,nt ) (24)

To recap, we proposed several modifications in three aspects of the explo-
ration decisions to decrease the risk of negatively affecting our approximation.
Overall, we have the following options to apply Bayesian exploration to our
problem. First, we have two options to quantify the value of exploration: (15)
and (18). Second, we have four options to make an exploration decision: (13),
(19), (20), and (21). Third, we have four options to define the noise in the
updating: constant, stage-dependent (22), iteration-dependent (23), and stage
and iteration dependent (24). In the following section, we investigate which of
the 2x4x4=32 combinations of modifications work best, and study the perfor-
mance of ADP with Bayesian exploration compared to traditional ADP and
other heuristics.

6 Numerical Experiments

In this section, we study the performance of our ADP designs through a series
of numerical experiments. Specifically, we explore (i) the relation between the
input parameters of our ADP designs and their performance in terms of learned
and realized rewards, and (ii) the performance of using the learned policy from
our ADP algorithms compared to a benchmark heuristic. In Section 6.1, we
present our experimental design and setup. In Sections 6.2 and 6.3, we present
and analyze the results of the two parts of our study. In Section 6.4, we finalize
with a discussion on advantages and limitations of our ADP algorithms for
scheduling freight in synchromodal networks.
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6.1 Experimental Design

To test our ADP algorithms, we use three synchromodal network configurations
and a planning horizon of Tmax = 50 days. These three networks, and their set-
tings, are based on the intermodal consolidation network typologies suggested
by [20], [44], and [5]. Each network increases in amount of consolidation op-
portunities (i.e., more services or terminals) compared to the previous one, as
shown in Figures 2 to 4. In these figures, the axes denote the distance (in km)
between the locations in the network, Q the capacity of each service in number
of freights, and LA the duration of each service in days. The duration of truck
connections is one day. Remind that we assume an unlimited number of trucks,
as motivated in Section 4.1. We consider transfer time not to be restrictive in
any terminal in the network, i.e., LNi,t = 0, for all terminals i.

All networks span an area of 1000x500 km, and have the same location for
origins and destinations. The distances between the origins and the destinations
range from 800 to 1044 km, and the distances between an terminals close to
the origin and terminals close to the destinations range from 500 to 854 km, to
resemble distances that make consolidation for the long-haul desirable in Europe
according to Woxenius [44]. We use a cost structure comparable to the one
proposed by [3] and [15] to represent internal and external costs of intermodal
and road freight transportation networks, and especially, to incorporate the
differences in costs due to economies of scale of various transportation modes.
For each day t in the horizon, the setup cost Bi,j,t ranges between 169 and 425
for barges and trains and the variable cost Ci,j,d,t ranges between 37 and 868
for barges, trains, and trucks. Further details of this cost structure, its cost-
saving opportunities due to consolidation, and its decision challenges are given
in Appendix B. For each day, the revenue Ai,j,d,t is 868 for each freight picked
up at its origin, independent of its origin or destination, and 0 otherwise. This
entails that the entire revenue is received at the beginning of transportation
(i.e., first mile), and afterwards only costs are incurred for each freight.

The number of freights that arrives at each origin, and their destination,
varies according to the probability distributions shown in Appendix C. The time-
window, upon arrival, is fixed to r = 0 and k = 6 for all freights (i.e., pR

0,i,t = 1

and pK
6,i,t = 1 for all origins i). This means that freights can immediately be

transported, or postponed at most 2 days for a long-haul intermodal service
to be feasible. Remind that, in synchromodality, there is no restriction on the
transportation mode or number of transfers to use for a freight.
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Figure 2: Network 1: point-to-point topology
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Figure 3: Network 2: collection-distribution topology
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Figure 4: Network 3: hub-and-spoke topology

The initial state S0 for each network contains six freights, one freight of
each of the following characteristics: F0,11(12),0,6,0, F1,10(11),0,6,0, F2,10(11),0,6,0,
F3,9(10),0,4,0, F4,11(12),0,5,0, and F5,11(12),0,1,0 (note that destinations in Network
3 are displayed between parenthesis). This initial state contains “average”
freights on the origins plus a few freights in the network. Our choice of 50
days in the planning horizon ensures that the effect of the initial state in the
rewards for the entire horizon is not so large by allowing enough variability (in
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the arriving freights) to be present in the network. Naturally, the rewards for
the horizon depend not only on the variability of the arriving freights but also
on the decisions being made. For instance, postponing the transportation of
freights will also postpone the moment that costs are incurred. In the end of
the horizon, such decisions will be deemed good if there is no end-effect. For this
reason, we include an end-effect (i.e., costs after day 50) by estimating the costs
to send all freights remaining in the network using the benchmark heuristic,
which is presented later on in Section 6.3.

To evaluate the performance of our ADP designs, we carry out two types of
experiments: tuning and benchmark experiments. In the tuning experiments,
we test several input parameters, such as the exploration probability ε in our
ADP design with epsilon-greedy exploration and the noise term ηE in our ADP
design with Bayesian exploration. Furthermore, we test the 32 possible VPI
modifications. Our goal in these experiments is to provide insights into the
relation of these parameters and their performance. We describe these exper-
iments in detail and present their results in Section 6.2. In the benchmark
experiments, we compare the performance of the best parameters of our two
ADP designs resulting from the tuning experiments to a benchmark heuristic.
Furthermore, we compare our best ADP design with the benchmark heuristic
using various time-window settings. Our goal is to study the relation between
time-window characteristics and the gains or losses of using ADP over using the
benchmark heuristic. We describe these experiments and present their results
in Section 6.3.

6.2 Tuning Experiments

In our tuning experiments, we study the two ADP designs from Section 5. We
test the various modifications of our ADP design with Bayesian exploration and
compare them to our ADP design with epsilon-greedy exploration. To make the
comparison fair, we test several input values for the tunable parameters of each
of the two designs, under the same conditions. Before presenting the results,
we first describe the conditions under which we test our designs and the input
values we use for the tunable parameters.

As described in Section 5.2, we are interested in the offline use of ADP, which
is to first learn the approximation of downstream rewards within a simulated
environment, and then use the approximation to make real-life decisions. For
this reason, we measure performance in two ways: (i) learned approximation of
downstream rewards after running the ADP algorithm, which we call learned
rewards, and (ii) realized rewards of using the approximation for making de-
cisions in a simulation, which we call realized rewards. The two of them are
related to the MDP model’s objective function in (6), the first relates to the
optimal expected discounted rewards, and the second one relates to the policy
that obtains these rewards. Although related, these two performance measure-
ments are not necessarily the same. The basis function weights that our ADP
algorithms learn can be far from the optimal rewards, but the resulting policy
can be close to the optimal policy.

For each ADP design, we use N = 50 iterations and common random num-
bers, i.e., freights that arrive during each day of each iteration are the same
across tested designs. Common random numbers are used to rule out differences
in arrival processes of freights through the iterations of the ADP algorithms as
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the source of differences in the learned and realized rewards among them. To
test the resulting policy of each ADP design, we use 50 simulation runs of the
planning horizon and, again, common random numbers which are different from
the learning phase. Remind that the resulting policy, or function that maps each
state to a decision, is given by the weights of the basis functions [θnt ]∀t∈T and
the restricted policies RP 1 (i.e., XRP1

t ) and RP 2 (i.e., XRP2
t ) defined in (8)

and (9), respectively. These restricted policies significantly reduce the number
of feasible decisions to evaluate. For example (see Appendix B), in a given
state that has 2.6x108 feasible decisions, RP 1 reduces the number of decisions
to evaluate to 1.9x104 and RP 2 reduces them to 5.8x104. These reductions,
however, limit the performance that ADP can attain in learned and simulated
rewards.

For the ADP design with ε-greedy exploration, we test three values of λ =
{0.01, 0.1, 1}, which control the emphasis on recent observations during the
updates in (12). We test four values of the probability of exploration ε =
{0, 0.3, 0.6, 0.9}. Remind that ε = 0 means only exploitation decisions, while
ε = 1 means only exploration decisions. Furthermore, we test two ways of ini-
tializing the weights of the basis functions: (i) θ0

b,t = 0 for all characteristics

b ∈ B and days t ∈ T , and (ii) θ0
|B|,t = β (Tmax − t)/Tmax for the constant

basis function and θ0
b,t = 0 for all other characteristics b ∈ B|b 6= |B| and days

t ∈ T . The first initialization represents a case where we have no knowledge
about the weights of the approximated rewards, and the second one represents
a case where we have an estimate of the magnitude of the total downstream
rewards β. In our case, β is defined as the rewards attained by the benchmark
heuristic: β = 38, 036 for Network 1, β = 33, 445 for Network 2, and β = 33, 889
for Network 3.

For the ADP design with Bayesian exploration, we initialize the basis func-
tion weights using the second option described before. We test four values of
the noise term ηE =

{
102, 104, 106, 108

}
. For the initial covariance matrix,

we test four values for the diagonal χC =
{

10, 102, 103, 104
}

. We base our
settings on Ryzhov et al. [33], who recommend that ηE > χC and that their
ratio is of the order 10 or 102. For the weight αn in modification (21), we test
αn = {1/n, 10/(n+ 9), 100/(n+ 99)}. We test all the parameters described
above for each of the 32 combinations of VPI modifications that we propose in
Section 5.2.

Testing all tunable parameters and modifications of our two ADP designs
for the three experimental networks results in more than 3500 experiments.
Each experiment provides the learned and the realized rewards of ADP. Before
discussing the details of the relation between ADP performance and the tunable
parameters/modifications, we limit ourselves to present the results of the best
parameters and modifications in Table 1, which consists of (i) the result for the
tuned value of ε, λ, and β for the ADP design with ε-greedy exploration, and (ii)
the tuned value of ηE, χC, and αn, and the best combination of modifications in
Section 5.2 for the ADP design with Bayesian exploration. We use the following
acronyms within the tables and figures of this section: Restricted Policy (RP),
Basis Functions (BF), and Value of Perfect Information (VPI).
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Table 1: Maximum realized reward (i.e., tunned settings) and their correspond-
ing learned reward for various ADP designs

ADP Design
Network 1 Network 2 Network 3

Realized Learned Realized Learned Realized Learned
Rewards Rewards Rewards Rewards Rewards Rewards

RP 1
BF -7,994 38,219 -11,247 33,720 -16,548 -17,928
BF + ε-greedy -4,628 -6,984 -11,485 33,228 -18,172 -18,507
BF + VPI 34,044 36,571 34,284 29,493 34,898 23,285

RP 2
BF -4,912 -3,803 -11,734 34,060 -11,949 34,495
BF + ε-greedy 880 37,386 -11,450 -12,091 -11,949 33,356
BF + VPI 40,439 35,407 40,195 31,107 38,314 30,791

In Table 1, we observe the maximum realized rewards over all settings of
the tunable parameters and VPI modifications, and their corresponding learned
reward, for each ADP design. Three observations stand out. First, using VPI
instead of the traditional ε-greedy strategy for exploration significantly improves
the realized rewards. In fact, the policy resulting from the ε-greedy strategy,
although better in most cases than the exploitation only (i.e., BF in the ta-
ble), ends up in costs (i.e., negative rewards). Second, the difference in realized
rewards between the two restricted policies varies per network and per design.
Consider for instance Network 2, where the difference between the BF and BF +
ε-greedy design across RP 1 and RP 2 is much smaller than the one from BF +
VPI. Third, the accuracy of the approximation (i.e., difference between learned
and realized rewards) varies per network and RP option for the traditional de-
signs, but is more consistent for the BF+VPI design. BF+VPI underestimates
the rewards by at most 11,000 whereas the traditional designs overestimate the
rewards by at most 45,000. Although our focus is not on the learned rewards,
these observations lead to discussion points, which we address in Section 6.4.
We now focus on the relation between the tunable parameters/modifications of
each ADP design and the realized rewards.

In the ADP design with basis functions and ε-greedy exploration, the tuned
settings of most networks and RP options (all but one) ended up in negative
rewards as seen in Table 1. All settings different from the tuned ones performed
the same or worse. In practice, this means that the policy resulting from this
ADP design would never be implemented. Therefore, we limit ourselves to two
general observations only. First, there is no significant difference with respect
to the way weights are initialized in each network and RP option. Second, there
is at least one value of ε > 0 that performs better than ε = 0 for Network 1
and Network 2, but not in Network 3. Since this last observation hints that
exploring pays off, but is not sufficient to fully escape the local-optima of ex-
ploitation decisions, we now focus on the analysis of our ADP + VPI design,
which significantly outperforms the traditional design.

Before analyzing the VPI modifications, we analyze the tuning of the noise
and Bayesian-belief related parameters. In Figure 5, we provide a comparison
of different ratios ηE/χC. In line with Ryzhov et al. [33], we observe that with
ratios of 102 through 104, VPI works best on average over all modifications for
both RPs. From this figure, we can gather two important insights for the ratio
ηE/χC. First, realized rewards and accuracy seem to improve with an increasing
ratio until the best one (in our case 104). At the ratio with the best realized
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Figure 5: Comparison of average rewards (over all modifications) under different
ratios ηE/χC

rewards we also find the smallest difference with the learned rewards. Second,
at ratios larger than the “best-tuned” one, realized rewards rapidly decrease
to the point of becoming costs rather than rewards, even though the learned
rewards remain the same.
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Figure 6: Comparison of average rewards (over all networks) for our proposed
VPI modifications

At last, we analyze the performance of our VPI modifications. In Figure 6,
we show the average realized rewards (over all networks) as a function of the
decision and noise modifications explained in Sections 5.2.2 and 5.2.3, respec-
tively. We exclude from our analysis our second proposed way of defining the
value of exploration using the direct rewards since this performed significantly
worse than the original definition of the value of exploration, for all decision
and noise modifications. In Figure 6, the superscript E1 represents the original
noise and decision definition in VPI, meaning that the upper corner corresponds
to the original VPI design. We observe a significant difference between the av-
erage realized rewards for all modifications in RP 1 compared to RP 2, with
all modifications in RP 2 performing better than the best modification in RP
1. This is to be expected since RP 2 has more decision freedom than RP 1.
We also observe that, in RP 2, the modifications of how to make a decision
have a larger impact than the modifications to the noise used when updating
the approximation. Overall, including the downstream rewards in addition to
the value of exploration when making decisions (i.e., xE2

t ) and letting the noise
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depend only on the post-decision state of the given stage and iteration (i.e., σE3
t )

are the best modifications tested for our problem. It seems that including the
downstream rewards instead of the direct rewards helps the algorithm avoid the
aforementioned greedy behavior and related worse performance. It also seems
that considering the uncertainty of the post-decision state instead of a constant
noise term when updating pays off. Using modifications xE2

t and σE3
t for our

BF+VPI design, we continue to our benchmark experiments.

6.3 Benchmark Experiments

In our benchmark experiments, we compare the realized rewards of our best
ADP design (i.e., BF + VPI, with RP 2 and modifications xE2

t and σE3
t ) against

a Benchmark Heuristic (BH). The objective is to compare the use of the learned
ADP policy against a simpler but effective scheduling heuristic. The BH aims
to use the intermodal services efficiently, i.e., consolidating as many freights as
possible in a service once the setup costs for using that service can be covered.
The BH consists of fours steps: (i) define the shortest and second shortest
path for each freight to its final destination, considering only variable costs for
services between terminals, (ii) calculate the savings between the shortest and
second shortest path and define these as savings of the first intermodal service
used in the shortest path, (iii) sort all freights in non-decreasing time-window
length, i.e., closest due-day first, and (iv) for each freight in the sorted list,
check whether the savings of the first intermodal service of its shortest path are
larger than the setup cost for using this service; if so, use this service for the
freight, if not, postpone the transportation of the freight. The pseudo-code for
this heuristic can be found in Appendix E. Note that the BH is not subject to
the restrictions imposed by RP 2, as ADP is.

Using the three networks from the previous section plus additional time-
window distributions, we set up our experiments as follows. For each network,
we replicate ten times the process of learning the ADP weights and simulating
the use of the resulting policy. The use of the BH is also replicated ten times,
using common random numbers with the corresponding ADP part, such that
differences arise due to the scheduling differences and not the arriving freights.
Identical to the tuning experiments of the previous section, one replication of
the ADP process consists on running the ADP algorithm for 50 iterations and
simulating the entire planning horizon 50 times. For the networks with different
time-window distributions, we re-tune the noise parameters, since they are de-
pendent on the inherent uncertainty of the problem. Here we fix the best ratio
ηE/χC found, i.e., 104, but increase the values of ηE and χC.

Table 2: Average realized rewards (over the replications) of the BH and ADP

Scheduling policy
Network 1 Network 2 Network 3

Average Gain Average Gain Average Gain

BH 37,347.36 - 33,066.79 - 32,963.79 -
ADP with RP 2 37,502.84 0% 36,867.96 11% 33,839.92 3%

Table 2 shows the average realized rewards, over the ten replications, using
the same networks from the tuning experiments of the previous section. Remind
that these networks have uncertainty in the amount of freight that arrives and
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their destination, but not in their time-window. We observe that, for Network
1, ADP performs slightly better than the benchmark heuristic, but not with a
significant difference. In Networks 2 and 3, however, ADP performs significantly
better than the heuristic, with the difference between the two being the largest in
Network 2. The differences in performance of both the BH and ADP across the
networks seem to indicate two traits about scheduling freight in synchromodal
transportation. First, the larger the complexity of the network is, the lower the
average realized rewards are (remind that Network 1 is the simplest and 3 the
most complex). Second, the gain of using ADP seems to be the largest in a
more complex network (comparing Networks 1 and 2) up to a certain extent
(comparing Networks 2 and 3). We come back to these traits in the following
section.

In the experiments above, all freights that arrive are immediately released
and have a time-window length of six days. With this time-window length,
freights can be postponed at most 2 days for a long-haul intermodal service
to be feasible. However, the length and uncertainty of the time-window of
freights may affect the performance of an ADP algorithm [26]. To test this,
we design three distributions for Release-Days (RD) and three distributions for
Time-Window (TW) lengths, as shown in Tables 6 and 7 in Appendix C. Each
distribution is categorized as short, medium, or long. Short RD means that
60% of the freights are released immediately while long RD means that 60% of
the freights are released two days after arriving. Short TW means that 60% of
the freights must be at their destination within 4 days after being released (i.e.,
cannot be postponed after released if a long-haul intermodal service is desired)
while long RD means that 60% of the freights have a time-window length of 6
days. We follow the same procedure as before, with ten replications. Absolute
results are shown in Table 8 (see Appendix D) and relative results are shown in
Figure 7.
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Figure 7: Percentage gain of ADP RP 2 over BH with respect to short (S),
medium (M), and long (L) release days (RD) and time-window (TW) lengths.

As can be expected, the longer the distribution of time-window length, the
larger the realized rewards are for both scheduling methods in each network,
independent of the release-day. This happens because both methods are able
to postpone the transportation of freight and anticipate on better consolidation
opportunities. With respect to the performance of ADP, we observe that with
short distributions of time-window lengths, the benchmark heuristic is better.
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This is reasonable, since there are less options for postponing freights, and
hence if a wrong postponement decision is made, the freight would have to be
transported with an expensive alternative. Furthermore, it is reasonable that
ADP performs worse than the BH since it is subject to the restrictions of RP
2, which enforces decisions on groups of freights rather than individual freights.
With respect to RD distributions, we observe that ADP performs slightly better
with short release-day distributions. Finally, Figure 7 seems to indicate that our
ADP approach is useful in Network 2 but not in Networks 1 and 3. However,
the weakness in our approach can be attributed mostly to the restricted decision
space (RP 2) instead of to the learning of the basis function weights. In the
following, we show the effect of RP 2 on our problem.

Suppose that the problem itself requires the two grouping restrictions of
freights in RP 2: (i) all released freights that go to the same destination in each
intermodal terminal must be transported together and (ii) all released freights
in all origins that go to the same destination must be transported together. For
ADP, these restrictions were already in place. For the BH, these restrictions
mean that instead of doing the four steps for each freight, the four steps are
done for each group of freights that fulfill the conditions of RP 2. We show the
comparison between ADP and the BH with RP 2 in Table 3, Table 9 (see Ap-
pendix D), and Figure 8. The same setup for Table 2, Table 8 (see Appendix D),
and Figure 7, is used, respectively.

Table 3: Average realized rewards (over the replications) considering RP 2

Scheduling policy
Network 1 Network 2 Network 3

Average Gain Average Gain Average Gain

BH with RP 2 10,442.32 - 9,911.81 - 9,734.21 -
ADP with RP 2 37,502.84 259% 36,867.96 272% 33,839.92 248%

In Table 3, we observe that ADP significantly outperforms the BH with
RP2 in all networks from the tuning experiments (i.e., no uncertainty in time-
windows), with Network 2 resulting in the largest gain. With respect to the
u uncertainty in time-windows, we observe that in each RD distribution, both
scheduling policies achieve larger rewards with increasing TW distribution, al-
though the differences are significantly larger for ADP. It seems that the longer
the time-window is, the more ADP can look ahead for consolidation of freights
compared to the BH with RP 2. Furthermore, although rewards across TW
distributions differ among themselves, they look similar across RD distributions
for each TW distribution (e.g., Medium TW distribution for Network 2 looks
similar for Short, Medium, and Long RD). This makes sense since freights can
be postponed only until their time-window allows it, independent of whether it
is released immediately or in two days.

In Figure 8, we observe that our ADP design always outperforms the BH
except for Network 3 with short time-window distribution. Actually, it is to
be expected that ADP is less useful when there are short time-windows since
postponement may directly result in using the expensive alternative mode (i.e.,
truck). In other words, anticipatory decisions do not make sense in such a
problem. We also observe that for each TW distribution, the gains of ADP are
larger in the case of short RD. There are two possible reasons for this: (i) the
basis functions do not include any feature about release-days, so it is difficult
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(impossible) to learn among post-decision freights with different release-days,
(ii) when there are short release-days, rewards and costs are observed earlier,
which improves the learning of the feature weights. These two reasons hint
that the design of the approximation itself (i.e., the choice of basis functions) in
transportation problems such as ours should take into account the time when
rewards and costs are realized and their constraints.

S-TW M-TW L-TW
−100%

0%

100%

200%

%
D

iff
er

en
ce

Network 1

S-TW M-TW L-TW

Network 2

S-TW M-TW L-TW

Network 3

S-RD
M-RD
L-RD

Figure 8: Percentage gain of ADP RP 2 over BH RP 2 with respect to short (S),
medium (M), and long (L) release days (RD) and time-window (TW) lengths.

In general, our experiments show that including VPI in ADP improves its
performance compared to traditional designs, and that this new design can lead
to substantial gains over a benchmark heuristic for various problem settings.
However, they also showed that a “one-size fits all” ADP solution is hard to
achieve, and some tuning is necessary. In the following section, we reflect upon
our results and discuss their implications.

6.4 Discussion

In our tuning experiments, we observed differences between the learned and
realized rewards for most ADP designs. We observed that in the traditional
ADP designs, a large learned reward did not necessarily results in a good pol-
icy. Most of the times, the learned rewards were positive while the realized
rewards were negative. Although the dilemma of whether to focus on learning
close-to-optimal rewards or a good policy relates to the issue of online or offline
use of ADP, one can argue that both focuses are closely related and should, in
theory, yield similar results. When looking for causes of the mismatch between
learned and realized rewards, one can argue that problem characteristics such as
the cost structure (i.e., revenue received at the beginning of transportation) and
restricted decision space (i.e., some post-decision states are not attainable) have
a strong influence on the mismatch. Nevertheless, we observe that through the
inclusion of VPI, ADP is able to tackle these issues and significantly improve
the results of traditional designs, both in learned and realized rewards. More
specifically, we observed that during the learning phase, combining downstream
rewards with the value of exploration in VPI was the best way of making explo-
ration decisions, and that incorporating the uncertainty of a post-decision state
when updating was the best way to update the approximation.

In our benchmark experiments, we observed that the restricted decision
space is the weak point of our design. Compared to the benchmark heuristic
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without restrictions, ADP achieve gains in only a few problem instances. Nev-
ertheless, if we consider that the restricted decision space is part of the problem,
ADP outperforms the benchmark heuristic drastically. These improved gains
provide an indication of the gains that are possible if restrictions in the deci-
sion space of ADP would be removed. However, removing restrictions in the
decision space can make it more computationally complex, which in turn can
make exploration in the ADP learning phase more challenging. For example,
we observed that the best rewards attained by ADP were in Network 1, which
has the least complex decisions of all three networks. Naturally, exploration
is more difficult in a settings with multi-period traveling times where multiple
mode transfers are possible, such as in Networks 2 and 3, since the consequences
of decisions span more than the next-period. This contrast between restricted
and computationally complex decision space needs further research. There are
at least three lines worth of consideration. First, restricting the policy during
early iterations of ADP and then removing the restrictions in later iterations
may overall result in a better policy learned with reasonable time. Second, using
a heuristic decision policy rather than restrictions might also result in a bet-
ter policy with less computational burden. Third, learning a good policy for a
simple network (e.g., Network 1) and then using this feasible policy as starting
approximation for a more complex network (e.g., Network 2) can also reduce
the need for a large number of iterations.

7 Conclusions

In this paper, we developed an MDP model for the anticipatory scheduling of
freight in a synchromodal transportation network and a heuristic solution based
on ADP. We designed various ADP algorithms using the traditional constructs
of basis functions and ε-greedy exploration, as well as methods from Bayesian
exploration, specifically VPI. We described how the one-step look-ahead per-
spective of traditional ADP can make the algorithm flounder and end in a
local-optimum, and how the ADP algorithm can escape this local-optimum and
at the same time improve the solution by using the value of exploration from
VPI. We proposed various modifications to VPI for infinite horizon problems to
make it applicable to finite horizon ADP designs.

In a series of numerical experiments, we evaluated our ADP designs and our
proposed modifications to VPI and provided insight into which modifications
and tunable settings work best. We showed how VPI significantly improves the
traditional ε-greedy strategy in a finite horizon problem, as long as exploring
and updating in VPI is done slightly more conservative than in the original
application of VPI in infinite horizon problems. We exemplified how ADP and
VPI achieve significant gains in scheduling synchromodal freight transportation
compared to a benchmark heuristic under different demand patterns. Finally,
we reflected on the limitations of our study and possible ways to tackle these
limitations. Further research about the reduction of the decision space, simplifi-
cation of the network during the learning phase, and robustness of VPI settings
in finite horizon problems is necessary for ADP to achieve the best performance
in the scheduling of freight in a synchromodal transportation network consider-
ing demand uncertainty and performance over time.

34



Acknowledgment: This research has been partially funded by the Dutch In-
stitute for Advanced Logistics, DINALOG, under the project SynchromodalIT.

References

[1] Ruibin Bai, Stein W. Wallace, Jingpeng Li, and Alain Yee-Loong Chong.
Stochastic service network design with rerouting. Transportation Research
Part B: Methodological, 60:50 – 65, 2014. ISSN 0191-2615. doi: http://
dx.doi.org/10.1016/j.trb.2013.11.001. URL http://www.sciencedirect.

com/science/article/pii/S0191261513001999.

[2] Behzad Behdani, Yun Fan, Bart Wiegmans, and Rob Zuidwijk. Multimodal
schedule design for synchromodal freight transport systems. European
Journal of Transport & Infrastructure Research, 16(3), 2016. URL
https://d1rkab7tlqy5f1.cloudfront.net/TBM/Over%20faculteit/

Afdelingen/Engineering%20Systems%20and%20Services/EJTIR/Back%

20issues/16.3/2016_03_00%20Multimodal%20schedule%20design%

20for%20synchromodal.pdf.

[3] Christian Bierwirth, Thomas Kirschstein, and Frank Meisel. On transport
service selection in intermodal rail/road distribution networks. Business
Research, 5(2):198–219, 2012. ISSN 2198-2627. doi: 10.1007/BF03342738.
URL http://dx.doi.org/10.1007/BF03342738.

[4] Belgacem Bouzaiene-Ayari, Clark Cheng, Sourav Das, Ricardo Fiorillo, and
Warren B. Powell. From single commodity to multiattribute models for
locomotive optimization: A comparison of optimal integer programming
and approximate dynamic programming. Transportation Science, 50(2):
366–389, 2016. doi: 10.1287/trsc.2014.0536. URL https://doi.org/10.

1287/trsc.2014.0536.

[5] An Caris, Cathy Macharis, and Gerrit K. Janssens. Decision support
in intermodal transport: A new research agenda. Computers in Indus-
try, 64(2):105 – 112, 2013. ISSN 0166-3615. doi: http://dx.doi.org/
10.1016/j.compind.2012.12.001. URL http://www.sciencedirect.com/

science/article/pii/S0166361512002047. Decision Support for Inter-
modal Transport.

[6] Anthony J. Craig, Edgar E. Blanco, and Yossi Sheffi. Estimating the
{CO2} intensity of intermodal freight transportation. Transportation Re-
search Part D: Transport and Environment, 22:49 – 53, 2013. ISSN
1361-9209. doi: http://dx.doi.org/10.1016/j.trd.2013.02.016. URL http:

//www.sciencedirect.com/science/article/pii/S1361920913000436.

[7] Teodor Gabriel Crainic, Mike Hewitt, and Walter Rei. Scenario group-
ing in a progressive hedging-based meta-heuristic for stochastic network
design. Computers & Operations Research, 43:90 – 99, 2014. ISSN
0305-0548. doi: http://dx.doi.org/10.1016/j.cor.2013.08.020. URL http:

//www.sciencedirect.com/science/article/pii/S0305054813002268.

[8] Leonardo Campo Dall’Orto, Teodor Gabriel Crainic, Jose Eugenio Leal,
and Warren B. Powell. The single-node dynamic service scheduling and

35

http://www.sciencedirect.com/science/article/pii/S0191261513001999
http://www.sciencedirect.com/science/article/pii/S0191261513001999
https://d1rkab7tlqy5f1.cloudfront.net/TBM/Over%20faculteit/Afdelingen/Engineering%20Systems%20and%20Services/EJTIR/Back%20issues/16.3/2016_03_00%20Multimodal%20schedule%20design%20for%20synchromodal.pdf
https://d1rkab7tlqy5f1.cloudfront.net/TBM/Over%20faculteit/Afdelingen/Engineering%20Systems%20and%20Services/EJTIR/Back%20issues/16.3/2016_03_00%20Multimodal%20schedule%20design%20for%20synchromodal.pdf
https://d1rkab7tlqy5f1.cloudfront.net/TBM/Over%20faculteit/Afdelingen/Engineering%20Systems%20and%20Services/EJTIR/Back%20issues/16.3/2016_03_00%20Multimodal%20schedule%20design%20for%20synchromodal.pdf
https://d1rkab7tlqy5f1.cloudfront.net/TBM/Over%20faculteit/Afdelingen/Engineering%20Systems%20and%20Services/EJTIR/Back%20issues/16.3/2016_03_00%20Multimodal%20schedule%20design%20for%20synchromodal.pdf
http://dx.doi.org/10.1007/BF03342738
https://doi.org/10.1287/trsc.2014.0536
https://doi.org/10.1287/trsc.2014.0536
http://www.sciencedirect.com/science/article/pii/S0166361512002047
http://www.sciencedirect.com/science/article/pii/S0166361512002047
http://www.sciencedirect.com/science/article/pii/S1361920913000436
http://www.sciencedirect.com/science/article/pii/S1361920913000436
http://www.sciencedirect.com/science/article/pii/S0305054813002268
http://www.sciencedirect.com/science/article/pii/S0305054813002268


dispatching problem. European Journal of Operational Research, 170(1):1
– 23, 2006. ISSN 0377-2217. doi: http://dx.doi.org/10.1016/j.ejor.2004.
06.016. URL http://www.sciencedirect.com/science/article/pii/

S0377221704004552.

[9] Richard Dearden, Nir Friedman, and David Andre. Model based bayesian
exploration. In Proceedings of the Fifteenth Conference on Uncertainty in
Artificial Intelligence, UAI’99, pages 150–159, San Francisco, CA, USA,
1999. Morgan Kaufmann Publishers Inc. ISBN 1-55860-614-9. URL http:

//dl.acm.org/citation.cfm?id=2073796.2073814.

[10] Anny del Mar Agamez-Arias and José Moyano-Fuentes. Intermodal trans-
port in freight distribution: a literature review. Transport Reviews, 0
(0):1–26, 2017. doi: 10.1080/01441647.2017.1297868. URL http://www.

tandfonline.com/doi/abs/10.1080/01441647.2017.1297868.

[11] Mohammad Ghane-Ezabadi and Hector A. Vergara. Decomposition ap-
proach for integrated intermodal logistics network design. Transporta-
tion Research Part E: Logistics and Transportation Review, 89:53 –
69, 2016. ISSN 1366-5545. doi: http://dx.doi.org/10.1016/j.tre.2016.
02.009. URL http://www.sciencedirect.com/science/article/pii/

S1366554515300831.

[12] Gianpaolo Ghiani, Emanuele Manni, and Barrett W. Thomas. A com-
parison of anticipatory algorithms for the dynamic and stochastic travel-
ing salesman problem. Transportation Science, 46(3):374–387, 2012. doi:
10.1287/trsc.1110.0374. URL http://dx.doi.org/10.1287/trsc.1110.

0374.

[13] Gregory A. Godfrey and Warren B. Powell. An adaptive dynamic program-
ming algorithm for dynamic fleet management, ii: Multiperiod travel times.
Transportation Science, 36(1):40–54, 2002. doi: 10.1287/trsc.36.1.40.572.
URL https://doi.org/10.1287/trsc.36.1.40.572.

[14] Justin C. Goodson, Barrett W. Thomas, and Jeffrey W. Ohlmann.
Restocking-based rollout policies for the vehicle routing problem with
stochastic demand and duration limits. Transportation Science, 50(2):591–
607, 2016. doi: 10.1287/trsc.2015.0591. URL https://doi.org/10.1287/

trsc.2015.0591.

[15] Milan Janic. Modelling the full costs of an intermodal and road freight
transport network. Transportation Research Part D: Transport and Envi-
ronment, 12(1):33 – 44, 2007. ISSN 1361-9209. doi: http://dx.doi.org/10.
1016/j.trd.2006.10.004. URL http://www.sciencedirect.com/science/

article/pii/S1361920906000794.

[16] Behzad Kordnejad. Intermodal transport cost model and intermodal dis-
tribution in urban freight. Procedia - Social and Behavioral Sciences, 125:
358 – 372, 2014. ISSN 1877-0428. doi: http://dx.doi.org/10.1016/j.sbspro.
2014.01.1480. URL http://www.sciencedirect.com/science/article/

pii/S1877042814015183.

36

http://www.sciencedirect.com/science/article/pii/S0377221704004552
http://www.sciencedirect.com/science/article/pii/S0377221704004552
http://dl.acm.org/citation.cfm?id=2073796.2073814
http://dl.acm.org/citation.cfm?id=2073796.2073814
http://www.tandfonline.com/doi/abs/10.1080/01441647.2017.1297868
http://www.tandfonline.com/doi/abs/10.1080/01441647.2017.1297868
http://www.sciencedirect.com/science/article/pii/S1366554515300831
http://www.sciencedirect.com/science/article/pii/S1366554515300831
http://dx.doi.org/10.1287/trsc.1110.0374
http://dx.doi.org/10.1287/trsc.1110.0374
https://doi.org/10.1287/trsc.36.1.40.572
https://doi.org/10.1287/trsc.2015.0591
https://doi.org/10.1287/trsc.2015.0591
http://www.sciencedirect.com/science/article/pii/S1361920906000794
http://www.sciencedirect.com/science/article/pii/S1361920906000794
http://www.sciencedirect.com/science/article/pii/S1877042814015183
http://www.sciencedirect.com/science/article/pii/S1877042814015183


[17] Le Li, Rudy R. Negenborn, and Bart De Schutter. Intermodal freight
transport planning a receding horizon control approach. Transportation
Research Part C: Emerging Technologies, 60:77 – 95, 2015. ISSN 0968-
090X. doi: http://dx.doi.org/10.1016/j.trc.2015.08.002. URL http://www.

sciencedirect.com/science/article/pii/S0968090X15002685.

[18] Arnt-Gunnar Lium, Teodor Gabriel Crainic, and Stein W. Wallace. A
study of demand stochasticity in service network design. Transportation
Science, 43(2):144–157, 2009. doi: 10.1287/trsc.1090.0265. URL http:

//dx.doi.org/10.1287/trsc.1090.0265.

[19] Hong K. Lo, Kun An, and Wei hua Lin. Ferry service network design
under demand uncertainty. Transportation Research Part E: Logistics and
Transportation Review, 59:48 – 70, 2013. ISSN 1366-5545. doi: http://
dx.doi.org/10.1016/j.tre.2013.08.004. URL http://www.sciencedirect.

com/science/article/pii/S1366554513001440.

[20] C Macharis and Y.M Bontekoning. Opportunities for {OR} in intermodal
freight transport research: A review. European Journal of Operational
Research, 153(2):400 – 416, 2004. ISSN 0377-2217. doi: http://dx.doi.org/
10.1016/S0377-2217(03)00161-9. URL http://www.sciencedirect.com/

science/article/pii/S0377221703001619. Management of the Future
MCDA: Dynamic and Ethical Contributions.

[21] William G Macready and David H Wolpert. Bandit problems and the ex-
ploration/exploitation tradeoff. IEEE Transactions on evolutionary compu-
tation, 2(1):2–22, 1998. URL http://ieeexplore.ieee.org/document/

728210/#.

[22] Martijn R. K. Mes and Maria-Eugenia Iacob. Synchromodal transport
planning at a logistics service provider. In Henk Zijm, Matthias Klumpp,
Uwe Clausen, and ten Michael Hompel, editors, Logistics and Supply Chain
Innovation: Bridging the Gap between Theory and Practice, chapter Syn-
chromodal Transport Planning at a Logistics Service Provider, pages 23–36.
Springer International Publishing, Cham, 2016. ISBN 978-3-319-22288-2.
doi: 10.1007/978-3-319-22288-2 2. URL http://dx.doi.org/10.1007/

978-3-319-22288-2_2.

[23] J.L. Nabais, R.R. Negenborn, R.B. Carmona Bentez, and M. Ayala Botto.
Achieving transport modal split targets at intermodal freight hubs using
a model predictive approach. Transportation Research Part C: Emerg-
ing Technologies, 60:278 – 297, 2015. ISSN 0968-090X. doi: http://
dx.doi.org/10.1016/j.trc.2015.09.001. URL http://www.sciencedirect.

com/science/article/pii/S0968090X15003241.
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A Modeling Assumptions

To simplify the formulation of the MDP model in Section 4, we make several
assumptions and enforce certain conditions. These assumptions and conditions
apply to our model, but not necessarily to our problem. In this Appendix, we
briefly describe the possible modifications to the MDP model such that each
assumption or condition can be bypassed.

The first condition we impose in our model is the separation between origin,
intermodal, and destination nodes. If an intermodal terminal is also an origin
or destination of freights, a duplicate node can be included in the set of origins
or destinations and their related parameters can be changed accordingly. The
second assumption in our model relates to the unlimited capacity for the first and
third type of arcs, i.e., services beginning at an origin or ending at a destination.
In other words, we assume that the pre- and end-haulage operations of our
synchromodal network are not restrictive. If there is a restriction, this must be
added to the decision space and, in case of penalization or loss of freight, the
transition function must be changed accordingly.

One of the modeling challenges we avoid is having more than one service
between two terminals. We mentioned before that duplicate intermodal nodes
can be added, and that services need to be modified accordingly. However, this
modification is more than just altering the arcs, it involves: (i) modifying the
transition function such that the same freights appear/disappear in the dupli-
cated nodes and (ii) modifying the decision space constraints such that service
capacities going to/from the duplicated nodes are respected and such that no
more than the existing freights (i.e., not duplicated) can be transported.
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B Experimental Cost Structure, Consolidation
Opportunities, and Decision Challenges

To model the costs and the effects of freight consolidation (i.e., setup costs),
we use the costs per km presented in [3] and the model with which they were
calculated originally in [15]. This cost model was developed for internal and
external costs of intermodal and road freight transportation networks, and the
logic behind it is that costs decrease non-linearly with distance and at different
rates depending on the mode. The variable cost (i.e., euro per km) for truck is
5.46d−0.278, for train is 0.58d−0.26, and for barge is 0.46d−0.26, where d is the
distance between two locations. For the fixed or setup cost (i.e., euro per service
independent of the number of freight) of a service for the train is q((15600.74)/q+
40) and for barge is 0.8q((15600.74)/q+40), where q is the capacity of the service.
We refer the reader to [15] for a thorough explanation on the cost model. In
the next paragraph, we describe the consolidation opportunities and challenges
of making decisions in each network.

Network 1 represents the so-called point-to-point topology [20]. Although
there are no transfers in this network, there are three consolidation opportunities
for each origin, namely the two train and barge services. The complexity of
the decisions in this network is two-fold: (i) the restrictions imposed by the
capacity of each service and (ii) the relation between the transportation duration
with the time-window of freights. Network 2 represents the so-called collection-
distribution topology [20]. In this network, there are four additional services,
and new transfers connected to the central terminals, compared to Network 1.
The new consolidation opportunities bring two additional challenges to those
of Network 1, the trade-off of using truck against truck-and-train to (i) bring
a freight from its origin to the start of the long-haul and (ii) bring a freight
from the end of the long-haul to its destination. Network 3 represents the
so-called hub-and-spoke network topology [20]. In this network, there is one
additional terminal, four additional services, and new transfers connected to
the new terminal, compared to Network 2. The number of paths a freight
can take from its origin to its destination significantly increases, and thus the
complexity of the decisions increases as well. To exemplify this complexity, we
compare the number of decisions in the feasible decision space of Network 3 in
the following paragraph.

In Network 3, freight from any origin, independent of the destination, can
be transported to any of the closest four terminals, transported to its desti-
nation, or postponed. Now, if we would have one released freight with the
maximum time-window in each origin, for each destination, we would have
3 × 3 × (4 + 1 + 1) = 54 possible decisions for freights at the origins. Now,
consider we have similar freights in Terminals 3, 4, and 6, which all have three
services, and we will have 45 possible decisions for freights at those terminals,
and 54 × 45 = 2430 decisions for freight at origins and Terminals 3, 4, and 6.
Following a similar logic, we would end-up with 4.3 × 105 possible decisions in
the network if at each terminal there would be one released freight with a large
enough time-window (i.e., for services to be feasible) for each destination. If
there would be two freights instead of one, we would end up with 2.6 × 108

possible decisions. In contrast, the same two freights with a large enough time-
window for each destination, at each location, would end up in 1.9× 104 in the
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restricted policy 1 and 5.8x104 in the restricted policy 2 defined in (8) and (9),
respectively.

C Experimental Probability Distributions

Table 4: Freight probability distributions for all networks

Origin 0 Origin 1 Origin 2

Freights Prob. Freights Prob. Freights Prob.
f pF

f,0,t f pF
f,1,t f pF

f,2,t

0 0.14 0 0.22 0 0.37
1 0.27 1 0.33 1 0.37
2 0.27 2 0.25 2 0.18
3 0.18 3 0.13 3 0.06
4 0.14 4 0.07 4 0.02

Table 5: Destination probability distributions for all networks

Origin 0 Origin 1 Origin 2

Destination* Prob. Destination* Prob. Destination* Prob.
d pD

d,0,t d pD
d,1,t d pD

d,2,t

9 (10) 0.1 9 (10) 0.33 9 (10) 0.14
10 (11) 0.1 10 (11) 0.34 10 (11) 0.29
11 (12) 0.8 11 (12) 0.33 11 (12) 0.57

*Destinations for Network 3 are displayed between parenthesis.

Table 6: Release Day (RD) distributions for all networks in the Benchmark
Experiments

Short Medium Long

RD Prob. RD Prob. RD Prob.

0 0.6 0 0.33 0 0.1
1 0.3 1 0.34 1 0.3
2 0.1 2 0.33 2 0.6
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Table 7: Time-window (TW) length distributions for all networks in the Bench-
mark Experiments

Short Medium Long

TW Prob. TW Prob. TW Prob.

4 0.6 4 0.33 4 0.1
5 0.3 5 0.34 5 0.3
6 0.1 6 0.33 6 0.6

D Absolute Results of the Benchmark Experi-
ments

Table 8: Average realized rewards for different time-window distributions

RD
distribution

TW
distribution

Network 1 Network 2 Network 3

BH ADP BH ADP BH ADP

Short
Short 17,862 12,131 12,339 11,289 22,191 (19)
Medium 25,286 22,775 18,232 23,486 26,634 15,001
Long 33,007 35,111 25,805 32,524 30,680 29,745

Medium
Short 17,812 10,938 12,160 9,877 22,141 209
Medium 25,302 22,267 18,052 23,015 26,573 14,612
Long 32,805 34,508 25,420 31,806 30,473 29,502

Long
Short 17,773 10,724 12,062 9,281 22,256 (44)
Medium 25,276 21,956 17,951 23,422 26,568 14,167
Long 32,876 34,511 25,401 32,462 30,467 29,274

Table 9: Average realized rewards for different time-window distributions con-
sidering RP 2

RD
distribution

TW
distribution

Network 1 Network 2 Network 3

BH ADP BH ADP BH ADP
RP 2 RP 2 RP 2 RP 2 RP 2 RP 2

Short
Short 9,273 12,131 9,014 11,289 9,374 (19)
Medium 9,677 22,775 9,244 23,486 9,537 15,001
Long 10,151 35,111 9,601 32,524 9,728 29,745

Medium
Short 9,322 10,938 9,003 9,877 9,494 209
Medium 9,814 22,267 9,338 23,015 9,728 14,612
Long 10,341 34,508 9,719 31,806 9,881 29,502

Long
Short 9,438 10,724 9,074 9,281 9,601 (44)
Medium 10,037 21,956 9,485 23,422 9,890 14,167
Long 10,643 34,511 9,944 32,462 10,150 29,274
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E Benchmark Heuristic

Algorithm 3 Benchmark heuristic

1: Define List := released freights (i.e., Fi,d,0,k,t) sorted by (a) non-decreasing
time-window k and (b) non-increasing size Fi,d,0,k,t

2: Randomize order of freights with the same time-window and size in List
3: for Fi,d,0,k,t in List do
4: if t > LAi,d,t (i.e., freight is not urgent) then

5: Define P 1
i,d,k := path to transport Fi,d,0,k,t to its destination with the

cheapest variable cost
6: Define C1

i,d,k := variable cost of P 1
i,d,k

7: Define P 2
i,d,k := path to transport Fi,d,0,k,t to its destination with the

second cheapest variable cost
8: Define C2

i,d,k := variable cost of P 2
i,d,k

9: Define Si,d,k := Savings between the two cheapest-variable-cost paths
of f (i.e., C2

i,d,k − C1
i,d,k)

10: else
11: Schedule Fi,d,0,k,t in truck
12: end if
13: end for
14: Initialize T (i, j) := 0 for all services (i, j) ∈ At
15: for Fi,d,0,k,t in List do
16: Define i := first element of P 1

i,d,k (i.e., location o Fi,d,0,k,t)

17: Define j := second element of P 1
i,d,k (i.e., next location to transport

Fi,d,0,k,t)
18: Increase T (i, j) :+ Sf (i.e., adding savings from a freight to overall savings

of service (i, j)
19: end for
20: for Fi,d,0,k,t in List do
21: if t > LAi,d,t (i.e., freight is not urgent) then

22: Define i := first element of P 1
i,d,k (i.e., location o Fi,d,0,k,t)

23: Define j := second element of P 1
i,d,k (i.e., next location to transport

Fi,d,0,k,t)
24: if T (i, j) >= Bi,j,t then
25: Schedule Fi,d,0,k,t in service (i, j) if there is available capacity.
26: end if
27: end if
28: end for
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