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Abstract: We consider an integrated usage and maintenance optimization problem for a k-out-

of-n system pertaining to a moving asset. The k-out-of-n systems are commonly utilized in 

practice to increase availability, where n denotes the total number of parallel and identical units 

and k the number of units required to be active for a functional system. Moving assets such as 

aircrafts, ships, and submarines are subject to different operating modes. Operating modes can 

dictate not only the number of system units that are needed to be active, but also where the 

moving asset physically is, and under which environmental conditions it operates. We use the 

intrinsic age concept to model the degradation process. The intrinsic age is analogous to an 

intrinsic clock which ticks on a different pace in different operating modes. In our problem 

setting, the number of active units, degradation rates of active and standby units, maintenance 

costs, and type of economic dependencies are functions of operating modes. In each operating 

mode, the decision maker should decide on the set of units to activate (usage decision) and the 

set of units to maintain (maintenance decision). Since the degradation rate differs for active and 

standby units, the units to be maintained depend on the units that have been activated, and vice 

versa. In order to minimize maintenance costs, usage and maintenance decisions should be 

jointly optimized. We formulate this problem as a Markov decision process and provide some 

structural properties of the optimal policy. Moreover, we assess the performance of usage 

policies that are commonly implemented for maritime systems. We show that the cost increase 

resulting from these policies is up to 27% for realistic settings. Our numerical experiments 

demonstrate the cases in which joint usage and maintenance optimization is more valuable.  

Keywords: k-out-of-n system, maintenance, usage, maritime, moving assets  

 Introduction 1.

For moving assets such as aircrafts, ships, and submarines, unexpected downtimes can be very costly. 

In addition, failures can affect health, safety, and environment. Redundancy, i.e., having a number of 

identical units in parallel, is the most obvious way to prevent downtime. The k-out-of-n systems are 

common in practice, where n states the number of parallel units and k the number of units that needs 

to be functioning.  

The operations of moving assets consist of different operating modes. In each operating mode, 

degradation parameters and operational requirements are different. For example, the operating modes 

of aircrafts consist of standby, taxiing, take-off, cruising, and landing (Özekici and Soyer, 2004). The 

operating modes of a Navy ship reflects its physical location, environment, and mission type, e.g., 

harbor, transit, training, anti-submarine warfare, and surveillance (Tinga and Janssen, 2013). In each 

operating mode, the number of engines that is required to be active is different. For the above-given 

aircraft example, one engine is required during the taxi phase, but both engines are necessary during 

the take-off phase (Xing et al., 2012). Similarly, a ship can use several propulsion engines while 
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sailing in high speed, but a single propulsion engine is sufficient for slow speed operations and during 

harbor visits. Other systems with similar characteristics include the energy generation systems and 

refrigeration plants on board of the frigates (Tinga and Janssen, 2013), aerospace computing systems 

(Bricker, 1973; Xing et al., 2012), and airborne weapon systems (Winokur and Goldstein, 1969). For 

the above-given examples, the sequence and the duration of operating modes can be modelled as 

random variables (see, e.g., Alam and Al-Saggaf, 1986; Çekyay and Özekici, 2015). 

Moving assets operate at remote locations and are exposed to different stress levels and environmental 

conditions in different operating modes (Xing et al., 2012; Levitin et al., 2016). Consequently, the rate 

at which the system units degrade varies. Moreover, the units that are in standby mode usually 

degrade with a lower rate than the units that are active. In this paper, we use the intrinsic age concept 

to model this degradation process (see, e.g., Çinlar and Özekici, 1987; Özekici, 1995; Çekyay and 

Özekici, 2015). The intrinsic age is analogous to an intrinsic clock which ticks on a different pace in 

different operating modes for active and standby units. In practice, a unit can be defined as failed if its 

overhaul cannot be delayed any further. This corresponds to a soft failure in case of which the unit 

should be switched-off and cannot be utilized until being overhauled. For complex units such as 

maritime or aircraft engines, conventional practice has been to perform an overhaul for which the 

timing is determined by running hours. Intrinsic age better reflects the influence of the stochastic 

mission process and usage decisions on degradation.  

In this paper, we consider that the intrinsic age of the units is observable. This enables condition-

based usage and maintenance decisions, i.e., deactivating a unit or executing maintenance at the 

moment that its intrinsic age exceeds a certain threshold value. The condition of system units can be 

monitored continuously or periodically. Currently, the applicability of continuous monitoring is 

limited for many moving assets. Continuous monitoring requires an investment in online sensor 

technologies. Only 2% of the classed world maritime fleet currently employs such techniques 

(Tinsley, 2016). Most commonly, physical inspections are performed by the personnel on board or at 

the home base (e.g., harbor, dock, or hangar).  

Because of the existence of economic dependencies in a k-out-of-n system, the optimal maintenance 

decision on system level is not simply the combination of the optimal maintenance decisions on unit 

level (Dekker et al., 1997; Nicolai and Dekker, 2008). In some cases, it might be beneficial to 

maintain several units simultaneously to benefit from economies of scale and to reduce the setup costs 

(positive economic dependence). For other cases, maintaining several units simultaneously is more 

expensive than maintaining them individually (negative economic dependence). This is due to the 

resulting peak in manpower needs, combined risk of human error, the cost of downtime, and 

legal/safety requirements prohibiting joint maintenance. Economic dependencies considered in our 

model have a general structure. For moving assets, we often observe positive economic dependence 
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when the moving asset is at the home base and negative economic dependence during missions at 

remote locations. In order to make the best use of positive economic dependence and exploit the 

lifetime of the units, the intrinsic age of several units has to be sufficiently high just before 

maintaining them. On the other hand, if the intrinsic ages of several units are high, the reliability of 

the whole system decreases during missions. In this case, maintenance of these units may become 

inevitable in a mission state where the value of k is high and economic dependence is negative. The 

value of k is dictated by the operating mode. The decision maker should decide which units to activate 

among the functional units. Usage decisions influence future maintenance decisions (i.e., the units to 

be maintained) and maintenance decisions influence future usage decisions (i.e., the units to be 

activated). In order to minimize maintenance costs, usage and maintenance decisions should be jointly 

optimized. 

Our work is motivated by our collaboration with two maritime asset owners, Fugro and the Royal 

Netherlands Navy (RNLN). Fugro provides geotechnical, survey, subsea, and geoscience services. A 

major part of Fugro’s turnover stems from the research of the seafloor, for which the so-called survey 

vessels are employed. The propulsion system of the survey vessels contains three diesel engines. The 

number of engines to activate varies during operations. Maintenance of these engines is outsourced to 

the Original Equipment Manufacturer (OEM) and maintaining several engines simultaneously is not 

preferable because of negative economic dependencies. The currently implemented usage policy is to 

activate the most deteriorated unit(s) first (unbalanced usage policy). Maintenance services are 

requested from the OEM when the most deteriorated unit reaches its soft failure threshold. The OEM 

can maintain the diesel engines on board. However, setup and maintenance costs depend on the 

physical location of the vessel. There exist similar system configurations for the navy frigates of the 

RNLN. The navy frigates have four diesel generators that satisfy varying energy requirements of the 

frigate. The generators are always operated in fixed pairs  (see Tinga and Janssen, 2013). It is 

preferable to maintain these units simultaneously in the home harbor due to positive economic 

dependence. However, maintenance during missions has to be avoided because of safety concerns and 

negative economic dependence in mission states. The RNLN utilizes the two pairs of diesel generators 

equally during missions (balanced usage policy) and maintain them altogether in the home harbor 

when they are sufficiently deteriorated. In this paper, we assess the performance of these commonly 

implemented policies. Our numerical experiments show that the integration of usage and maintenance 

decisions has a great value in these real-life settings.  

Our main contributions to the literature are as follows. To the best of our knowledge, the above-

presented k-out-of-n system setting has not been considered in the maintenance optimization literature 

despite its practical relevance. We explicitly model the relation between the system’s usage and 

deterioration in different operating modes and optimize usage and maintenance decisions in an 
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integrated way. We formulate this optimization problem as a Markov decision process in which the 

objective is to minimize the expected total discounted maintenance cost. We provide structural 

properties of the optimal policy and give insights into the performance of the optimal policy compared 

to simple policies that are commonly used in practice. 

The paper is organized as follows. Section 2 presents the related literature. Section 3 formulates the 

problem as a Markov decision process. Section 4 characterizes the structure of the optimal usage and 

maintenance policy. Section 5 provides numerical experiments and an illustrative example, providing 

insights about the performance of the optimal policy. Section 6 draws some conclusions and suggests 

potential future research directions. 

 Literature Review 2.

Our definition of moving assets is analogous to the so-called phased-mission systems which are 

subject to multiple phases of operation. The environment under which these systems operate can 

change from phase to phase as well as their failure properties. There is a vast literature on reliability 

analysis of phased-mission systems (e.g., Esary and Ziehms, 1975; Kim and Park, 1994; Kharoufeh et 

al., 2010). However, only a few papers include the redundancy aspect. The settings considered in 

Xing et al. (2012) and Rokseth and Utne (2015) are very similar to that of our paper. Xing et al. 

(2012) investigate the exact reliability evaluation of k-out-of-n systems with identical units subject to 

phased-mission requirements. The value of k and failure time distributions of system units change 

from phase to phase. The proposed method is demonstrated on examples inspired from multi-

processor computer systems of aerospace assets. Rokseth and Utne (2015) perform risk assessment 

focusing on diesel propulsion engines in dynamic positioning systems of maritime and offshore 

vessels. The risk assessment of Rokseth and Utne (2015) considers potential future failures. 

Recently, a new type of optimization problem, called as the standby element sequencing problem, has 

been investigated for 1-out-of-n systems with non-identical units that are subject to phased-mission 

requirements (see, e.g., Levitin et al., 2014; Dai et al., 2016; Levitin et al., 2016). In this problem, the 

objective is to select the activation sequence of units so as to minimize the expected mission cost of 

the system while providing a certain level of system reliability. It is assumed that during different 

mission phases the time-to-failure distributions of units are different. In our paper, usage decisions 

consist of activation and deactivation of units and it has similarities with the above-mentioned 

sequencing decision. However, we focus on k-out-of-n systems with identical units. Active and 

standby units degrade with different rates in different operating modes (i.e., mission phases) and the 

number units to be activated (i.e., the value of k) depends on the operating mode. At inspection 

epochs, the system condition (i.e., the intrinsic age of the units) is inspected and usage and 

maintenance decisions are updated given the current condition and operating mode.  
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Usage and maintenance decisions that we consider are condition-based decisions. In the last two 

decades, several condition-based maintenance models have been developed for phased-mission 

systems (see, e.g., Özekici, 1995; Çekyay and Özekici, 2012; Ulukus et al. 2012; Xiang et al., 2012; 

Flory et al., 2015). Our work is closely related to that of Özekici (1995) and Ulukus et al. (2012). 

Similar to our work, the authors consider the intrinsic age concept for degradation. The intrinsic age is 

a continuous random variable, and its pace is modulated by the mission process. The structure of 

optimal maintenance decisions is characterized for finite state Markov processes. However, these 

papers neither consider redundancy nor varying operational requirements in different mission phases. 

Therefore, usage decisions are not needed in their problem setting.  

For multi-unit systems, the optimal maintenance decision on system level depends on economic 

dependencies. A number of maintenance models have been proposed for multi-unit systems, but most 

of them consider positive economic dependencies (see e.g., Wildeman et al., 1997; Bouvard et al., 

2011; Zhang et al., 2013; Çekyay and Özekici, 2015; Zhu et al., 2015). Vu et al. (2014) considers both 

negative and positive economic dependence in complex multi-unit systems having a mixture of series 

and parallel connections. Huynh et al. (2015) and Olde Keizer et al. (2016) propose condition-based 

maintenance policies for k-out-of-n systems with positive economic dependence. Sheu and Kuo 

(1994) and Pham and Wang (2000) consider both positive and negative economic dependencies for k-

out-of-n systems. To the best of our knowledge, in none of the existing papers the structure of 

economic dependencies is operating mode dependent.  

 Markov decision process formulation 3.

In this section, we formulate the optimization problem of usage and maintenance decisions in a k-out-

of-n system as a Markov decision process (MDP). Since many moving assets have very long service 

times, we develop an infinite horizon model. Our objective is to minimize the expected total 

discounted cost of maintenance over an infinite horizon.  

Let I  be a finite non-empty set representing different operating modes of a moving asset. Operating 

modes dictate the number of units that are required to be active (influencing possible usage decisions), 

where the moving asset physically can be (influencing cost parameters), and under which 

environmental conditions it operates (influencing degradation parameters). For many moving assets, 

the sequence and the duration of operating modes are more realistically modelled as random variables 

since there exists various uncertainties about the future operations and environments (see Alam and 

Al-Saggaf, 1986; Çekyay and Özekici, 2015).  The operation process of moving assets can be well-

presented by a Markov process (see Çekyay and Özekici, 2012; Eruguz et al., 2016). In this respect, 

we assume that the operation process evolves as a continuous-time Markov chain (CTMC) on discrete 

state space I . The sojourn time in each operating mode Ii  is exponentially distributed with rate 
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.i  The probability that the system jumps to operating mode Ij  when it leaves operating mode 

Ii  is denoted by ij . Without loss of generality, we assume that 0ii .  

Inspections of the system reveal the current condition of the units in the k-out-of-n system and 

correspond to the decision epochs. We assume that the system is inspected and a decision regarding 

maintenance and usage is made when the operating mode changes. Additional inspection and decision 

epochs occur according to a Poisson process with rate ir   in operating mode Ii  where 

0}|max{  Iir i . When the value of r  is very high, inspections approach to continuous 

monitoring. On the other hand, when }|max{ Iir i   , inspections are dictated by the operation 

process. For ,, Iji   the operating mode transition probabilities between two consecutive inspection 

epochs can be computed by: 













 
Ij

iij

iij

ij jir

jir

p .for /1

for /





  

Let  nS ,...,1  be the finite set of identical units composing the k-out-of-n system (where 2n ). 

The number of units that are required to be active },...,1,0{ nk  is a function of operating modes. The 

set of operating modes in which k units are required to be active is denoted by kI  where: 

 
n

k

kII
0

 . 

The k-out-of-n system is subject to different environmental conditions and stress levels in different 

operating modes. We model this by modulating the degradation rate by the operation process. The 

degradation of the units accumulates with linear and deterministic rates in different operating modes. 

The stochasticity in the degradation process stems from the operation process. Such degradation 

processes are commonly considered by practitioners from aviation and manufacturing industry 

(Özekici, 1995; Ulukus et al., 2012). They are commonly applied in reliability analysis and 

maintenance optimization (see, e.g., Kharoufeh, 2003; Kharoufeh and Cox, 2005; Kharoufeh et al., 

2010; Xiang et al., 2012).  

In the k-out-of-n system, the degradation rates differ based on usage, i.e., depending on whether a unit 

is active or on standby. The degradation rate in operating mode Ii  is denoted by 01 i  for active 

units and 00 i  for standby units. The time required to activate a standby unit or deactivate an active 

unit is assumed to be negligible. Without loss of generality, we assume that .01
ii     

The total degradation accumulated on unit Ss  corresponds to its intrinsic age sd  where   is 

the set of non-negative real numbers. The intrinsic age accumulates continuously and additively over 
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time with the above-given degradation rates. A unit is functional if its intrinsic age is less than a 

certain soft failure threshold F. That is, if Fd s  , it is not safe to activate unit Ss  and the unit 

becomes non-functional. Non-functional units have to be switched-off or maintained. The units that 

are switched-off do not degrade any further. For critical systems on board of the moving assets, 

inspection rate r  is assumed to be large enough, making the likelihood of a hard failure between two 

inspection instants negligible.  

The decision maker inspects the current operating mode Ii  and the current system condition 

)|( Ssds d  at each inspection instant and makes a decision. The action space consists of n2 -

dimensional action vectors ),( uma  , where )|( Ssms m  represents a binary vector of 

maintenance actions and )|( Ssus u  represents a binary vector of usage actions. If unit Ss  is 

to be maintained 1sm , otherwise, 0sm . Similarly, if unit Ss  is to be activated ,1su  

otherwise, 0su .  

We assume that maintenance actions are instantaneous and they are immediately followed by usage 

actions. For critical systems, the maintenance lead time is usually in the order of hours or days while 

time-to-failure is in the order of months or years. Therefore, it is justified to assume that the 

maintenance lead time is negligible. The downtime resulting from maintenance can be reflected in the 

cost parameters. 

The condition of a unit after maintenance is assumed to be as good as new, i.e., 0sd  for all 

maintained units Ss  after maintenance. Subsequently, degradation accumulates with rate 1
i  for 

active units and rate 0
i  for standby units in operating mode Ii  until the next inspection epoch. For 

ease of exposition in the MDP, we swap the index of the units such that 0...21  nddd  after 

maintenance and usage actions. Hence, we define the set of condition vectors as 

  0...|,..., 211   n
n

n ddddd  and the state space of the Markov decision process as 

.I   

In operating mode kIi , if the number of functional units is less than k, then maintenance should be 

performed immediately to attain at least k functional units. We assume that maintenance is possible in 

each operating mode. This is realistic for maritime assets since most of the maintenance activities can 

be performed on board.  Let l  be the set of system condition vectors in which exactly 

},...,1,0{ nl  units are functional. If ld , then: 

0...... 11   nlnln ddFdd   for },...,2,1{ nl  

Fdddd nlnln   ...... 11   for .0l  
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The set of possible maintenance actions ),( diM  consists of maintenance action vectors satisfying the 

following property: 

.,for}0,max{ lk

Ss

s Iilkm 


d  (1) 

Let se  be the n-dimensional unit vector with a 1 on the s-th position. Let   be an operator that orders 

the system units in descending order of intrinsic age. The effect of maintenance action m  on system’s 

condition vector d  is modelled using operator mΜ , which sets the intrinsic age of all maintained 

units to zero: 

.Μ 












 

Ss

sssdm eddm  (2) 

Each unit Ss  can either be active ( 1su ), in standby ( 0su  and )Fds  , or switched-off 

0( su  and )Fds  . The set of possible usage actions ),( diU  consists of usage action vectors 

satisfying the following property: 

.,for
,

n
k

FdSs

s Iiku

s





 d  (3) 

Let du ti,,U  be the usage operator modelling the effect of the usage action u  on condition vector d , if 

the system resides in operating mode Ii  during x  time units: 

.U
,

,, 












 

 FdSs

s
u
ixi

s

s xeddu   (4) 

Since the usage follows maintenance, the units that are maintained at a decision epoch can be 

activated immediately. Hence at a decision epoch, if the system’s state is  Ii ),( d , a possible 

decision is defined as ),( uma   where ),( dm iM  and  .M, du miU  

In order to perform maintenance, maintenance engineers, equipment, and spare parts usually need to 

be transported to the moving asset, which results in high costs when the moving asset is outside the 

home base. As a consequence, maintenance costs depend on the operating mode in which 

maintenance is performed. The maintenance actions performed before or after crossing the soft failure 

threshold do not differ since the likelihood of a hard failure between two inspection instants is 

negligible. Therefore, we do not distinguish between corrective and preventive costs. Maintenance 

costs consist of setup costs and per-unit maintenance costs. Per-unit maintenance costs 0)(var iC  

include variable costs of man-hours and spare parts required for the maintenance of a single unit in 

operating mode .Ii  Setup costs include the fixed costs associated with transportation, maintenance 
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setup, and the associated downtime. Setup costs 0),(set iC  do not only depend on the operating 

mode Ii  but also on the number of units to be maintained  , where: 





Ss

sm  .  

and .0)0,(set iC  The total maintenance cost ),(tot iC  is defined as: 

).,()(),( setvartot  iCiCiC   

If maintaining several units simultaneously is less expensive than maintaining them separately, i.e. 

when there is positive economic dependence while maintaining },...,2{ n  units in operating mode

Ii , then ),(tot iC  is subadditive in  , i.e.: 

),(),(),( tottottot siCsiCiC    for all }.,...,1,0{ s  

On the other hand, if maintaining several units simultaneously is more expensive than maintaining 

them separately, i.e., when there is negative economic dependence while maintaining },...,2{ n  

units in operating mode Ii , then ),(tot iC  is superadditive in  , i.e.: 

),(),(),( tottottot siCsiCiC    for all }.,...,1,0{ s  

Since the variable cost component in ),(tot iC  (i.e., )(var iC ) is linearly increasing in  , the 

subadditivity or superadditivity of  ),(tot iC  stems from the setup costs ),(set iC . Our model can 

handle general structures for ),(tot iC , i.e., we do not require that ),(tot iC  is subadditive or 

superadditive. 

We assume a continuous discount rate 0  so that any cost incurred at some future time x is 

discounted by a factor 
xe 

. Let ),( diV  be the value function representing minimum expected total 

discounted cost using the optimal policy, if the current state is  Ii ),( d : 









 



),(),(min),( ,

tot

)M,(),,(|),(
dd um

dudmum m

iVmiCiV
Ss

s
iUiM

 (5) 

where 
um,  is an operator that models action ),( um  with ),( dm iM  and )M,( du miU  as 

follows: 

  





Ij

xi
xr

ij dxjVrepiV
0

,,
)(

, ΜU,),( dd muum


 (6) 
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Let ℕ0 be the set of non-negative integers and ),( diVt  be the minimum expected total discounted cost 

when there are t ℕ0 inspections left starting in operating mode Ii  and condition vector .d  We 

define the t-stage problem for t ℕ0\{0} as follows:  









 




 ),(),(min),( 1,
tot

)M,(),,(|),(
dd um

dudmum m

iVmiCiV t

Ss

s
iUiM

t  (7) 

Without loss of generality we can select ),(0 diV  such that: 

 }0,max{,),( tot
0 lkiCiV d  lkIi  d,for , and },..,1,0{, nlk  . (8) 

Our model satisfies the conditions of Corollary 9.17.1 in Bertsekas and Shreve (2004, p. 235), which 

establishes the existence of an optimal deterministic stationary policy and the convergence of the 

value iteration algorithm to the optimal value. When solving problem (7) numerically, we discretize 

the continuous component of the state space (see Appendix I). 

 Optimal Policy 4.

In this section we analyze the structure of the optimal usage and maintenance policy. Theorem 1 gives 

the structure of the optimal maintenance policy, which is valid regardless of the optimal usage policy. 

Theorem 2 states that the optimal usage policy has a specific structure if the optimal maintenance 

policy satisfies certain conditions. These structural properties stem from monotonicity results related 

to the system’s condition. The proofs of the theorems are given in Appendix II and III, respectively. 

Let sm  be the maintenance action vector having the value of 1 on positions 1,…,s and the value of 0 

on positions  s + 1, …, n.   

Theorem 1: The structure of the optimal maintenance policy satisfies the following: 

(a) In state lkIi ),( d  with },...,1,0{, nlk  , there exists an }},...,,0{max{ nlks   such that 

an optimal maintenance policy ),(*
dm i  is sm . 

(b) If si mdm ),(*
, then sssi medm  ))(,( ''

*   for any 
's  and 's  satisfying 

.'1 nss   

Theorem 1(a) states that the units that are to be maintained are the ones with the highest intrinsic age. 

Therefore, at each decision epoch, the number of units to be maintained is a sufficient indicator of the 

optimal maintenance decision. Theorem 1(b) implies the following. Assume that sm  is optimal in 

state .),(  Ii d  Then sm  remains optimal in operating mode Ii , if the conditions of the units 

that are to be maintained  are worse and the conditions of the units that are not to be maintained  are 

the same as the ones in .d  
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From a practical standpoint, these properties show the optimality of an intuitive approach: 

maintaining the most deteriorated units first. They are also useful to reduce the computational effort in 

the solution algorithm. The action space can be reduced significantly by eliminating the maintenance 

decisions that do not satisfy these properties.  

Let 
21,ssu  be the usage vector for Sss 21,  and 21 ss   having the value of 1 on positions 21,...,ss  

and the value of 0 on the remaining positions. 

Theorem 2: If either 0m  or nm  is optimal in each state  Ii ),( d  for all t-stage problems where 

t ℕ0\{0}, then the associated optimal usage decision is nkn ,1u  in each operating mode kIi  with 

},...,1{ nk  for all t-stage problems and also for the infinite horizon problem. 

The maintenance policy given as a condition in Theorem 2 corresponds to an all-or-nothing policy, 

i.e., either maintain all units or none of them. Although this maintenance policy is restrictive, it is 

commonly applied for systems that are maintained by major overhauls (e.g., navy frigates). The usage 

policy described in Theorem 2 is equivalent to activate the least deteriorated k units in each operating 

mode kIi . This tends to balance the intrinsic age of all units. We refer to this usage policy as 

balanced usage policy (BUP). When this usage policy is combined with an all-or-nothing 

maintenance policy, the objective is to equally use all of the units and maintain them simultaneously 

when they are sufficiently deteriorated. We note that for the optimality of an all-or-nothing 

maintenance policy, positive economic dependence while maintaining n units is necessary in all 

operating modes (see Remark 1 in Appendix IV). However, the latter is not a sufficient condition (see 

Table 4). Even when there is positive economic dependence while maintaining n units, maintaining a 

few units might be cost-effective in operating modes where maintenance is expensive. As such 

facultative maintenance tasks can be postponed to the operating modes where maintenance is cheap. 

The counterpart of BUP is the unbalanced usage policy (UUP) under which the most deteriorated  

(yet functional) k units are activated in each operating mode kIi . This usage policy intends to 

increase the intrinsic age difference between the most deteriorated (the oldest) and the least 

deteriorated (the youngest) functional units. As such, UUP exploits the benefits of redundancy within 

the system. We note that the optimality of UUP cannot be guaranteed as a counterpart of Theorem 2, 

i.e., under the optimality of a certain maintenance policy (see Remark 2 in Appendix IV). In maritime 

applications, we observe that UUP is usually preferred when there is negative economic dependence 

in all operating modes. However, negative economic dependence is neither necessary nor sufficient 

condition for the optimality of UUP. Indeed, UPP can be optimal even when there is positive 

economic dependence (see Remark 3 in Appendix IV). In Section 5, we assess the performance of 

BUP and UPP for realistic problem settings.  
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 Numerical experiments 5.

In maritime applications, we observe that operators apply either BUP or UUP mainly depending on 

the economic dependencies that are encountered. As a rule of thumb, BUP is adopted in case of 

positive economic dependence since it enables to exploit the economies of scale to the fullest extent. 

On the other hand, UUP exploits the redundancy in the system by increasing the intrinsic age 

difference between the oldest and the youngest units. In practice, UUP is favored in case of negative 

economic dependence. In a maritime application, there is positive economic dependence when the 

ship is docked. However, there is often negative economic dependence in mission states because of 

safety requirements, long downtime costs resulting from joint maintenance, and limited resource 

capacity during missions. Such a structure of economic dependencies makes the optimal usage policy 

non-obvious for practitioners. 

In this section, we execute numerical experiments in order to test the overall performance of BUP and 

UUP. Maintenance decisions are optimized for both benchmark policies. In Section 5.1, we describe 

our test bed. The results of our comparative analysis are discussed in Section 5.2. In Section 5.3, we 

illustrate the optimal usage and maintenance policy on a problem instance. 

5.1. Setup 

We are motivated by maritime k-out-of-n systems such as the engines of a propulsion system, 

generator sets of an energy generation system, or water chillers of a refrigeration plant. These units 

are associated with critical functions, i.e., propulsion, energy generation, and cooling, respectively. 

We consider systems containing 2 or 3 units. We note that our test bed reflects our observations from 

real-life systems of both commercial (survey vessels of Fugro with 3 diesel propulsion engines) and 

defense equipment (frigates of the RNLN with 2 pairs of diesel generators and 3 water chillers). 

We define 4 operating modes }3,2,1,0{I . Operating mode 0i  represents a state in which the ship 

is in dock (home harbor), none of the units are required to be active. Operating mode 1i  represents 

a state in which the ship is in a (foreign) harbor during which minimum power, i.e. one functional unit 

is sufficient. For a system consisting of 2 units, operating modes 2i  and 3i  are transit/mission 

states, in which 1 and 2 units are required to be active, respectively. For a system consisting of 3 units, 

operating modes 2i  and 3i  are transit/mission states, in which 2 and 3 units are required to be 

active, respectively. Dock visits are not very frequent. They are followed by equally probable 

transit/mission states. Transit/mission states can be followed by a harbor visit or another 

transit/mission state with the same probability. For such an operation process, the operating mode 

transition probability matrix is defined as in Table 1. 

Three alternatives are considered regarding the operating mode transition rates representing constant, 

increasing, and decreasing transition rates as a function of Ii . The different alternatives for 
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operating mode transition rates are computed using transition coefficients 
i  given in Table 2. For 

each alternative, we set 60   per year and apply 0 ii   for each }3,2,1{i . Similarly, three 

alternatives are considered for the degradation rates of active units, covering the cases in which the 

degradation is constant, increasing, and decreasing as a function of Ii . For each alternative, we set 

01
0   and ii  1

 for all }.3,2,1{i  Three alternatives are considered for the degradation rate of 

standby units such that 00 i  (none), 
10 5.0 ii    (medium), and 

10 8.0 ii    (high) for each Ii .  

Table 1: Operating mode transition probability matrix 

ij  j = 0 j = 1 j = 2 j = 3 

i = 0 0.000 0.000 0.500 0.500 

i = 1 0.010 0.000 0.495 0.495 

i = 2 0.010 0.495 0.000 0.495 

i = 3 0.010 0.000 0.495 0.495 

Table 2: Transition and degradation coefficients for each alternative 

Transition coefficients 
i  i = 1 i = 2 i = 3 

Constant 1.00 1.00 1.00 

Increasing 0.50 1.00 1.50 

Decreasing 1.50 1.00 0.50 

We note that by the definition of operating modes, maintenance costs are non-decreasing as a function 

of Ii . We consider increasing and constant maintenance cost alternatives. Typically, maintenance 

costs are higher in transit/mission states than in the harbor. The lowest maintenance cost is incurred in 

dock. In addition, maintenance costs might be higher in 3i  than in 2i , considering the physical 

location of the moving asset or the resulting downtime when operational requirements in terms of the 

number of active units is high. Under the latter situation, maintenance costs are increasing as a 

function of Ii . On the other hand, for some systems, there is a possibility to have spare part stocks 

and trained maintenance personnel on board at all times, which would make maintenance costs 

constant over operating modes. The cost coefficients considered for increasing and constant 

maintenance cost alternatives are as given in Table 3. Using cost coefficient i  in operating mode 

Ii , we compute the fixed cost of maintaining a single unit by:  

)()1,( varfix iCiC i  where )(var iC  €1,000 for all .Ii  

We consider positive, negative, and mixed economic dependencies. For each operation mode ,Ii  

setup costs are given by: 

 )1,(),( setset iCiC   for }3,2{  (9) 

which is a subadditive function in the number of units to be maintained }3,2{ , representing 

positive economic dependence in all operating modes. Superadditive function: 
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2setset )1,(),(  iCiC   for }3,2{  (10) 

is used to represent negative economic dependence in all operating modes. We consider mixed 

economic dependence such that (9) is used for }1,0{i  and (10) is used for }.3,2{i  

Table 3: Costs coefficients for each alternative 

Cost coefficients 
i  i = 0 i = 1 i = 2 i = 3 

Constant 1.00 1.00 1.00 1.00 

Increasing 0.50 0.75 1.25 1.50 

The system’s inspection rate is selected as 24r  per year and the continuous discount rate is 

)90.0ln( , corresponding to an annual discount rate of 10%. The soft failure threshold is .1F  

We assume 15K  intrinsic age values equally spaced on interval ].,0[ F  In (7), we replace 

integration with summation and the exponential density function with a truncated geometric 

probability mass function (see Appendix I). We perform a full factorial experiment leading to 

32423 24   problem instances. 

5.2. Results 

We assess the value of the optimal policy by comparing its performance with benchmark usage 

policies, BUP and UPP. Under each benchmark usage policy, maintenance decisions are optimized. 

Table 4 reports the average and maximum cost increases associated with BUP and UUP. The cost 

increase is calculated by ** /)( CCCCS  ,  where C  is the expected total discounted cost under the 

benchmark policy and *C  is the optimal cost obtained by our integrated usage and maintenance 

optimization model.  

Our numerical experiments show that the optimal policy can have a significant value compared to 

BUP and UUP. The cost increase is up to 8% and 27% under BUP and UUP, respectively. BUP 

outperforms UUP for most of the problem instances. Although the optimality of BUP cannot be 

guaranteed when there is positive economic dependence, BUP is usually near-optimal for these cases. 

On the other hand, UUP performs the worse in case of positive economic dependence. 

Counterintuitively, the average cost performance of BUP and UUP are similar in case of negative 

economic dependence. In addition, none of them is near-optimal. Under BUP, all units would reach 

the soft failure threshold more or less at the same time. Therefore, the reliability of the whole system 

decreases over time and simultaneous maintenance of several units gets inevitable. The latter is costly 

in case of negative economic dependence and its impact increases with the number of units. Under 

UUP, the intrinsic age of standby units are kept low, making the best use of redundancy. However, 

always using the oldest units would lead to a situation where maintenance is inevitable in an operating 
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mode in which maintenance costs are high. In order to avoid this, it would be better to activate a unit 

with low intrinsic age. As such, maintenance of the oldest unit can be postponed to an operating mode 

in which maintenance costs are cheap. That is why, the cost performance of UUP deteriorates when 

maintenance costs are increasing and improves when maintenance costs are constant over .Ii  For 

the same reason, the cost performance of BUP deteriorates when maintenance costs are constant and 

improves when maintenance costs are increasing in .Ii  The possibility of postponing maintenance 

to operating modes in which maintenance costs are cheap can have a significant value. It is not always 

beneficial to sacrifice this flexibility at the benefit of individual versus simultaneous maintenance. 

Table 4: Average and maximum cost increases under BUP and UUP compared to the optimal policy 

Parameter Alternative 
BUP UUP 

Average Maximum Average Maximum 

Number of units 
2 units 2.35% 6.44% 6.72% 22.22% 

3 units 3.06% 8.17% 7.60% 26.56% 

Operating mode transition rates 

Constant 2.72% 7.55% 7.28% 26.56% 

Increasing 2.89% 8.17% 7.87% 24.33% 

Decreasing 2.50% 6.67% 6.31% 26.28% 

Degradation rate of an active 

unit 

Constant 2.99% 8.17% 6.71% 21.37% 

Increasing 2.82% 7.14% 3.82% 14.31% 

Decreasing 2.31% 7.13% 10.94% 26.56% 

Degradation rate of a standby 

unit 

None 2.70% 8.17% 10.75% 26.56% 

Medium 2.99% 7.97% 7.60% 21.31% 

High 2.43% 6.88% 3.12% 12.59% 

Maintenance costs 
Constant 3.04% 7.55% 6.58% 26.56% 

Increasing 2.37% 8.17% 7.73% 25.51% 

Economic dependency 

Positive 0.13% 2.65% 12.17% 26.56% 

Negative 4.85% 8.17% 4.36% 17.14% 

Mixed 3.13% 6.12% 4.94% 19.14% 

Overall Average   2.70%   7.16%   

We observe that the cost performances of BUP and UUP are sensitive to the transition and 

degradation rates. When it is more likely to be in an operating mode in which n units are required (i.e., 

operating mode transition rates are decreasing), the error that is made because of non-optimal usage 

decisions is less significant. Contrarily, when it is more likely to be in an operating mode in which  

nk 0  (i.e., operating mode transition rates are increasing), the performance of both BUP and 

UUP decreases. UUP performs worse when the intrinsic age difference of active and stand-by units 

increases dramatically as a consequence of usage. The latter happens when standby units do not 

deteriorate and/or the deterioration of the active units is much faster in operating modes where 

nk 0  (i.e., degradation rates are decreasing). In contrast, if the deterioration rate of standby units 

is high, the intrinsic age difference between the oldest and the youngest units would be similar under 

any usage policy. In this case, both UUP and BUP perform relatively well. 
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Although BUP is near-optimal for many instances within our full factorial experiment, it is not always 

a suitable policy. Its performance gets worse for 3-unit systems, under mixed/negative economic 

dependence, constant maintenance costs, and medium deterioration of standby units. For those cases, 

optimal usage policy is more valuable. 

5.3. An illustrative example 

In this section, we illustrate the optimal usage and maintenance policy on an example. This example is 

inspired by the navy frigates of the RNLN (see Tinga and Janssen, 2013). For the navy frigates, dock 

maintenance in the home harbor is the cheapest option and maintenance costs are increasing in 

operating modes due to the costs associated with the transportation of personnel, spare parts, and the 

resulting downtime. Due to safety concerns and the risk of human error, maintaining more than one 

unit simultaneously is inadvisable in a foreign harbor (i.e., for i = 1) and during transit and mission 

states (i.e., for i = 2, 3). On the other hand, there is positive economic dependence in the home harbor 

(i.e., for i = 0). The transit/mission state that requires 2 active units is the shortest operating mode 

while docking is the longest operating mode. Active units are considered to degrade with the same 

rate in different operating modes. The degradation rate of standby units is medium. We consider 

parameter values presented in Section 5.1, except that the mixed economic dependence is customized. 

The parameter alternatives considered are detailed in Table 5. Figures 1(a), (b), (c), and (d) present 

the optimal policy in operating modes i = 0, i = 1, i = 2, and i = 3, respectively. 

Table 5: Parameters used in the illustrative example 

Parameter Alternative 

Number of units 2 

Operating mode transition rates Increasing 

Degradation rate of an active unit Constant 

Degradation rate of a standby unit Medium 

Maintenance costs Increasing 

Economic dependence 
Customized-Mixed:  

(9) for i = 0 and (10) for i = {1,2,3} 

Cost increase under BUP 6.15% 

Cost increase under UUP 6.90% 

In Figure 1, the grey areas correspond to the condition values that are excluded from the state space 

(the solution is symmetrical). Unit 1 represents the old unit and Unit 2 represents the young unit in 

intrinsic age. For this example, the optimal usage policy is not well-structured, in particular, in 

operating mode i = 1 and i = 2 (see Figure 1(a) and (b)). The decision of which unit to activate 

depends on the intrinsic age of both units. Therefore, neither BUP nor UUP is near-optimal. 

Associated cost increases are 6.15% and 6.90% under BUP and UUP, respectively. There is the 

following idea behind the optimality of such a usage policy. Depending on the current system 

condition and operating mode, if maintaining Unit 1 is likely to be optimal as a future action, Unit 1 is 

activated. On the other hand, if joint maintenance in the home harbor is likely to occur as a future 
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action, Unit 2 is activated. As illustrated by this case, the optimal usage policy is a consequence of the 

optimal maintenance policy and vice versa.  

 

Figure 1: Optimal usage and maintenance policy in operating modes (a) i = 0, (b) i = 1, (c) i = 2, and 

(d) i = 3 

 Conclusion 6.

In this paper, we considered an integrated usage and maintenance optimization problem for a k-out-of-

n system subject to different operating modes which dictate the number of active units, degradation 

rates of active and standby units, maintenance costs, and the type of economic dependence. We 

formulated this problem as a Markov decision process. We investigated the structure of the optimal 

1.00 1.00

0.93 0.93

0.87 0.87

0.80 0.80

0.73 0.73

0.67 0.67

0.60 0.60

0.53 0.53

0.47 0.47

0.40 0.40

0.33 0.33

0.27 0.27

0.20 0.20

0.13 0.13

0.07 0.07

0
.0

0

0
.0

7

0
.1

3

0
.2

0

0
.2

7

0
.3

3

0
.4

0

0
.4

7

0
.5

3

0
.6

0

0
.6

7

0
.7

3

0
.8

0

0
.8

7

0
.9

3

1
.0

0

0
.0

0

0
.0

7

0
.1

3

0
.2

0

0
.2

7

0
.3

3

0
.4

0

0
.4

7

0
.5

3

0
.6

0

0
.6

7

0
.7

3

0
.8

0

0
.8

7

0
.9

3

1
.0

0

1.00 1.00

0.93 0.93

0.87 0.87

0.80 0.80

0.73 0.73

0.67 0.67

0.60 0.60

0.53 0.53

0.47 0.47

0.40 0.40

0.33 0.33

0.27 0.27

0.20 0.20

0.13 0.13

0.07 0.07

0
.0

0

0
.0

7

0
.1

3

0
.2

0

0
.2

7

0
.3

3

0
.4

0

0
.4

7

0
.5

3

0
.6

0

0
.6

7

0
.7

3

0
.8

0

0
.8

7

0
.9

3

1
.0

0

0
.0

0

0
.0

7

0
.1

3

0
.2

0

0
.2

7

0
.3

3

0
.4

0

0
.4

7

0
.5

3

0
.6

0

0
.6

7

0
.7

3

0
.8

0

0
.8

7

0
.9

3

1
.0

0

in
tr

in
si

c 
a

g
e 

o
f 

u
n

it
 2

intrinsic age of unit 1

(d) Optimal policy in i  = 3

in
tr

in
si

c 
a

g
e 

o
f 

u
n

it
 2

intrinsic age of unit 1

(a) Optimal policy in i  = 0

intrinsic age of unit 1

(b) Optimal policy in i  = 1

in
tr

in
si

c 
a

g
e 

o
f 

u
n

it
 2

intrinsic age of unit 1

(c) Optimal policy in i  = 2

in
tr

in
si

c 
a

g
e 

o
f 

u
n

it
 2

Activate 
unit 1

Maintain unit 1
Activate unit 1

Activate units 1&2

Deactivate
units 1&2

M
a
in

ta
in

 u
n
it
 1

,
D

e
a
c
ti
v
a
te

 u
n
it
s

1
&

2

Maintain units 1&2, 
Deactivate units 1&2

M
a
in

ta
in

 u
n
it
 1

, 
A

c
ti
v
a
te

u
n
it
 1

Activate 
unit 2

Maintain unit 1, 
Activate unit 2

M
a
in

ta
in

 u
n
it
 1

, 
A

c
ti
v
a
te

u
n
it
s 

1
&

2

Maintain units 1&2
Activate units 1&2

Activate 
unit 2

Activate 
unit 1



18 

 

 

usage and maintenance policy and showed that regardless of the usage policy, it is optimal to maintain 

the most deteriorated units first. Moreover, the optimality of an all-or-nothing maintenance policy 

leads to the optimality of a balanced usage policy. Since the optimal usage policy is not obvious in 

many real-life settings, practitioners operate such k-out-of-n systems with the balanced usage policy 

when there is positive economic dependence and with the unbalanced usage policy when there is 

negative economic dependence. However, the type of economic dependence does not guarantee the 

optimality of the above-mentioned usage policies. Numerical experiments based on realistic settings 

showed that, even when the maintenance decisions are optimized, the above-mentioned usage policies 

are up to 27% more costly than the integrated usage and maintenance policy. Even though there are 

cases in which these usage policies perform relatively well (e.g., when there is positive economic 

dependence in all operating modes, the value of n is low, and the degradation rate of a standby units is 

high), there is a significant value of integrating usage and maintenance decisions in many realistic 

settings, in particular, when the type of economic dependence is not the same in different operating 

modes (e.g., positive in the home base and negative outside the home base).  

The problem studied in this paper was observed for real-life maritime systems. But, our model and 

results presented can also be applied to other moving assets such as aircrafts and aerospace systems. 

As presented by Chew et al. (2008), for such systems there exist maintenance-free operation periods 

during which the systems must be able to carry out all its assigned missions without requiring any 

maintenance. Following each maintenance-free operation period, there is a period where the moving 

asset can be maintained. This characteristic can be easily incorporated into our model by introducing 

maintenance-free operating modes.  

In our paper, we have used the intrinsic age concept to model the degradation process of the units 

within a k-out-of-n system, some examples being multi-engine propulsion systems, energy generation 

systems, or refrigeration systems of maritime assets. In order to implement our model, one needs to 

have the degradation rate of active and standby units in different operating modes. Failure-related 

historical data is very limited for maritime assets (Eruguz et al., 2015). To model the degradation 

behavior of such systems, physical degradation models are suitable since they are less data demanding 

and capable of incorporating the relation between degradation, usage, and environment (see Tinga, 

2010). As an outcome of these models, the degradation rate of critical components can be estimated. 

The intrinsic age of a unit can be assessed by translating the component level degradation information 

to a unit level condition indicator. 
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Appendix I. Value iteration algorithm 

For continuous and infinite state space ),( i  the value iteration algorithm is intractable when solving 

problem (7). For the sake of tractability, the continuous component of the state space can be 

discretized by sd  where },...,2,,0{ F , and  . We denote the discrete and finite 

counterparts of system condition vectors   and l  by   and l , respectively. In other words,   is 

the set of condition vectors where system units are in descending order of intrinsic ages and l  is a 

subset of   consisting of condition vectors for which exactly },...,1,0{ nl  units are functional. 

Since maintenance costs do not depend on system condition vector, in the usage operator xi,,Uu  

condition levels can be truncated by F. We can define the finite counterpart of xi,,Uu  as follows: 

  .,minU
~
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ud
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TTTiZ   as the finite set of time intervals after which there is an 

increase in the intrinsic age of unit(s) in operating mode Ii , for condition vector d , and under 

usage action ).,( du iU  Time interval ),,( udiZT   satisfies the followings: 
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The corresponding transition probabilities and the discounting factor under continuous discount rate 

   can be computed as follows: 
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For d , the discrete counterpart of operator 
um,  is denoted by um,

~
  and is defined as follows: 
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The discrete and finite state space versions of (7) and (8) can be written as follows ),(),(for  Ii d : 









 



 ),(

~
),(min),( ,

tot

)M,(),,(|),(
1 dd um

dudmum m

iVmiCiV t

Ss

s
iUiM

t  (A.1) 

 }0,max{,),( tot
0 lkiCiV d  lkIi  d,for , and }.,..,1,0{, nlk   (A.2) 

Problem (A.1) can be solved numerically using the value iteration algorithm (see Puterman, 2005). 

Appendix II. Proof of Theorem 1 

Definition A.1: For dd, , dd   means that ss dd   for each Ss . 

Lemma A.1: For each Ii  and t ℕ0, ),( diVt  is increasing in d , i.e.: 

0),(),(  dd iViV tt  where dd,  and dd  . 

Proof of Lemma A.1: We prove Lemma A.1 by induction on t ℕ0. 

Basis: For 
1l

d  and 
2l

d  with },..,1,0{, 21 nll  , if dd  , then 012  lln .  

From (8), we have 0),(),( 00  dd iViV . That is, Lemma A.1 holds for .0t  

Induction Step: For each Ii , assume that ),( diVt  is increasing in d  for a given 0t . That is, 

for dd, , if dd   then 0),(),(  dd iViV tt .  

For each Ii , the sets of possible maintenance actions satisfy ),(),( dd iMiM   (cf. (1)). Similarly, 

the sets of possible usage actions satisfy )M,()M,( dd mm iUiU   (cf. (3)).  

For action vector ),( um  satisfying ),( dm iM  and )M,( du miU , ordering, usage, and 

maintenance operators (cf. (2) and (4)) preserve monotonicity, i.e.:   

dd mumu ΜUΜU ,,,, xixi   for any time period .0x  

From the induction hypothesis: 

   dd mumu ΜU,ΜU, ,,,, xitxit iViV   for any time period 0x  and for each Ii . 

Hence, for each Ii , ),( dm iM  and )M,( du miU , we have: 

 

  

 



















Ij

xit
xr

ij

Ss

s

Ij

xit
xr

ij

Ss

s

dxjVrepmiC

dxjVrepmiC

0
,,

)(tot

0
,,

)(tot

ΜU,),(

ΜU,),(

d

d

mu

mu





,  
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This implies: 

),(),(),(),( ,
tot

,
tot

dd umum iVmiCiVmiC t

Ss

st

Ss

s  


  

Since ),(),( dd iMiM   and )M,()M,( dd mm iUiU  , we have:  

.each for ),(),(min

),(),(min

,
tot

)M,(),,(|),(

,
tot

)M,(),,(|),(

IiiVmiC

iVmiC

t

Ss

s
iUiM

t

Ss

s
iUiM
































d

d

um
dudmum

um
dudmum

m

m

  (A.3) 

Thus, ),(),( 11 dd iViV tt    for each Ii , completing the induction on t ℕ0.    □ 

Lemma A.2: For each Ii , ),( diV  is increasing in d . 

Proof of Lemma A.2: Since Lemma A.1 holds for all t ℕ0 and the value iteration algorithm 

convergences to the optimal value (see Corollary 9.17.1 in Bertsekas and Shreve, 2004, p. 235), 

Lemma A.1 also holds for the infinite horizon function ),( diV .     □ 

Proof of Theorem 1(a): Assume that an optimal maintenance action *
m  in operating mode Ii  and 

for condition vector d , is such that smm *
, }.,...,1,0{ ns  That is, maintenance action vector  

)|( ** Ssms m  contains at least two components 0*

1
sm  and 1*

2
sm , where Sss 21,  and 

.21 ss   

Component switching: We obtain maintenance action vector m~  by switching the values of the two 

components Sss 21,  in ,*
m  i.e., 1~

1
sm , 0~

2
sm , and *~

ss mm    for Ss , 1ss  , and .2ss    

Maintenance actions *
m  and m~  satisfy: 

.~* 



SsSs

mm  

From (1), ),(*
dm iM  implies ),(~ dm iM . By the definition of d , .

21 ss dd  Thus, we have: 

,ΜΜ ~* dd mm   

implying ).M,()M,( ~* dd mm
iUiU   In addition, from Lemma A.2, we have: 

).M,()M,( ~* dd mm
iViV   

Thus: 
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.each for )M,()~,(min

)M,(),(min

~,
tot

)M,(

,
*tot

)M,(

0~

*
0

*

IiiVmiC

iVmiC

Ss

s
iU

Ss

s
iU
































d

d

mum
du

mum
du

m

m

 

By the definition of um,  (cf. (6)):  

),()M,( ,,0
dd ummum iViV   for each ),( dm iM  and ).M,( du miU  

Therefore, for )M,( *

*
du

m
iU  satisfying: 









 





),(),(min),(),(
,

*tot

)M,(,

*tot
*

*

** dd
umduum

m

iVmiCiVmiC
Ss

s
iU

Ss

s  

There exist )M,(~
~ du miU  such that: 

),()~,(),(),( ~,~
tot

,

*tot
** dd umum

iVmiCiVmiC
Ss

s

Ss

s  


 

Thus, in state ),(),(  Ii d , action )~,~( um  is at least equally good action as ),( **
um  in terms of the 

expected total discounted maintenance cost. Using the same logic, i.e., by applying component 

switching multiple times, we can obtain an optimal action vector ).,( ums  If lkIi ),( d  with 

},...,1,0{, nlk  , action sm  is a possible actions, i.e., ),,( dm iMs   if and only if 

}},...,,0{max{ nlks   (cf. (1)).        □ 

Proof of Theorem 1(b): Assume that maintenance policy sm  is optimal in ),(),(  Ii d , i.e.:  

 ),(),(min),( ,
tot

)M,(
dd um

du m

iVsiCiV
s

s
iU




 

From Lemma A.2, for 
's  and Ss' , we have: 

))(,(),( '' ssiViV edd    (A.4) 

Moreover, by the definition of operator ,Μ
sm  we have: 

   )(,(),(min),(),(min '',
tot

)M,(
,

tot

)M,(
ss

iUiU
iVsiCiVsiC

s
s

s
s

edd um
du

um
du mm




 for .' ss     

By the definition of the value function: 

 )(,(),(min))(,( '',
tot

)M,(
'' ss

iU
ss iVsiCiV

s
s

eded um
du m

 


 for Ss'  

Implying that: 
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),())(,( '' ded iViV ss    for .' ss   (A.5) 

From (A.4) and (A.5): 

 )(,(),(min),())(,( '',
tot

)M,(
'' ss

iU
ss iVsiCiViV

s
s

edded um
du m

 


 for .' ss   

Therefore, sm  is also optimal for  Ii ss ))(,( ''ed   and .' ss      □ 

Appendix III. Proof of Theorem 2 

Lemma A.3:  If either 0m  or nm  is optimal in each state  Ii ),( d  for all t-stage problems where 

t ℕ0\{0}, then ),( diVt  is upstream increasing in d  for all t ℕ0, i.e.: 

0))(,())(,( 1  stst iViV eded   for all }{\ nSs ,  , and Fds  . 

Proof of Lemma A.3: First, we can show that: 

For 
1

)( ls  ed   and 
2

)( 1 ls  ed   with },...1,0{, 21 nll  , we have  .21 ll   (A.6) 

This is because: 

 If ,Fds    then Fds  1  and .21 ll   

 If Fds    and ,1 Fds    then .21 ll    

 If Fds    and ,1 Fds    then 21 ll   (since )1 Fdd ss  . 

Next, we prove Lemma A.3 by induction on t ℕ0. 

Basis: Consider (8) for .0t  For kIi  where },,...1,0{ nk from (A.6): 

    ).)(,(}0,max{,}0,max{,))(,( 102
tot

1
tot

0  ss iVlkiClkiCiV eded    

Therefore, Lemma A.3 holds for .0t  

Induction Step: For each Ii , assume that ),( diVt  is upstream increasing in d  for a given 

,0t , i.e.: 

0))(,())(,( 1  stst iViV eded   for all }{\ nSs ,  , and Fds  . 

As a given condition in Lemma A.3, the set of optimal maintenance decisions   },{, 0
*

niM mmd   in 

each state  Ii ),( d  and for all t-stage problems where t ℕ0\{0}.  

First, consider action nm . By definition, we have: 

01)(Μ)(Μ eeded mm  ss nn
  
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where 0e  is the null vector. Therefore, for each usage action ),( 0eu iU  we have: 

))(,())(,( 1,,  stst iViV
nn

eded umum   (A.7) 

Second, consider action 0m . We have the following regarding maintenance operator 
0

Μm : 

)()(Μ
0 ss ededm    and )()(Μ 110   ss ededm   

If  ,)(,0 siM edm   then  )(, 10  siM edm   since Fdd ss 1 . From (A.6), we have:  

)).(,())(,( 1 ss iUiU eded   (A.8) 

In addition, from (A.6): 

)).(,())(,( 1 ss iMiM eded   (A.9) 

From the induction hypothesis and (A.7), (A.8) and (A.9): 

.each for ))(,(),(min

))(,(),(min

1,
tot

))(M,()),(,(|),(

,
tot

))(M,()),(,(|),(

11

IiiVmiC

iVmiC

st

Ss

s
iUiM

st

Ss

s
iUiM

ss

ss




































ed

ed

um
eduedmum

um
eduedmum

m

m









 

Thus:  

   ),(),( 111   stst iViV eded   for each ,Ii  

completing the induction on t ℕ0.         □ 

Lemma A.4:  If either 0m  or nm  is optimal in each state  Ii ),( d  for all t-stage problems where 

t ℕ0\{0}, then ),( diV  is upstream increasing in .d   

Proof of Lemma A.4: Since Lemma A.3 holds for all t ℕ0 and the value iteration algorithm 

convergences to the optimal value (see Corollary 9.17.1 in Bertsekas and Shreve, 2004, p. 235), 

Lemma A.3 also holds for the infinite horizon function ),( diV .     □ 

Proof of Theorem 2: From Lemma A.3, an increase in a downstream component of condition vector 

d  is preferable (in terms of lower expected cost) to an increase in an upstream yet functional 

component of d  in all t-stage problems where t ℕ0. From Lemma A.4, the latter also holds for 

the infinite horizon problem. Therefore, since ,01
ii    it is preferable to activate k lowest deteriorated 

units in operating mode kIi . In other words, the associated optimal usage decision corresponds to 

nkn ,1u  in each operating mode kIi  where 1k  for all t-stage problems and for the infinite 

horizon problem.           □ 
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Appendix IV. Remarks on positive and negative economic dependence 

Remark 1: For the optimality of an all-or-nothing maintenance policy, positive economic dependence 

while maintaining n units is necessary in all operating modes. 

Proof of Remark 1: Under an all-or-nothing maintenance policy, in each state lkIi ),( d  where 

},...,1,0{, nlk   and ,0 lk  the cost of maintaining n units is cheaper than the cost of maintaining s 

units for all },...,{ nlks  . (We note that sm  is not a feasible decision if lks  ). That is, for a 

certain t ℕ0, if lkIi ),( d  and ,0 lk  we have: 

   
 

  .,min,, 1,
,|

tot
2 dd um

dMuu m

iVniCiV t
iU

t n
n




    (A.10) 

In addition: 

 
 

       dd um
dMuu

um
dMuu mm

,min,,min, 1,
),(|

tot
1,

,|

tot iVsiCiVniC t
iU

t
iU s

s
n

n







    

for all },...,{ nlks    

(A.11) 

(A.11) is equivalent to:  

 
 

       de mum
dMuu

um
euu m

s
s

iVsiCiVniC t
iU

t
iU

M,min,,min, 1,
),(|

tot
01,

,|

tot

00
0







   

for all },...,{ nlks   

(A.12) 

By the definition of the value function, we have the following: 

   
 

  0,
,|

tot
1 ,min,M,

0
0

ed um
euu

m iVsniCiV t
iU

t s



  for all },...,{ nlks   

Since the system’s condition is perfect when 0ed  , we have: 

 
 

  .,min, 0,
,|

01 0
0

ee um
euu

iViV t
iU

t 


  

After re-arranging (A.12), we obtain: 

 
 

  01,
,|

tot ,min,
0

0

eum
euu

iVniC t
iU




  

      01,
),(|

tottot ,min,,
0

eum
dMuu m

iVsniCsiC t
iU

s




  for all },...,{ nlks    

(A.13) 

From Theorem 2, we have: 

 
  

 
    01,01,

,|
01,

,|
,,min,min

,1000
0

eee umum
dMuu

um
euu m

iViViV tt
iU

t
iU nkn

s





 

  

Thus, inequality (A.13) holds if and only if: 
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     siCsniCniC ,,, tottottot   for all },...,{ nlks   (A.14) 

Under an all-or-nothing policy, (A.10) holds for each state lkIi ),( d  where },...,1,0{, nlk   and 

.0 lk  Hence, the value of s varies between 1 and n and (A.14) is equivalent to positive economic 

dependence while maintaining n units.        □ 

Remark 2: The optimality of UUP cannot be guaranteed as a counterpart of Theorem 2, i.e., under 

the optimality of a certain maintenance policy. 

Proof Remark 2: In state  Ii ),( d , the counterpart of Lemma A.3 is: 

0))(,())(,( 1  stst iViV eded   for all t ℕ0, }{\ nSs ,  , and .Fd s   (A.15) 

Inequality (A.15) implies that ),( diVt  is upstream decreasing in .d  The latter should hold in each 

state  Ii ),( d  under a given maintenance policy, so that the counterpart of Theorem 2 holds. 

Along the same lines as the proof Lemma A.3, (A.15) cannot be guaranteed for a given maintenance 

policy because of (A.9). (A.9) states that in operating mode ,Ii  the number of possible maintenance 

decisions for condition vector )( sed   is less than or equal to the number of possible maintenance 

decisions for action vector )( 1 sed  . Indeed, if an additional deterioration of 0  leads to a soft 

failure of an old unit, the same additional deterioration does not necessarily lead to a soft failure of a 

young unit. As a consequence, one cannot guarantee that an increase in upstream components of 

condition vector d  would be preferable (in terms of lower expected cost) to an increase in 

downstream components of d . Thus, the optimality of UUP cannot be guaranteed as a 

counterpart of Theorem 2.         □ 

Remark 3: Negative economic dependence in all operating modes is neither necessary nor sufficient 

condition for the optimality of UUP.  

Proof of Remark 3: Table 4 shows that negative economic dependence is not sufficient for the 

optimality of UUP. The following counter-example shows that negative economic dependence is not a 

necessary condition either.  

We consider parameter values presented in Section 5.1 (see Table A.1 and Figure A.1). The 

degradation rate of an active unit is set by ,01
0   0.31 i  for },2,1{i  and .5.01

3   This 

represents a situation in which the activation of a single unit causes a much higher deterioration than 

the activation of both units. Maintenance costs are constant over operating modes and economic 

dependence is positive in all operating modes.  
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Table A.1: Parameters used in the counter-example 

Parameter Alternative 

Number of units 2 

Operating mode transition rates Decreasing 

Degradation rate of an active unit Customized 

Degradation rate of a standby unit High 

Maintenance costs Constant 

Economic dependence Positive 

Cost increase under BUP 3.59% 

Cost increase under BUP None (Optimal) 

 

Figure A.1: Optimal usage and maintenance policy in operating modes (a) i = 0, (b) i = 1, (c) i = 2, 

and (d) i = 3 in the counter-example of Remark 2 
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As presented in Figures A.1, the optimal policy is a corrective maintenance policy combined with 

UUP. We observe that in the optimal policy, there is no incentive to maintain the units preventively 

despite positive economic dependence. After crossing the soft failure threshold, the failed unit is 

switched-off and its maintenance is postponed until observing }3{i  or }2,1{i  and .2 Fd   □ 
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