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Abstract

Tempelmeier and Hilger (2015) study the stochastic dynamic lot sizing problem with multiple items and limited capacity.
They propose a linear optimization formulation for the problem based on a piece-wise linear approximation of the non-
linear functions for the expected backorders and the expected inventory position. Our work builds on Tempelmeier and
Hilger (2015). We correct an erroneous derivation of the linear optimization problem and propose an improved model.
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1. Introduction

In this technical note we consider the stochastic dy-
namic capacitated lot sizing problem (SCLSP). Contrary
to its deterministic counterpart, demand is assumed to
be randomly distributed from a known probability distri-
bution, in this case the Normal distribution. The prob-
lem deals with determining a production plan for K items
(k = 1, 2, . . . ,K) over a finite horizon of T periods (t =
1, 2, . . . , T ). All items are produced on a single resource
with limited capacity Ct. We are given a forecast for each
item k over the planning horizon in terms of the expected
demand E[dkt] and the related variance V ar[dkt] per time
period.

Tempelmeier and Hilger (2015) assume that the “static-
uncertainty strategy” of Bookbinder and Tan (1988) ap-
plies, which means that the lot sizes as well as the periods
in which to produce are determined in advance and that
this plan is executed regardless of the actual demand re-
alizations.

We show in this technical note that there is an error in
the derivation of the stochastic model by Tempelmeier and
Hilger (2015) and if used, would lead to incorrect produc-
tion plans. In the next section we introduce the model as
formulated by Tempelmeier and Hilger (2015) and while
doing so we point out the error. Then we explain how this
error can be corrected and propose an improved model.

2. Analysis

The deterministic counterpart of the capacitated lot
sizing problem can be formulated as in Problem 1.
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Problem 1 (CLSP).

min.

T∑
t=1

K∑
k=1

(sckγkt + hc
kIkt) (1)

s.t. Ikt = Ik,t−1 + qkt − dkt ∀k, t (2)∑
k∈K

tpkqkt + tskγkt ≤ Ct ∀k, t (3)

qkt ≤Mγkt ∀k, t (4)

γkt ∈ {0, 1} ∀k, t (5)

0 ≤ qkt, Ikt ∀k, t (6)

In this linear optimization problem the objective is to
minimize the setup cost sck and the inventory holding cost
hck. The decision variables Ikt, γkt and qkt represent, re-
spectively, the inventory position, the setup decision and
the production quantity. Constraint 2 represents the in-
ventory balance equation with Ik0 being set to some initial
value. Constraint 3 limits setups and production in time
period t by the available capacity Ct. Setting up produc-
tion for an item k takes tsk amount of time and producing
one item k takes tpk amount of time. Constraint 4 ensures
that the setup variable is set to one if product k gets pro-
duced in period t (M is a sufficiently large number). Con-
straint 5 states that γkt is a binary decision variable. Con-
straint 6 ensures a lower bound on the production quantity
and the inventory level.

Since demand is uncertain, a service level constraint is
introduced to ensure production. This means that for the
expected inventory position we obtain,

E[Ikt] = Qkt − E[Dkt] + L1
Dkt

(Qkt) (7)

with E[Dkt] =
∑t
τ=1E[dkt] and for the expected back-

log we obtain,

E[Blkt] = L1
Dkt

(Qkt) (8)
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with L1
Dkt

(Qkt) being the first-order loss function of the
random variable Dkt, denoting the cumulative demand,
and depending on the cumulative production quantity Qkt.
This can be used to define the following fill-rate constraint,

1−
∑T
t=1E[Bkt]∑T
t=1E[dkt]

≥ β?,∀k (9)

with Bkt denoting the backorders for product k in time
period t and β? being the target fill-rate. We use the fact
that the expected backorders, E[Bkt], can be expressed in
terms of the expected backlog, that is,

E[Bkt(Qkt)] = L1
Dkt

(Qkt)− L1
Dk,t−1

(Qkt) (10)

After introduction of the expected values, Tempelmeier
and Hilger (2015) derive the approximate stochastic coun-
terpart of Problem 1 by using a piece-wise linear approx-
imation for both functions. The functions are linearized
into L line segments on the relevant interval [u0kt;u

L
kt] where

subinterval [ul−1
kt ;ulkt] relates to line segment l (1 ≤ l ≤ L).

The slope associated with line segment l of the expected
inventory position function for item k at time period t is
as follows,

∆l
Ikt

=

((
ulkt − E[Dkt] + L1

Dkt
(ulkt)

)
−(

ul−1
kt − E[Dkt] + L1

Dkt
(ul−1
kt )

)) 1

ulkt − u
l−1
kt

∀k, t, l

(11)

Similarly, the slope associated with line segment l of
the expected backorders function for item k at time period
t is as follows,

∆l
Bkt

=
(
L1
Dkt

(ulkt)− L1
Dk,t−1

(ulkt)
)
−(

L1
Dkt

(ul−1
kt )− L1

Dk,t−1
(ul−1
kt )

) 1

ulkt − u
l−1
kt

∀k, t, l

(12)

We now introduce a new decision variable wlkt to denote
the part of the cumulative production quantity in time
period t for product k and line segment l. The following
equations must hold for these new decision variables,

wlkt = ulkt − ul−1
kt , l = 1, 2, . . . , l? − 1 (13)

wlkt = Qkt − ul−1
kt , l = l? (14)

wlkt = 0, l = l? + 1, l? + 2, . . . , L (15)

Tempelmeier and Hilger (2015) argue that these equa-
tions are satisfied implicitly in their model, because “the
inventory function is convex, wlkt is only positive if wl−1

kt =

ul−1
kt − u

l−2
kt ”. However, these equations are not satisfied

implicitly in their model, because there is a benefit for
setting those wlkt’s larger than zero where the slopes ∆l

Bkt

times wlkt contributes the most to the reduction of the ex-
pected backorders. This has to do with the fact that the
backorder function found in Equation 10 is non-convex for
t ≥ 2, as stated in the next lemma.
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Figure 1: First-order loss functions and the backorder function for
t = 2

Lemma 1. The expected backorder function E[B(Qkt)] is
non-convex for t ≥ 2.

Proof of Lemma 1. See appendix.

Figure 1 further illustrates this behaviour, it shows a
plot of the first-order loss functions L1

Dk,1
(Qkt), L1

Dk,2
(Qkt)

and the expected backorder function E[Bk2(Qkt]. From
this figure it becomes even more clear that we can sig-
nificantly reduce the expected backorders while producing
less, i.e. less wlkt’s have to be filled to their maximum,
because those wlkt’s will be zero that do not add much to
a reduction in the expected backorders, while those that
contribute the most are filled to their maximum.

We examined the model of Tempelmeier and Hilger
(2015) for selected instances of the problem. For example,
we solved the problem above for one product, with the
mean demand and standard deviation being, respectively,
100 and 30 for each time period over a horizon of 12 pe-
riods. Inventory holding costs are set to hck = 1, setup
costs to sck = 500, setup time is set to zero tsk = 0, the
processing time to tpk = 1 and we start with zero initial
inventory Ik0 = 0. Furthermore, the number of line seg-
ments in the linearization is set to L = 18. The goal is to
achieve a target fill rate of β? = 0.95. The result shows
that w1

1,10 = w2
1,10 = 0, while w3

1,10 = 138.93. This vio-
lates Equations 13, 14 and 15. The resulting production
plan can be found in Table 1. Not only are the wlkt’s not
filled correctly, but the resulting production plan is not in
line with what is to be expected, i.e. we only produce in
the first period and we produce an insufficient amount of
items. This example clearly shows that our expectation is
true, there are wlkt’s that are not filled correctly and this
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happens where the slope contributes significantly to the
reduction of the expected backorders.

We can correct this error by explicitly ensuring that
the wlkt’s are filled sequentially using some additional con-
straints. We introduce a new binary decision variable
γlkt ∈ {0, 1} and add the following constraints,

wlkt ≤Wγlkt l = 2, 3, . . . , L (16)

wl−1
kt = (ul−1

kt − u
l−2
kt )γlkt l = 2, 3, . . . , L (17)

with W being a sufficiently large number.

3. Model Formulation

We correct the model proposed by Tempelmeier and
Hilger (2015) and add the additional constraints formu-
lated in Equations 16 and 17. We then arrive at a model for
the approximate Stochastic Capacitated Lot Sizing Prob-
lem that we formulate in Problem 2. In this model, let ∆l

Ikt

and ∆l
Ikt

be, respectively, the expected inventory and and

the expected backorder at interval end point ulkt.

Problem 2 (Approximate SCLSP).

min.

T∑
t=1

K∑
k=1

(sckγkt + hc
k[∆0

Ikt
+

L∑
l=1

∆l
Ikt
wl

kt]) (18)

s.t.
∑
k∈K

tpkqkt + tskγkt ≤ Ct ∀t (19)

qkt ≤Mγkt ∀t, k (20)

wl
kt ≤Wλl

kt ∀k, t, l; l ≥ 2 (21)

wl−1
kt ≤ (ul−1

kt − u
l−2
kt )λl

kt ∀k, t, l; l ≥ 2 (22)

L∑
l=1

wl
k,t −

L∑
l=1

wl
k,t−1 = qkt ∀k, t (23)

L∑
l=1

wl
k,t−1 ≤

L∑
l=1

wl
kt ∀k, t (24)

∑T
i=1[∆0

Bkt
+

∑L
l=1 ∆l

Bkt
wl

kt]∑T
i=1E[dki]

≤ 1− β?

∀k (25)

γkt, λ
l
kt ∈ {0, 1} ∀k, t, l (26)

0 ≤ qkt ∀k, t (27)

If we use this model to determine the per period pro-
duction quantities, then Equations 13, 14 and 15 are no
longer violated and we obtain a better production plan, as
Table 1 shows.

4. Conclusion

The model proposed by Tempelmeier and Hilger (2015)
contains an error in the way the decision variables related
to the intervals are set for each line segment. In this work
we have shown how this mistake can be corrected by two
additional constraints that rely on an extra binary decision
variable.

References

Bookbinder J, Tan JY. Strategies for the probabilistic lot-sizing
problem with service-level constraints. Management Science
1988;34(9):1096–108.

Tempelmeier H, Hilger T. Linear programming models for a stochas-
tic dynamic capacitated lot sizing problem. Computers and Op-
erations Research 2015;59:119–25.

Appendix

Proof of Lemma 1. The expected backorder function found
in Equation 10 would be convex if,

dBkt(x)

dx2
≥ 0 (28)

In order to determine if this function is convex we start
with deriving its first derivative,

dBkt(x)

dx
=

d

dx

(
L1
Dkt

(x)− L1
Dk,t−1

(x)
)

(29)

=
d

dx

(
L1
Dkt

(x)
)
− d

dx

(
L1
Dk,t−1

(x)
)

(30)

=
d

dx

(
σDkt

(
φ(z)− z(1− Φ(zt))

))
(31)

− d

dx

(
σDk,t−1

(
φ(w)− w(1− Φ(w))

))
with z =

x−µDkt

σDkt
and w =

x−µDk,t−1

σDk,t−1
. We start with

deriving the first term of Equation 31,

dL1
Dkt

(x)

dx
=

d

dx

(
σDkt

(
φ(z)− z(1− Φ(z))

))
(32)

= −zφ(z)− 1 + Φ(z) + zφ(z) (33)

= Φ(z)− 1 (34)

In an analogous way we can derive the derivative of
the second term of Equation 31 and combine this with
Equation 34 to come to the derivative of the whole, i.e.
Equation 31.

dBkt(x)

dx
= (Φ(z)− 1)− (Φ(w)− 1) (35)

= Φ(z)− Φ(w) (36)

We continue with determining the second derivative
of Bkt. This can be obtained by taking the derivative of
Equation 36 with respect to x. That is,

dBkt(x)

dx2
=

d

dx

(
Φ(z)− Φ(w)

)
(37)

=
d

dx
Φ(z)− d

dx
Φ(w) (38)

=
1

σDt

φ(z)− 1

σDt−1

φ(w) (39)
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Table 1: A comparison between production plans.

Time periods t
1 2 3 4 5 6 7 8 9 10 11 12

Tempelmeier and Hilger 405.60 0 0 0 0 0 0 0 0 0 0 0
Improved model 410.09 0 0 0 439.49 0 0 0 448.30 0 0 0

For the backorder function to be convex, we need the
following to hold,

dBkt(x)

dx2
≥ 0 (40)

1

σDt

φ(z)− 1

σDt−1

φ(w) ≥ 0 (41)

1

σDt

φ(z) ≥ 1

σDt−1

φ(w) (42)

However, a counterexample can be given to show that
this inequality is not satisfied. Let the per period mean
demand be 100, a standard deviation of 30, consider the
case where t = 2 and take x = 0. In this case Equation
42 is not satisfied. This leads to a contradiction and from
that we may conclude that the backorder function Bkt is
non-convex for t ≥ 2.
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