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Abstract—In this study, we focus on deviations discovery for 
a whole  business  process  in  general.  Meanwhile,  we  provides 
a detailed analysis and propose different theoretical foundation 
towards finding optimal alignments using A* search strategy and 
validate it in practice. In this study, we formalize the problem of 
finding optimal alignments between an action-space and an event 
trace using A* algorithm. We also propose several shortcuts for 
it. 

Index Terms—Best first, Replaying, Alignment, Optimization, 
Heuristic 

 
 

I. INTRODUCTION 
 

Business processes play an important role in improving 
efficiency of individual organizations because business pro- 
cesses provide an effective way to document, understand and 
further analyze processes in practice. In reality, organizations 
often allow flexible behaviors and deviations from docu- 
mented business models because of rapidly changing business 
environment. Information Technology (IT) systems embed- 
ding business processes leave “footprints”, recording what 
happened when [1]. Event traces lay “happened” activities, 
namely events chronologically. What happened in reality is not 
always the same with what the business processes described. 
The unexpected events are called “deviations”. Analyzing 
such deviations gives insights into redesign of processes or 
preventing deviations from happening again. 

Prior researches have focused on defining specific compli- 
ance rules such as using Linear Temporal Logic (LTL) [2] 
to monitor deviations correctly and efficiently on runtime. 
However, it is not cost-effective in sense that in  order  to 
know the overall deviations, users need to define compliance 
rules exhaustively. Moreover, some unnoticeable deviations 
may be the cause of severe bottlenecks. Studies in [3], [4] align 
observed behavior and business processes in form of Petri Nets 
[5] for the purpose of conformance check. Optimal alignments 
reveal deviations as added or missing activities. However in 
industry domain,  more efficient,  user-friendly  and intuitive 
modeling language have emerged and been widely used, such 
as Business Process Modeling and Notation (BPMN) [6]. 
Transforming BPMN into Petri Nets has been studied  yet 
some advanced semantics in BPMN can not be transformed in 

 
Petri Nets, such as General Synchronizing Merge [5]. Optimal 
alignment based on a more general formalism is necessary. 

In literature, there exist many process modeling formalisms, 
Petri Nets, YAWL [7], BPMN and so on. Though they have 
different execution semantics, the common feature is control- 
flow dimension, which is organizing activities and enabling 
synchronization and/or alternatives among activities. Study in 
[8] has used simple split and join construct to express control- 
flow dimension of a process model. Study in [9] adopts a 
flexible model to represent sequential, synchronization and 
alternatives relations of activities in a process. 

In this study, with the assumption that control-flow aspect 
of process models is the same, we propose using a simple 
and general formalism to represent control-flow aspect: action- 
space. Further more, we bring forward a method for deviations 
discovery using action-space in theory and validate it in 
practice. 

Control-flow aspect could be obtained using several ap- 
proaches, such as process mining, converting existing process 
models, or extracting from the statespace. Statespace recorded 
all the execution information and sequences of activities exe- 
cuted, which is also referred to as reachability graphs [10] or 
marking graphs [11]. There are studies generating statespace 
for Petri Nets [11] and BPMN 2.0 process model [12]. States- 
pace can be regarded as a basic transition system including 
states during a process model’s running and switching among 
them. From statespace, a pure singleton of activities (removing 
non-activity constructs) forms an action-space. 

The research question is given an action-space representing 
a business process, how to discover deviations efficiently as 
well as simulating deviations. If we can replay an event trace in 
the business process simulating deviations as well, deviations 
becomes visible. Since there are various ways of replaying an 
event trace (adding or missing activities at different positions), 
a golden standard for the best is needed. Regardless of special 
cases, we assume that the less the number of deviations is, 
the closer it resembles the reality. Among all the ways of 
replaying, also called alignments, the optimal alignments are 
those with least number of deviations. 

Finding optimal alignments is the main challenge. To 
achieve  this  goal,  we  searched  in  literature  and  inspired 
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by priori studies [13], [14]: A* algorithm, which  adapted 
from one of the Best First Search strategies. However, we 
found some limitations in priori studies, for example, heuristic 
estimation of A* in [13] is stationary for all process models 
regardless of complex patterns and their approach can not deal 
with loops efficiently. In this study, we provide a detailed 
analysis on methods to overcome its limitations and formalize 
it in theory. To validate this method, we use a business process 
in clinical domain as an example. 

The rest of the paper is organized as follows. Section II 
reviews the  preliminaries  needed  in  this  study.  Section  III 
describes the methods. Section IV shows the result. Related 
work is shown in Section V. Section VI concludes this paper. 

II. PRELIMINARY 

 

 
Fig. 2: AND-split 

 
 

splits into multiple treads of control which are executed in 
parallel, thus allowing activities to be executed at the same 
time or in any order [8]. It is assumed that all the alternatives 
are selected and executed. Fig.2 shows AND-split according 
to [8], in Petri Net and BPMN. 

A. Event Traces 
Information Technology (IT) systems supporting business 

processes record what happened when it happened by leaving 
their “footprints” [1]. An event trace is an ordered list of 
events according to the timestamps. Each event has a role, a 
timestamp and resource or other information associated with it. 
From a formal point of view, AL  denotes the set of activities 

 

 
Fig. 3: OR-split 

that may be recorded in the log. A∗ denotes the set of all 
possible sequences consisting of elements of AL. σ ∈ A∗ 
denotes a trace. For example, σ0 = [acdeh] is an event trace, 
“a” represents an event such as “Start loading application by 
John Doe at 9:00 am, 1st July, 2008”. 

B. Control-flow representation of process models 
A process model includes basic constructs such as tran- 

sitions, roles, tasks, splits and joins and networks (sub- 
process) [8]. Constructs such as splits and joins affect control- 
flow behavior of a process. Splits allow defining the possible 
control paths through the process. Joins express the type of 
synchronization at a specific point in the process. Though 
different process modeling languages have different semantics, 
splits and joins can be represented in a general format as in [8]. 
We use Petri Nets and BPMN as examples to illustrate that. 

 

 
Fig. 1: XOR-split 

OR-split construct: A point in the process where, based on 
a decision or process control data, one or more alternatives are 
selected [8]. Fig.3 shows OR-split according to [8], in Petri 
Net and BPMN. 

AND-join constructs start execution when all their incoming 
transitions are enabled. OR-join constructs start execution 
when a subset of their incoming transitions are enabled. XOR- 
join constructs are executed as soon as one of their incoming 
transitions is enabled. For the sake of space, we don’t list all of 
them here. The idea is that control-flow perspective of process 
models can be represented using simple splits and joins. 

C. Action-space of process models 
Deviation discovery is basically comparing happened events 

and a process model which prescribes them and the order in 
between. Since event traces lay out events based on their order 
in time, it is necessary to have orders between activities in 
the process model as well. A graph with all the activities and 
their orders is called an action space. With simple representing 
process models in split and join constructs, it is possible to 
generate action spaces for all kinds of process models for 
control-flow perspective. 

 

XOR-split construct: A point in the process where, based 
on a decision or process control data, one of several al- 
ternatives  is  selected  [8].  The  leftmost  graph  in  Fig.1  is 
the representation of XOR-split according to [8] using “⊕”. 
Middle graph is the representation in Petri Net. The rightmost 
graph is the representation in BPMN. 

AND-split construct: During the execution of a process, 

 

 
(a) Action-space 
of XOR-split 

 
 
 
 
 
 

(b) Action-space 
of AND-split 

 

 
(c) Action-space of OR-split 

when an AND-split is reached the single thread of control Fig. 4: Action-space of three splits 



Fig.4 shows action-spaces of XOR-split, AND-split and OR- 
split constructs. Each action-space consists of nodes and edges 
in between. A node in action-space represents an activity in 
process model. Edges indicate sequential logics. What is worth 
mentioning is that outgoing edges are exclusive, meaning only 
one outgoing edge is valid at one time for each branch point. 
Take AND-split construct for example, the action-space of it 
( Fig.4b) expresses parallel by showing all the possibilities of 
execution orders between two outgoing activities. 

Definition I An action-space of a process model M is a 
directed graph G = (V, E) where: 
• V  is  a  finite  set  of  actions,  each  action  v  ∈ V  is 

a  tuple  (AM , Ttype).  AM   is  a  set  of  activities  of  M , 
Ttype = {Start, Complete} indicates the action type of 
an activity. 

• E ⊆ V × V is a finite set of ordered pairs of V , called 
edges, directed edges, or arrows. 

If there is a sequence of edges < 
(v0, v1), (v2, v3), ..., (vx, v0)  >,  it  indicates  a  loop  exist 
v0 → v0. 

Though this paper is not describing how to generate action- 
spaces for various process models, several approaches are 
available, such as process mining, converting existing process 
models, or extracting from the statespace. Statespace recorded 
all the execution information and sequences of activities exe- 
cuted, which is also referred to as reachability graphs [10] or 
marking graphs [11]. More specifically, statespace consists of 
states during a process model’s running and switching among 

Task C, and its parrel relation (Parallel Gateway G1) with Task 
A. Fig.6 is the corresponding action-space which is obtained 
using the tool in [12]. Three highlighted pathes in Fig.6 show 
a same sequence: Task A starts, Task A completes, Task C 
starts and Task C completes. The three pathes differ at the 
orders between Task A and G2 (since they are parallel, either 
one is preceding is possible). 

Here we focus on the situation where an action-space as 
a directed graph has only one root node with zero incom- 
ing edges, even though some process language support two 
instances starting in one process. 

 
D. Deviation Discovery using Alignment 

In order to find deviations between an event trace and 
action-space of a process model, we use optimal alignment 
technique [13]. An alignment can be seen as a way of 
aligning them. In an  alignment,  for  the  events  which  can 
be tracked back to the activities in the  action-space,  we 
label as “matched” pairs; for those events which cannot be 
tracked back to the action-space and those activities in the 
action-space which are missing in the event trace, we label 
them as deviations. An alignment lays matches and deviations 
according to sequential logics respectively. 

Supposing σ1 =< a, c, b, c, d > is a trace of events from AL 
(AL is a set of events) and σ2 =< a, b, c, d > is a sequence 
of activities from AM (AM is a set of activities in a process 
model). Three alignments between σ1 and σ2 are: 

a c b c d 
them. Switching between states are indeed actions of action- 
space, thus an action-space of a process model can be extracted 
from statespace of it. There are studies generating statespace 
for Petri Nets [11] and BPMN 2.0 process model [12]. 

γ1 = 
 
γ2 = 

 
γ3 = 

, 
a ⊥ b c d 
a ⊥ c b c d   and a b c ⊥ ⊥ d 

a c  b c d   . a b ⊥ c d 
 
 
 
 
 
 

Fig. 5: BPMN 2.0 Process Model 
 
 

 
Fig. 6: Action-space of Process Model in Fig.5 

 
Fig.5 shows a BPMN 2.0 process model describing exclu- 

sive relation (Exclusive Gateway G2) between Task B and 

The upper rows in these three are traces of events in σ1 with 
or without “⊥” in between, and the lower rows are sequences 
of activities in σ2 with or without “⊥” in between. Each 
collum is a pair (x, y) where x ∈ AL∪{⊥} and y ∈ AM ∪{⊥} 
and it is called one match in an alignment. There are four 
different types: 

1) Match in both with the same name, x ∈ AL and y ∈ AM 
and x = y, indicating a matched pair, e.g. (a, a). 

2) Match in both with different names, x ∈ AL  and y ∈ 
AM  and x /= y, e.g. (c, b) in γ3. 

3) Match in L, x ∈ AL  and y =⊥ indicating a deviation, 
e.g. (c, ⊥) in γ1. 

4) Match in M , x =⊥ and y ∈ AM  indicating a deviation, 
e.g. (⊥, b) in γ2. 

Match in both with different names makes sense only 
within a given context, for example, two different activities 
are actually the same. But it needs specific illustration, so we 
do not include it in this paper. Regardless of special cases, we 
assume that the less the number of deviations is, the closer it 
resembles the reality. So the optimal alignments are those with 
least number of deviations. Comparing these three alignments, 
γ1 is the optimal alignment. 



   

III. OPTIMAL ALIGNMENT SEARCHING USING A* 
ALGORITHM 

 
With an action-space and an event trace, the next step is to 

find an optimal alignment between them two. As we explained 
in Section II-D, an alignment is a way of “matching” the 
trace and a selected path in the action-space. Such “matching” 
allows adding fake activities or events (deviations, “⊥” in 
Section II-D). An optimal alignment should have the least 
number of deviations. Simply matching  events  in  a  trace 
and activities in the action-space according to their names is 
neither enough nor correct, for the reasons: (1) an activity 
in the process model could happen more than once; (2) 
sequential logics  of  activities  in  a  action-space  also  needs 
being guaranteed. 

 
A. Naive solution 

A straightforward way is to align actions (in the action 
space) and events (in the trace) successively according to their 
sequential orders respectively. Whenever there is a mismatch, 
generate two situations: adding a fake event and a fake action. 
Fig.7 shows steps of aligning a trace of events (a → c → b → 
d) and an action-space on the right. For the sake of simplicity, 
action type Ttype  and event type are omitted. 

 

 
Fig. 7: Naive way of alignment 

B. Path-search Problem and A* algorithm 
We are looking for a way of only generating branches that 

contribute to an optimal alignment. Of all search strategies, 
one of the most popular methods of exploiting heuristic 
information to cut down search time is the informed best- 
first strategy [15]. Our optimal alignment search technique 
uses informed best-first strategy. In order to understand that, a 
detailed example of a typical path-search problem is depicted 
here. A typical problem is given two nodes in a weighted 
directed graph, to find a path with the lowest weight (optimal 
path). Fig.8 shows a “coordinate system” with some parts are 
not connected. Assuming the problem is to find the shortest 
path from s(0, 0) to e(4, 4). Circles are nodes. Lines between 
nodes indicate they are connected and weight is length of the 
line. Best-first strategy works as the following: starting from 
node s, all 3 neighbors of s are evaluated; the one with highest 
“merit” is selected into the optimal path. In this example, 
n2 is better than n1 and n3 for making the shortest path. 
Best-first strategy avoids exploring less meritorious nodes thus 
improving efficiency. 

 

 
Fig. 8: Path-searching Problem 

 
The key is the evaluation function for judging “merit”. 

Evaluation function should always provide optimistic estimate 
of the final cost of the candidate node [15]. By far, the most 
studied version of best-first strategy is A* algorithm [16]. 
A* algorithm provides  optimistic  estimate  by  introducing 
an evaluation function (f (n)) taking into consideration both 
“current merit” and “future merit” (heuristic information). Let 
current merit g(n) be Euclidean Distance from node n to start √ 

The first action a and event a make up a match ((a,a) shown node s, so g(n1) = Distance(s, n1) = 1, g(n2) = 2 and 
in Node 2). Successors are “c” and “b” respectively. As “c” and 

g(n3) = 1. Let future merit h(n) be distance from n to end 
√ node e, thus h(n1) = Distance(n1, e) = 5, h(n2) = 3  2 

“b” are not matched, we add a “⊥” as a fake action to match and h(n3) = 5. A* adopts f (n) = g(n) + h(n), so f (n1) = 
“c” ((c,⊥) in Node 3); and a fake event “⊥” to match “b” √ 6,f (n2) = 4 2 and f (n3) = 6. f (n2) is smaller than f (n1) 
((⊥,b) in Node 4). Following Node 3, match (b,b) continues 
(Node 5). Node 6 is similar to Node 5. Such an exploration 
ends when all the elements in the trace and in the action-space 
are matched. 

The exploration results in a tree whose root is an empty 
match (Node 1) while leaves are pairs involving ends of both. 
Each path from the root to a leaf node is an alignment between 
the trace and a path in the action space. By comparing the 
number of matched pairs on each path, we select those with 
the least numbers as optimal alignments. However, we can see 
that the exploration tree could be very large since whenever 
there is a mismatch, one branch splits into two sub-branches. 

and f (n3), so at this step, n2 is a better choice than n1 and 
n3. 

We investigate the difference between optimal alignment 
searching and path searching. There are two main challenges: 
1. the “weighted directed graph” does not exist in optimal 
alignment searching; 2. evaluation function of optimal align- 
ment searching problems should be created. The following 
sub-sections will elaborate on them. 
C. Constructing the searching graph as weighted graph 

Though  there  is  no  existing  weighted  directed  graph  in 
optimal alignment searching problem, we know clearly the 



starting “node” and characteristics of the targeting “node”. 
The starting “node” is before matching (Node 1 in Fig.7). The 
targeting “node” should have both ends of the action space and 
the trace matched (to the real or fake). Along the way from 
the starting “node” to a targeting “node”, we create “nodes” 
between. The way of creating is just as matches are added 
one by one in Fig.7. Thus a directed graph is finished after a 
targeting “node” is found. 

In this new directed graph, each “node” is its father node 
adding a new match. There are two kinds of matches: true 
match and fake match. For example, Node 2 in Fig.7 adds 
(a,a), which is a true match. Node 3 adds (c, ⊥), which is a 
fake match. Here, we use the term Match to represent a node 
as well as refer to matches in Fig.7. A Match (Definition II) 
should contain the basic information about which event in a 
trace Event or action in action space Action is matched. 

Definition II A Match has 6 elements (Event, Action, 
f Score, nDev, T ype, PreMatchSet), where: 
• Event is an event in a trace σ. 
• Action is an action in action space Gac. 
• f Score is value of evaluate function. 
• nDev is the number of deviations in current match. 
• Type is the type of Match, which is MatchInBoth, 

MatchInAction, MatchInEvent (Section II-D). 
• PreMatchSet contains a set of parent nodes of Match 

in the constructed weighted directed graph. 
f Score, nDev and PreMatchSet are important variables 

for further use in the algorithm. To give an examples, Node 2 
is represented Match 2 =(a, a,0, 0, MatchInBoth,Node 1). 
In the illustration in Fig.7, each Node has one parent Node. In 
order to decrease the computation time, we come up with the 
idea of reusing Matches under the condition that two Matches 
share the same Event, Activity and fScore. So each Match 
may have more than one parent Match which are stored in 
PreMatchSet. 

 
D. Algorithm explanation 

Section III-C explains Matches and creating successive 
Matches after a given one. This section describes creating 
Matches selectively using idea of A* to find optimal alignment 
efficiently. Evaluation function for selecting is not detailed 
here for conciseness of algorithm itself. 

The whole algorithm is shown in Algorithm 1. Inputs are 
a trace and an action-space. It starts from an empty Match 
(Line 2). OPEN stores Matches which are to be evaluated and 
explored. The Match n with the lowest f (n) is selected to 
explore firstly in OPEN (Line 4). Once a Match is explored, 
it is removed from OPEN (Line 8). If n is a targeting one, the 
program ends and returns n (Line 5 to 7). If n is not targeting, 
GenerateFollowMatches computes nl - successive Matches of 
n (Line 9). Their f (nl) are calculated (Line 10). If there is a 
Match nll equals nl (Line 11), it is not necessary to keep nl 

but add n as parent Match of nll (Line 12). Otherwise, add 
nl into G (Line 14), OPEN (Line 15) and create connection 
between n and nl (Line 16). 

 
 

Algorithm 1 Optimal alignment searching with A* algorithm 
 

 

1:  procedure REPLAYTECHNIQUE(σ, Gac)  l> σ: a trace in 
log; Gac: an action space; 

2:  Add a new Match SEmpty into OPEN and G; l> G: 
the created graph; 

3: while OPEN is not empty do 
4: Get Match n in OPEN that has the lowest f (n); 
5: if n is targeting then 
6: return n; l> End while. 
7: end if 
8: Remove n from OPEN ; 
9: for each n l = GenerateFollowMatches(n) do 

10: Calculate f (nl). 
11: if there is a n ll in G fulfilling n ll ==nl then 
12: Add n into nll.P reMatchSet; 
13: else 
14: Add nl into G; 
15: Add nl into OPEN ; 
16: Add n into nl.P reMatchSet; 
17: end if 
18: end for 
19: end while 
20:  end procedure 

 
 

 

Evaluation function decides priority of Matches in OPEN 
being explored. Each time, a Match with the lowest evaluated 
value in OPEN is explored and removed from OPEN. The 
algorithm ends when there are no Matches left in OPEN or 
one Match meets the requirement both with lowest f (n) and 
a targeting condition. 

E. Evaluation function formalization 
Similar to what A* algorithm proposed, in optimal align- 

ment searching problems, evaluation function f (s) should also 
include “current merit” (g(s)) and “future merit” (h(s)). Here 
we simply formulate it as f (s) = g(s) + α ∗ h(s) to make 
explicit that the weight of g(s) and h(s) is not always the 
same. Since the final goal is to find a path with the least 
number of deviations, the golden standard is the number of 
deviations. At a single Match s, we can count the number 
of deviations as current “merit”. So g(s) is the number of 
mismatches in s. For future merit, because we can’t predict 
the number of deviations in the final completed alignment of 
s accurately, we use an approximate estimate of the effort 
becoming a targeting alignment, in other words, “potential” 
of the candidate becoming a targeting alignment. 

h(s) could be an optimistic estimate of the “potential” for s 
to become a targeting alignment. [14] adopts remaining events 
in a trace as estimate for a targeting alignment heuristically. 
In this  paper,  we  use  the  number  of  remaining  steps  to 
a targeting alignment indicating the effort. In other words, 
the number of remaining steps needs information not only 
from trace’s aspect but also the model’s aspect. A targeting 
alignment requires reaching ends of both the action space and 
the trace. So these two aspects should be combined. We define 



> α > − 1 

h(s) = hL(s) + hM (s), where hL(s) represents the trace’s 
part, hM (s) represents the model’s part, and they are equally 
important. 

For hL(s), we use the number of events from s.Event to the 
end of the trace. For hM (s), since the action space is a directed 
graph with loops Definition I, it is tricky to calculate the 
number of remaining actions along one or more paths. Since an 
action-space as a directed graph has only one root node (zero 
incoming edges), it make sense to compute depth information 
for the whole graph. Distance from depth of slAction to that 
of the end one in action-space indicates remaining “effort” 
from model’s perspective. The depth of root node is 1 and 
it increases along one direction. In case of more than one 
incoming edges (may involving loops), the depth of action 
is determined by the smallest depth. hM (s) is the difference 

“1”, since both of them matches one event in a trace. For s3, 
the position of matched Entry does not change, so it stays the 
same with hL(s0). hM  relates to layer of current action node. 
For s1, hM (s1) = hM (s0) + 3 as s1’ action node is in Layer 
1 and s0’ action node is in Layer 4. hM (s3) = hM (s0) − 1 
as s1’ action node is in Layer 5 and s0’ action node is in 
Layer 4. To make it general, we simply use x to indicate any 
positive integer. “+” in collum “hM ” shows the case where 
position of action node goes to a higher layer. “-” shows the 
case where position of action node goes to a lower layer. Row 
6 to 9 calculate amount of change. A, B, C, D, E represent 5 
different situations. 

To assure that s1 is more meritorious than s2 and s3, namely 
f (s1) is smaller than f (s2) and f (s3). It requires A and B 
are smaller than others: A < C, A < D, A < E, B < C, B < 

between the maximum depth and depth of s.Action. D, B < E. The value of α should fulfill: 1 
2x−1 2x+1 . 

F. GenerateFollowMatches and weight value α of heuristic 
function 

In Algorithm 1, there is a method GenerateFollowMatches 
in Line 9. We use an example in Fig.9 to illustrate it. Fig.9 
shows a trace is replayed to part of an action-space which 
has a loop from action node “a” to “b”. In the graph, we 
use id to represent Entry and Action Node. Match s0 has 
Entry 4 and Action Node 4 matched with type MatchInBoth 
(s0:(4,4,MatchInBoth,f (s0))). After s0, next Entry is b; next 
action nodes are f and b. Three possible ways of aligning 
them are s1, s2 and s3. s2 is of type MatchInEvent, namely 
“(b, ⊥)”. The dark arrow in s2 that points to action node in 
Layer 4 indicates the accomplished position in action space. 

 

 
Fig. 9: α computation illustration 

 
Among s1, s2 and s3, s1 should be the best one intuitively 

as it is of type MatchInBoth. f (s0), f (s1), f (s2) and f (s3) 
are calculated in TABLE I. g(s) is defined as number of 
deviations, so g(s1) is the same as g(s0); g(s2) and g(s3) 
both add “1” to g(s0) since they introduce one deviation in 
current unfinished alignment. 

hL(s) is defined as the number of events from s.Event to 
the end of the trace. hL(s1) and hL(s2) are hL(s0) subtracting 

Taking maximum of x guarantees f (s) always provides a 
correct evaluation of each candidate alignment. x should be 
assigned the maximum depth difference between two actions 
in an action space. In this model, x is 3 and 0.2 > α > −0.14. 
So the value of α differs with each model. 

Introducing weight factor α is: single increment of hL, hM 
and g is “1”, however g plays a dominant role. g represents 
number of deviations which is a golden standard for selecting 
an optimal alignment. Pre-calculating of α using TABLE I 
guarantees g is always dominant even in case of loops. 

 
IV. RESULTS 

To evaluate our approach, we modeled diagnosis validation 
process for unstable angina in Catharina hospital in Fig.10. 
This process model is based on the results in [17]. There are 
18 tasks when the sub-processes are expanded. We compute 
the action-space based on the statespace using the tool in [12]. 
The action-space is shown in Fig.11. It contains 36 Actions. 
We show each Task as one action instead of separating its Start 
or Complete type. Actions in this graph is displayed according 
to its “layer” from top to bottom. 

Table II shows our experimental setting and the results. In 
total we constructed 11 log files each of which consists of 100 
traces. Traces in Log 1 is of length 34 and fully match the 
longest path in action-space in Fig.11. From Log 2 to Log 11, 
we gradually inserted deviations of different ratio, from 5 to 
50 percent (inserted events are also from the process itself). 
The positions of artificial deviations are random. 

The fifth collum in Table II shows number of deviations 
detected using our method. We can see from Log 1 to Log 
9, our method found the same number of deviations as we 
artificially inserted. However, when the noise ratio increases 
to 45% (Log 10), the number of deviations found is more 
than that we inserted. For Log 10, we found that 61 out of 
100 traces are detected with 30 deviations; the other 39 traces 
have 28 deviations as they are supposed to. Log 11 has 6 
traces with 37 deviations which are more than 35 as they are 
supposed to. The reason is that heuristic algorithms such as A* 
algorithm will often fall into local optimums. To guarantee the 



k+1 

TABLE I: Different situations to calculate α 
 

 g hL hM f = g + α ∗ (hL + hM ) 

f (s0) g(s0) hL(s0) hM (s0) f (s0) = g(s0) + α ∗ (hL(s0) + hM (s0)) 

f (s1) g(s0) hL(s0) − 1 hM (s0) + x 
hM (s0) − x 

f (s1)=g(s0) + α ∗ (hL(s0) − 1 + hM (s0) + x) 
f (s1)=g(s0) + α ∗ (hL(s0) − 1 + hM (s0) − x) 

f (s2) g(s0) + 1 hL(s0) − 1 hM (s0) f (s2)=g(s0) + 1 + α ∗ (hL(s0) − 1 + hM (s0)) 

f (s3) g(s0) + 1 hL(s0) hM (s0) + x 
hM (s0) − x 

f (s3)=g(s0) + 1 + α ∗ (hL(s0) + hM (s0) + x) 
f (s3)=g(s0) + 1 + α ∗ (hL(s0) + hM (s0) − x) 

∆g ∆hL ∆hM ∆f 
∆f (s1) 0 -1 x 

−x 

A:α ∗ (x − 1) 
B:−α ∗ (x + 1) 

∆f (s2) 1 -1 0 C:1 − α 
∆f (s3) 1 0 x 

−x 
D:α ∗ x + 1 
E:α ∗ (−x) + 1 

 
 

 

 
Fig. 10: Unstable Angina Diagnosis Validation Process in BPMN 

 
 

correctness, users need to make sure the noise ratio is under 
45% by filtering unrelated events with the process. 

The sixth collum in TABLE II shows numbers of Matches 
constructed using A* algorithm for a trace with different 
deviation ratio. Deviations are inserted randomly. In order to 
show the improvement of efficiency, we theoretically compute 
the numbers of nodes using the “Naive Way” in Fig.12. 
Supposing deviations are inserted equidistantly in the traces 
from 5% to 50%. A trace of length l with k deviations results 
in a full binary tree to get the optimal alignment. The total 
number of nodes is (2k+1 − 1) ∗  l . The number increase 

 
 
 
 
 
 
 
 

Fig. 11: Action-space of Process Model in Fig.10 

exponentially as the ratio of deviations increases as shown 
in Fig.12. Our method using A* algorithm generates less nodes 
to find the optimal alignment. 

To evaluate its performance, we did the same experiment 
20 times for each log. The seventh collum shows the average 
time it takes. The hardware is a computer with Intel i5-4590 
and CPU of 3.30 GHz processor and 8.00 GB memory. For 
instance, Log 8 with 100 traces of 40% deviations takes 72 
seconds, which is acceptable to users in all kinds of domains. 



TABLE II: Deviation Discovery Evaluation Result 
 

Log 
No. 
(100 
traces) 

Length 
of 
Trace 

Noise 
Rate 
(%) 

Artificial 
Devi- 
ations 
Num. 

Found 
Devi- 
ations 
Num. 

Matches 
Num. 

Time(ms) 

1 34 0 0 0 40 32.75 

2 36 5 200 200 51 54.4 

3 38 10 400 400 100 136.55 

4 41 15 700 700 352 762.05 

5 43 20 900 900 516 1367.8 
6 46 25 1200 1200 1255 5743.65 
7 49 30 1500 1500 1798 12908.75 
8 53 35 1900 1900 2565 28870.95 

9 57 40 2300 2300 4038 72453.1 
10 62 45 2800 2922 6519 159391.7 
11 69 50 3500 3512 11204 323838.05 

 
 

 

 
Fig. 12: The number of nodes to construct optimal alignments 
for the BPMN process in Fig.10 with corresponding different 
percent of noise according to the horizontal axis. 

 
 

V. RELATED WORK 

Researches in [3], [14] mentioned to use A* algorithm to 
limit the search by introducing a heuristic evaluation function 
to assess which branch has the most potential being the 
optimal alignment. When we applied their approaches, we 
find efficiency is not always good and sometimes there are 
errors especially involving loops. Approaches in [15] can not 
reuse nodes in exploration because each node is unique. Our 
approach changed this situation. 

VI. CONCLUSION 

Business processes play an important role in documenting 
and analyzing processes. Organizations often allow flexible 
behaviors and deviations from business models. This paper 
proposes a method discovering deviations on control-flow 
perspective for process models and event logs. Control-flow 
perspective exist in all process models and can be represented 
using action-space. 

With action-spaces and event logs, we adapt A* algorithm in 
optimal alignment searching to efficiently discover deviations. 
We give a detailed analysis of setting the evaluation function 
as well as the algorithm itself. It enable deviations discovery 
for complex structures such as loops without compromising 
efficiency. We evaluate this method using a BPMN 2.0 process 
vs. 11 event logs. The performance is kept good. Further re- 
search direction could be analyzing distributions of deviations 
on different paths in action-space. Deviations also give insights 
into redesign of processes. 
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