

Deviations discovery using aligning event logs to business
processes using A*

H. Yan, P.M.E. van Gorp, X. Lu, C.C. Chiau, U. Kaymak, H. Duan

Beta Working Paper series 520

BETA publicatie WP 520 (working
paper)

ISBN
ISSN
NUR

Eindhoven November 2016

Deviations discovery using aligning event logs to
business processes using A*

Hui Yan∗† , Pieter Van Gorp†, Xudong Lu∗, Choo Chiap Chiau‡, Uzay Kaymak† and Huilong Duan∗
∗School of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, P.R. China

{h yan,lvxd,duanhl}@zju.edu.cn
†School of Industrial Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands

{p.m.e.v.gorp,u.kaymak}@tue.nl
‡Philips Research, Shanghai, P.R. China

choo.chiap.chiau@philips.com

Abstract—In this study, we focus on deviations discovery for
a whole business process in general. Meanwhile, we provides
a detailed analysis and propose different theoretical foundation
towards finding optimal alignments using A* search strategy and
validate it in practice. In this study, we formalize the problem of
finding optimal alignments between an action-space and an event
trace using A* algorithm. We also propose several shortcuts for
it.

Index Terms—Best first, Replaying, Alignment, Optimization,
Heuristic

I. INTRODUCTION

Business processes play an important role in improving
efficiency of individual organizations because business pro-
cesses provide an effective way to document, understand and
further analyze processes in practice. In reality, organizations
often allow flexible behaviors and deviations from docu-
mented business models because of rapidly changing business
environment. Information Technology (IT) systems embed-
ding business processes leave “footprints”, recording what
happened when [1]. Event traces lay “happened” activities,
namely events chronologically. What happened in reality is not
always the same with what the business processes described.
The unexpected events are called “deviations”. Analyzing
such deviations gives insights into redesign of processes or
preventing deviations from happening again.

Prior researches have focused on defining specific compli-
ance rules such as using Linear Temporal Logic (LTL) [2]
to monitor deviations correctly and efficiently on runtime.
However, it is not cost-effective in sense that in order to
know the overall deviations, users need to define compliance
rules exhaustively. Moreover, some unnoticeable deviations
may be the cause of severe bottlenecks. Studies in [3], [4] align
observed behavior and business processes in form of Petri Nets
[5] for the purpose of conformance check. Optimal alignments
reveal deviations as added or missing activities. However in
industry domain, more efficient, user-friendly and intuitive
modeling language have emerged and been widely used, such
as Business Process Modeling and Notation (BPMN) [6].
Transforming BPMN into Petri Nets has been studied yet
some advanced semantics in BPMN can not be transformed in

Petri Nets, such as General Synchronizing Merge [5]. Optimal
alignment based on a more general formalism is necessary.

In literature, there exist many process modeling formalisms,
Petri Nets, YAWL [7], BPMN and so on. Though they have
different execution semantics, the common feature is control-
flow dimension, which is organizing activities and enabling
synchronization and/or alternatives among activities. Study in
[8] has used simple split and join construct to express control-
flow dimension of a process model. Study in [9] adopts a
flexible model to represent sequential, synchronization and
alternatives relations of activities in a process.

In this study, with the assumption that control-flow aspect
of process models is the same, we propose using a simple
and general formalism to represent control-flow aspect: action-
space. Further more, we bring forward a method for deviations
discovery using action-space in theory and validate it in
practice.

Control-flow aspect could be obtained using several ap-
proaches, such as process mining, converting existing process
models, or extracting from the statespace. Statespace recorded
all the execution information and sequences of activities exe-
cuted, which is also referred to as reachability graphs [10] or
marking graphs [11]. There are studies generating statespace
for Petri Nets [11] and BPMN 2.0 process model [12]. States-
pace can be regarded as a basic transition system including
states during a process model’s running and switching among
them. From statespace, a pure singleton of activities (removing
non-activity constructs) forms an action-space.

The research question is given an action-space representing
a business process, how to discover deviations efficiently as
well as simulating deviations. If we can replay an event trace in
the business process simulating deviations as well, deviations
becomes visible. Since there are various ways of replaying an
event trace (adding or missing activities at different positions),
a golden standard for the best is needed. Regardless of special
cases, we assume that the less the number of deviations is,
the closer it resembles the reality. Among all the ways of
replaying, also called alignments, the optimal alignments are
those with least number of deviations.

Finding optimal alignments is the main challenge. To
achieve this goal, we searched in literature and inspired

mailto:choo.chiap.chiau@philips.com

L

L

by priori studies [13], [14]: A* algorithm, which adapted
from one of the Best First Search strategies. However, we
found some limitations in priori studies, for example, heuristic
estimation of A* in [13] is stationary for all process models
regardless of complex patterns and their approach can not deal
with loops efficiently. In this study, we provide a detailed
analysis on methods to overcome its limitations and formalize
it in theory. To validate this method, we use a business process
in clinical domain as an example.

The rest of the paper is organized as follows. Section II
reviews the preliminaries needed in this study. Section III
describes the methods. Section IV shows the result. Related
work is shown in Section V. Section VI concludes this paper.

II. PRELIMINARY

Fig. 2: AND-split

splits into multiple treads of control which are executed in
parallel, thus allowing activities to be executed at the same
time or in any order [8]. It is assumed that all the alternatives
are selected and executed. Fig.2 shows AND-split according
to [8], in Petri Net and BPMN.

A. Event Traces
Information Technology (IT) systems supporting business

processes record what happened when it happened by leaving
their “footprints” [1]. An event trace is an ordered list of
events according to the timestamps. Each event has a role, a
timestamp and resource or other information associated with it.
From a formal point of view, AL denotes the set of activities

Fig. 3: OR-split

that may be recorded in the log. A∗ denotes the set of all
possible sequences consisting of elements of AL. σ ∈ A∗
denotes a trace. For example, σ0 = [acdeh] is an event trace,
“a” represents an event such as “Start loading application by
John Doe at 9:00 am, 1st July, 2008”.

B. Control-flow representation of process models
A process model includes basic constructs such as tran-

sitions, roles, tasks, splits and joins and networks (sub-
process) [8]. Constructs such as splits and joins affect control-
flow behavior of a process. Splits allow defining the possible
control paths through the process. Joins express the type of
synchronization at a specific point in the process. Though
different process modeling languages have different semantics,
splits and joins can be represented in a general format as in [8].
We use Petri Nets and BPMN as examples to illustrate that.

Fig. 1: XOR-split

OR-split construct: A point in the process where, based on
a decision or process control data, one or more alternatives are
selected [8]. Fig.3 shows OR-split according to [8], in Petri
Net and BPMN.

AND-join constructs start execution when all their incoming
transitions are enabled. OR-join constructs start execution
when a subset of their incoming transitions are enabled. XOR-
join constructs are executed as soon as one of their incoming
transitions is enabled. For the sake of space, we don’t list all of
them here. The idea is that control-flow perspective of process
models can be represented using simple splits and joins.

C. Action-space of process models
Deviation discovery is basically comparing happened events

and a process model which prescribes them and the order in
between. Since event traces lay out events based on their order
in time, it is necessary to have orders between activities in
the process model as well. A graph with all the activities and
their orders is called an action space. With simple representing
process models in split and join constructs, it is possible to
generate action spaces for all kinds of process models for
control-flow perspective.

XOR-split construct: A point in the process where, based
on a decision or process control data, one of several al-
ternatives is selected [8]. The leftmost graph in Fig.1 is
the representation of XOR-split according to [8] using “⊕”.
Middle graph is the representation in Petri Net. The rightmost
graph is the representation in BPMN.

AND-split construct: During the execution of a process,

(a) Action-space
of XOR-split

(b) Action-space
of AND-split

(c) Action-space of OR-split

when an AND-split is reached the single thread of control Fig. 4: Action-space of three splits

Fig.4 shows action-spaces of XOR-split, AND-split and OR-
split constructs. Each action-space consists of nodes and edges
in between. A node in action-space represents an activity in
process model. Edges indicate sequential logics. What is worth
mentioning is that outgoing edges are exclusive, meaning only
one outgoing edge is valid at one time for each branch point.
Take AND-split construct for example, the action-space of it
(Fig.4b) expresses parallel by showing all the possibilities of
execution orders between two outgoing activities.

Definition I An action-space of a process model M is a
directed graph G = (V, E) where:
• V is a finite set of actions, each action v ∈ V is

a tuple (AM , Ttype). AM is a set of activities of M ,
Ttype = {Start, Complete} indicates the action type of
an activity.

• E ⊆ V × V is a finite set of ordered pairs of V , called
edges, directed edges, or arrows.

If there is a sequence of edges <
(v0, v1), (v2, v3), ..., (vx, v0) >, it indicates a loop exist
v0 → v0.

Though this paper is not describing how to generate action-
spaces for various process models, several approaches are
available, such as process mining, converting existing process
models, or extracting from the statespace. Statespace recorded
all the execution information and sequences of activities exe-
cuted, which is also referred to as reachability graphs [10] or
marking graphs [11]. More specifically, statespace consists of
states during a process model’s running and switching among

Task C, and its parrel relation (Parallel Gateway G1) with Task
A. Fig.6 is the corresponding action-space which is obtained
using the tool in [12]. Three highlighted pathes in Fig.6 show
a same sequence: Task A starts, Task A completes, Task C
starts and Task C completes. The three pathes differ at the
orders between Task A and G2 (since they are parallel, either
one is preceding is possible).

Here we focus on the situation where an action-space as
a directed graph has only one root node with zero incom-
ing edges, even though some process language support two
instances starting in one process.

D. Deviation Discovery using Alignment

In order to find deviations between an event trace and
action-space of a process model, we use optimal alignment
technique [13]. An alignment can be seen as a way of
aligning them. In an alignment, for the events which can
be tracked back to the activities in the action-space, we
label as “matched” pairs; for those events which cannot be
tracked back to the action-space and those activities in the
action-space which are missing in the event trace, we label
them as deviations. An alignment lays matches and deviations
according to sequential logics respectively.

Supposing σ1 =< a, c, b, c, d > is a trace of events from AL
(AL is a set of events) and σ2 =< a, b, c, d > is a sequence
of activities from AM (AM is a set of activities in a process
model). Three alignments between σ1 and σ2 are:

a c b c d
them. Switching between states are indeed actions of action-
space, thus an action-space of a process model can be extracted
from statespace of it. There are studies generating statespace
for Petri Nets [11] and BPMN 2.0 process model [12].

γ1 =

γ2 =

γ3 =

,
a ⊥ b c d
a ⊥ c b c d and a b c ⊥ ⊥ d

a c b c d . a b ⊥ c d

Fig. 5: BPMN 2.0 Process Model

Fig. 6: Action-space of Process Model in Fig.5

Fig.5 shows a BPMN 2.0 process model describing exclu-

sive relation (Exclusive Gateway G2) between Task B and

The upper rows in these three are traces of events in σ1 with
or without “⊥” in between, and the lower rows are sequences
of activities in σ2 with or without “⊥” in between. Each
collum is a pair (x, y) where x ∈ AL∪{⊥} and y ∈ AM ∪{⊥}
and it is called one match in an alignment. There are four
different types:

1) Match in both with the same name, x ∈ AL and y ∈ AM
and x = y, indicating a matched pair, e.g. (a, a).

2) Match in both with different names, x ∈ AL and y ∈
AM and x /= y, e.g. (c, b) in γ3.

3) Match in L, x ∈ AL and y =⊥ indicating a deviation,
e.g. (c, ⊥) in γ1.

4) Match in M , x =⊥ and y ∈ AM indicating a deviation,
e.g. (⊥, b) in γ2.

Match in both with different names makes sense only
within a given context, for example, two different activities
are actually the same. But it needs specific illustration, so we
do not include it in this paper. Regardless of special cases, we
assume that the less the number of deviations is, the closer it
resembles the reality. So the optimal alignments are those with
least number of deviations. Comparing these three alignments,
γ1 is the optimal alignment.

III. OPTIMAL ALIGNMENT SEARCHING USING A*
ALGORITHM

With an action-space and an event trace, the next step is to

find an optimal alignment between them two. As we explained
in Section II-D, an alignment is a way of “matching” the
trace and a selected path in the action-space. Such “matching”
allows adding fake activities or events (deviations, “⊥” in
Section II-D). An optimal alignment should have the least
number of deviations. Simply matching events in a trace
and activities in the action-space according to their names is
neither enough nor correct, for the reasons: (1) an activity
in the process model could happen more than once; (2)
sequential logics of activities in a action-space also needs
being guaranteed.

A. Naive solution

A straightforward way is to align actions (in the action
space) and events (in the trace) successively according to their
sequential orders respectively. Whenever there is a mismatch,
generate two situations: adding a fake event and a fake action.
Fig.7 shows steps of aligning a trace of events (a → c → b →
d) and an action-space on the right. For the sake of simplicity,
action type Ttype and event type are omitted.

Fig. 7: Naive way of alignment

B. Path-search Problem and A* algorithm
We are looking for a way of only generating branches that

contribute to an optimal alignment. Of all search strategies,
one of the most popular methods of exploiting heuristic
information to cut down search time is the informed best-
first strategy [15]. Our optimal alignment search technique
uses informed best-first strategy. In order to understand that, a
detailed example of a typical path-search problem is depicted
here. A typical problem is given two nodes in a weighted
directed graph, to find a path with the lowest weight (optimal
path). Fig.8 shows a “coordinate system” with some parts are
not connected. Assuming the problem is to find the shortest
path from s(0, 0) to e(4, 4). Circles are nodes. Lines between
nodes indicate they are connected and weight is length of the
line. Best-first strategy works as the following: starting from
node s, all 3 neighbors of s are evaluated; the one with highest
“merit” is selected into the optimal path. In this example,
n2 is better than n1 and n3 for making the shortest path.
Best-first strategy avoids exploring less meritorious nodes thus
improving efficiency.

Fig. 8: Path-searching Problem

The key is the evaluation function for judging “merit”.

Evaluation function should always provide optimistic estimate
of the final cost of the candidate node [15]. By far, the most
studied version of best-first strategy is A* algorithm [16].
A* algorithm provides optimistic estimate by introducing
an evaluation function (f (n)) taking into consideration both
“current merit” and “future merit” (heuristic information). Let
current merit g(n) be Euclidean Distance from node n to start √

The first action a and event a make up a match ((a,a) shown node s, so g(n1) = Distance(s, n1) = 1, g(n2) = 2 and
in Node 2). Successors are “c” and “b” respectively. As “c” and

g(n3) = 1. Let future merit h(n) be distance from n to end
√ node e, thus h(n1) = Distance(n1, e) = 5, h(n2) = 3 2

“b” are not matched, we add a “⊥” as a fake action to match and h(n3) = 5. A* adopts f (n) = g(n) + h(n), so f (n1) =
“c” ((c,⊥) in Node 3); and a fake event “⊥” to match “b” √ 6,f (n2) = 4 2 and f (n3) = 6. f (n2) is smaller than f (n1)
((⊥,b) in Node 4). Following Node 3, match (b,b) continues
(Node 5). Node 6 is similar to Node 5. Such an exploration
ends when all the elements in the trace and in the action-space
are matched.

The exploration results in a tree whose root is an empty
match (Node 1) while leaves are pairs involving ends of both.
Each path from the root to a leaf node is an alignment between
the trace and a path in the action space. By comparing the
number of matched pairs on each path, we select those with
the least numbers as optimal alignments. However, we can see
that the exploration tree could be very large since whenever
there is a mismatch, one branch splits into two sub-branches.

and f (n3), so at this step, n2 is a better choice than n1 and
n3.

We investigate the difference between optimal alignment
searching and path searching. There are two main challenges:
1. the “weighted directed graph” does not exist in optimal
alignment searching; 2. evaluation function of optimal align-
ment searching problems should be created. The following
sub-sections will elaborate on them.
C. Constructing the searching graph as weighted graph

Though there is no existing weighted directed graph in
optimal alignment searching problem, we know clearly the

starting “node” and characteristics of the targeting “node”.
The starting “node” is before matching (Node 1 in Fig.7). The
targeting “node” should have both ends of the action space and
the trace matched (to the real or fake). Along the way from
the starting “node” to a targeting “node”, we create “nodes”
between. The way of creating is just as matches are added
one by one in Fig.7. Thus a directed graph is finished after a
targeting “node” is found.

In this new directed graph, each “node” is its father node
adding a new match. There are two kinds of matches: true
match and fake match. For example, Node 2 in Fig.7 adds
(a,a), which is a true match. Node 3 adds (c, ⊥), which is a
fake match. Here, we use the term Match to represent a node
as well as refer to matches in Fig.7. A Match (Definition II)
should contain the basic information about which event in a
trace Event or action in action space Action is matched.

Definition II A Match has 6 elements (Event, Action,
f Score, nDev, T ype, PreMatchSet), where:
• Event is an event in a trace σ.
• Action is an action in action space Gac.
• f Score is value of evaluate function.
• nDev is the number of deviations in current match.
• Type is the type of Match, which is MatchInBoth,

MatchInAction, MatchInEvent (Section II-D).
• PreMatchSet contains a set of parent nodes of Match

in the constructed weighted directed graph.
f Score, nDev and PreMatchSet are important variables

for further use in the algorithm. To give an examples, Node 2
is represented Match 2 =(a, a,0, 0, MatchInBoth,Node 1).
In the illustration in Fig.7, each Node has one parent Node. In
order to decrease the computation time, we come up with the
idea of reusing Matches under the condition that two Matches
share the same Event, Activity and fScore. So each Match
may have more than one parent Match which are stored in
PreMatchSet.

D. Algorithm explanation

Section III-C explains Matches and creating successive
Matches after a given one. This section describes creating
Matches selectively using idea of A* to find optimal alignment
efficiently. Evaluation function for selecting is not detailed
here for conciseness of algorithm itself.

The whole algorithm is shown in Algorithm 1. Inputs are
a trace and an action-space. It starts from an empty Match
(Line 2). OPEN stores Matches which are to be evaluated and
explored. The Match n with the lowest f (n) is selected to
explore firstly in OPEN (Line 4). Once a Match is explored,
it is removed from OPEN (Line 8). If n is a targeting one, the
program ends and returns n (Line 5 to 7). If n is not targeting,
GenerateFollowMatches computes nl - successive Matches of
n (Line 9). Their f (nl) are calculated (Line 10). If there is a
Match nll equals nl (Line 11), it is not necessary to keep nl

but add n as parent Match of nll (Line 12). Otherwise, add
nl into G (Line 14), OPEN (Line 15) and create connection
between n and nl (Line 16).

Algorithm 1 Optimal alignment searching with A* algorithm

1: procedure REPLAYTECHNIQUE(σ, Gac) l> σ: a trace in
log; Gac: an action space;

2: Add a new Match SEmpty into OPEN and G; l> G:
the created graph;

3: while OPEN is not empty do
4: Get Match n in OPEN that has the lowest f (n);
5: if n is targeting then
6: return n; l> End while.
7: end if
8: Remove n from OPEN ;
9: for each n l = GenerateFollowMatches(n) do

10: Calculate f (nl).
11: if there is a n ll in G fulfilling n ll ==nl then
12: Add n into nll.P reMatchSet;
13: else
14: Add nl into G;
15: Add nl into OPEN ;
16: Add n into nl.P reMatchSet;
17: end if
18: end for
19: end while
20: end procedure

Evaluation function decides priority of Matches in OPEN
being explored. Each time, a Match with the lowest evaluated
value in OPEN is explored and removed from OPEN. The
algorithm ends when there are no Matches left in OPEN or
one Match meets the requirement both with lowest f (n) and
a targeting condition.

E. Evaluation function formalization
Similar to what A* algorithm proposed, in optimal align-

ment searching problems, evaluation function f (s) should also
include “current merit” (g(s)) and “future merit” (h(s)). Here
we simply formulate it as f (s) = g(s) + α ∗ h(s) to make
explicit that the weight of g(s) and h(s) is not always the
same. Since the final goal is to find a path with the least
number of deviations, the golden standard is the number of
deviations. At a single Match s, we can count the number
of deviations as current “merit”. So g(s) is the number of
mismatches in s. For future merit, because we can’t predict
the number of deviations in the final completed alignment of
s accurately, we use an approximate estimate of the effort
becoming a targeting alignment, in other words, “potential”
of the candidate becoming a targeting alignment.

h(s) could be an optimistic estimate of the “potential” for s
to become a targeting alignment. [14] adopts remaining events
in a trace as estimate for a targeting alignment heuristically.
In this paper, we use the number of remaining steps to
a targeting alignment indicating the effort. In other words,
the number of remaining steps needs information not only
from trace’s aspect but also the model’s aspect. A targeting
alignment requires reaching ends of both the action space and
the trace. So these two aspects should be combined. We define

> α > − 1

h(s) = hL(s) + hM (s), where hL(s) represents the trace’s
part, hM (s) represents the model’s part, and they are equally
important.

For hL(s), we use the number of events from s.Event to the
end of the trace. For hM (s), since the action space is a directed
graph with loops Definition I, it is tricky to calculate the
number of remaining actions along one or more paths. Since an
action-space as a directed graph has only one root node (zero
incoming edges), it make sense to compute depth information
for the whole graph. Distance from depth of slAction to that
of the end one in action-space indicates remaining “effort”
from model’s perspective. The depth of root node is 1 and
it increases along one direction. In case of more than one
incoming edges (may involving loops), the depth of action
is determined by the smallest depth. hM (s) is the difference

“1”, since both of them matches one event in a trace. For s3,
the position of matched Entry does not change, so it stays the
same with hL(s0). hM relates to layer of current action node.
For s1, hM (s1) = hM (s0) + 3 as s1’ action node is in Layer
1 and s0’ action node is in Layer 4. hM (s3) = hM (s0) − 1
as s1’ action node is in Layer 5 and s0’ action node is in
Layer 4. To make it general, we simply use x to indicate any
positive integer. “+” in collum “hM ” shows the case where
position of action node goes to a higher layer. “-” shows the
case where position of action node goes to a lower layer. Row
6 to 9 calculate amount of change. A, B, C, D, E represent 5
different situations.

To assure that s1 is more meritorious than s2 and s3, namely
f (s1) is smaller than f (s2) and f (s3). It requires A and B
are smaller than others: A < C, A < D, A < E, B < C, B <

between the maximum depth and depth of s.Action. D, B < E. The value of α should fulfill: 1
2x−1 2x+1 .

F. GenerateFollowMatches and weight value α of heuristic
function

In Algorithm 1, there is a method GenerateFollowMatches
in Line 9. We use an example in Fig.9 to illustrate it. Fig.9
shows a trace is replayed to part of an action-space which
has a loop from action node “a” to “b”. In the graph, we
use id to represent Entry and Action Node. Match s0 has
Entry 4 and Action Node 4 matched with type MatchInBoth
(s0:(4,4,MatchInBoth,f (s0))). After s0, next Entry is b; next
action nodes are f and b. Three possible ways of aligning
them are s1, s2 and s3. s2 is of type MatchInEvent, namely
“(b, ⊥)”. The dark arrow in s2 that points to action node in
Layer 4 indicates the accomplished position in action space.

Fig. 9: α computation illustration

Among s1, s2 and s3, s1 should be the best one intuitively

as it is of type MatchInBoth. f (s0), f (s1), f (s2) and f (s3)
are calculated in TABLE I. g(s) is defined as number of
deviations, so g(s1) is the same as g(s0); g(s2) and g(s3)
both add “1” to g(s0) since they introduce one deviation in
current unfinished alignment.

hL(s) is defined as the number of events from s.Event to
the end of the trace. hL(s1) and hL(s2) are hL(s0) subtracting

Taking maximum of x guarantees f (s) always provides a
correct evaluation of each candidate alignment. x should be
assigned the maximum depth difference between two actions
in an action space. In this model, x is 3 and 0.2 > α > −0.14.
So the value of α differs with each model.

Introducing weight factor α is: single increment of hL, hM
and g is “1”, however g plays a dominant role. g represents
number of deviations which is a golden standard for selecting
an optimal alignment. Pre-calculating of α using TABLE I
guarantees g is always dominant even in case of loops.

IV. RESULTS

To evaluate our approach, we modeled diagnosis validation
process for unstable angina in Catharina hospital in Fig.10.
This process model is based on the results in [17]. There are
18 tasks when the sub-processes are expanded. We compute
the action-space based on the statespace using the tool in [12].
The action-space is shown in Fig.11. It contains 36 Actions.
We show each Task as one action instead of separating its Start
or Complete type. Actions in this graph is displayed according
to its “layer” from top to bottom.

Table II shows our experimental setting and the results. In
total we constructed 11 log files each of which consists of 100
traces. Traces in Log 1 is of length 34 and fully match the
longest path in action-space in Fig.11. From Log 2 to Log 11,
we gradually inserted deviations of different ratio, from 5 to
50 percent (inserted events are also from the process itself).
The positions of artificial deviations are random.

The fifth collum in Table II shows number of deviations
detected using our method. We can see from Log 1 to Log
9, our method found the same number of deviations as we
artificially inserted. However, when the noise ratio increases
to 45% (Log 10), the number of deviations found is more
than that we inserted. For Log 10, we found that 61 out of
100 traces are detected with 30 deviations; the other 39 traces
have 28 deviations as they are supposed to. Log 11 has 6
traces with 37 deviations which are more than 35 as they are
supposed to. The reason is that heuristic algorithms such as A*
algorithm will often fall into local optimums. To guarantee the

k+1

TABLE I: Different situations to calculate α

 g hL hM f = g + α ∗ (hL + hM)

f (s0) g(s0) hL(s0) hM (s0) f (s0) = g(s0) + α ∗ (hL(s0) + hM (s0))

f (s1) g(s0) hL(s0) − 1 hM (s0) + x
hM (s0) − x

f (s1)=g(s0) + α ∗ (hL(s0) − 1 + hM (s0) + x)
f (s1)=g(s0) + α ∗ (hL(s0) − 1 + hM (s0) − x)

f (s2) g(s0) + 1 hL(s0) − 1 hM (s0) f (s2)=g(s0) + 1 + α ∗ (hL(s0) − 1 + hM (s0))

f (s3) g(s0) + 1 hL(s0) hM (s0) + x
hM (s0) − x

f (s3)=g(s0) + 1 + α ∗ (hL(s0) + hM (s0) + x)
f (s3)=g(s0) + 1 + α ∗ (hL(s0) + hM (s0) − x)

∆g ∆hL ∆hM ∆f
∆f (s1) 0 -1 x

−x

A:α ∗ (x − 1)
B:−α ∗ (x + 1)

∆f (s2) 1 -1 0 C:1 − α
∆f (s3) 1 0 x

−x
D:α ∗ x + 1
E:α ∗ (−x) + 1

Fig. 10: Unstable Angina Diagnosis Validation Process in BPMN

correctness, users need to make sure the noise ratio is under
45% by filtering unrelated events with the process.

The sixth collum in TABLE II shows numbers of Matches
constructed using A* algorithm for a trace with different
deviation ratio. Deviations are inserted randomly. In order to
show the improvement of efficiency, we theoretically compute
the numbers of nodes using the “Naive Way” in Fig.12.
Supposing deviations are inserted equidistantly in the traces
from 5% to 50%. A trace of length l with k deviations results
in a full binary tree to get the optimal alignment. The total
number of nodes is (2k+1 − 1) ∗ l . The number increase

Fig. 11: Action-space of Process Model in Fig.10

exponentially as the ratio of deviations increases as shown
in Fig.12. Our method using A* algorithm generates less nodes
to find the optimal alignment.

To evaluate its performance, we did the same experiment
20 times for each log. The seventh collum shows the average
time it takes. The hardware is a computer with Intel i5-4590
and CPU of 3.30 GHz processor and 8.00 GB memory. For
instance, Log 8 with 100 traces of 40% deviations takes 72
seconds, which is acceptable to users in all kinds of domains.

TABLE II: Deviation Discovery Evaluation Result

Log
No.
(100
traces)

Length
of
Trace

Noise
Rate
(%)

Artificial
Devi-
ations
Num.

Found
Devi-
ations
Num.

Matches
Num.

Time(ms)

1 34 0 0 0 40 32.75

2 36 5 200 200 51 54.4

3 38 10 400 400 100 136.55

4 41 15 700 700 352 762.05

5 43 20 900 900 516 1367.8
6 46 25 1200 1200 1255 5743.65
7 49 30 1500 1500 1798 12908.75
8 53 35 1900 1900 2565 28870.95

9 57 40 2300 2300 4038 72453.1
10 62 45 2800 2922 6519 159391.7
11 69 50 3500 3512 11204 323838.05

Fig. 12: The number of nodes to construct optimal alignments
for the BPMN process in Fig.10 with corresponding different
percent of noise according to the horizontal axis.

V. RELATED WORK

Researches in [3], [14] mentioned to use A* algorithm to
limit the search by introducing a heuristic evaluation function
to assess which branch has the most potential being the
optimal alignment. When we applied their approaches, we
find efficiency is not always good and sometimes there are
errors especially involving loops. Approaches in [15] can not
reuse nodes in exploration because each node is unique. Our
approach changed this situation.

VI. CONCLUSION

Business processes play an important role in documenting
and analyzing processes. Organizations often allow flexible
behaviors and deviations from business models. This paper
proposes a method discovering deviations on control-flow
perspective for process models and event logs. Control-flow
perspective exist in all process models and can be represented
using action-space.

With action-spaces and event logs, we adapt A* algorithm in
optimal alignment searching to efficiently discover deviations.
We give a detailed analysis of setting the evaluation function
as well as the algorithm itself. It enable deviations discovery
for complex structures such as loops without compromising
efficiency. We evaluate this method using a BPMN 2.0 process
vs. 11 event logs. The performance is kept good. Further re-
search direction could be analyzing distributions of deviations
on different paths in action-space. Deviations also give insights
into redesign of processes.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the Brain Bridge Project sponsored by Phillips Research.

REFERENCES

[1] W. M. P. van der Aalst, Process Mining - Discovery, Conformance and
Enhancement of Business Processes. Springer, 2011.

[2] H. T. D. Beer and B. F. V. Dongen, “Process mining and verification of
properties: An approach based on temporal logic,” in On the Move to
Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE: OTM
Confederated International Conferences, CoopIS, DOA, and ODBASE
2005, volume 3760 of Lecture Notes in Computer Science. Springer-
Verlag, 2005, pp. 130–147.

[3] M. De Leoni, F. M. Maggi, and W. M. van der Aalst, “Aligning event
logs and declarative process models for conformance checking,” in
Business Process Management. Springer, 2012, pp. 82–97.

[4] A. Adriansyah, B. F. van Dongen, and W. M. van der Aalst, “Memory-
efficient alignment of observed and modeled behavior,” BPMcenter. org,
Tech. Rep, 2013.

[5] N. Lohmann, E. Verbeek, and R. Dijkman, Transactions on Petri Nets
and Other Models of Concurrency II-Petri Net Transformations for
Business Processes A Survey, K. Jensen and W. M. Aalst, Eds. Berlin,
Heidelberg: Springer-Verlag, 2009.

[6] B. P. Model, “Notation (bpmn) version 2.0,” OMG Specification, Object
Management Group, 2011.

[7] W. M. Van Der Aalst and A. H. Ter Hofstede, “Yawl: yet another
workflow language,” Information systems, vol. 30, no. 4, pp. 245–275,
2005.

[8] J. Cardoso, “How to measure the control-flow complexity of web
processes and workflows,” Workflow handbook, vol. 2005, pp. 199–212,
2005.

[9] A. Adriansyah, B. F. van Dongen, and W. M. van der Aalst, “Towards
robust conformance checking,” in Business Process Management Work-
shops. Springer, 2011, pp. 122–133.

[10] G. J. Holzmann, “The model checker spin,” IEEE Transactions on
software engineering, vol. 23, no. 5, pp. 279–295, 1997.

[11] K. Wolf, “Generating petri net state spaces,” in Petri Nets and Other
Models of Concurrency–ICATPN 2007. Springer, 2007, pp. 29–42.

[12] P. Van Gorp and R. Dijkman, “A visual token-based formalization of
BPMN 2.0 based on in-place transformations,” Information and Software
Technology, vol. 55, no. 2, pp. 365–394, Feb. 2013.

[13] W. Van der Aalst, A. Adriansyah, and B. van Dongen, “Replaying
history on process models for conformance checking and performance
analysis,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, vol. 2, no. 2, pp. 182–192, Mar. 2012.

[14] A. Adriansyah, B. F. van Dongen, and W. M. van der Aalst, “Con-
formance checking using cost-based fitness analysis,” in Enterprise
Distributed Object Computing Conference (EDOC), 2011 15th IEEE
International. IEEE, 2011, pp. 55–64.

[15] R. Dechter and J. Pearl, “Generalized best-first search strategies and
the optimality of a*,” Journal of the ACM (JACM), vol. 32, no. 3, pp.
505–536, 1985.

[16] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” Systems Science and
Cybernetics, IEEE Transactions on, vol. 4, no. 2, pp. 100–107, 1968.

[17] L. Vermeulen, “A process modelling method for care pathways,” Mas-
ter’s thesis, Eindhoven University of Technology, 2013.

