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Abstract

We study the planning problem of selecting services and trans-
fers in a synchromodal network to transport freights with different
characteristics, over a multi-period horizon. The evolution of the net-
work over time is determined by the decisions made, the schedule of
the services, and the new freights that arrive each period. Although
freights become known gradually over time, the planner has probabilis-
tic knowledge about their arrival. Using this knowledge, the planner
balances current and future costs at each period, with the objective
of minimizing the total costs over the entire horizon. To model this
stochastic and multi-period tradeoff, we propose a Markov Decision
Process (MDP) model. To overcome the computational complexity of
solving the MDP, we propose an Approximate Dynamic Programming
(ADP) approach. Using different problem settings, we show that our
look-ahead approach has significant benefits compared to a benchmark
heuristic.

1 Introduction

We consider the problem of selecting services and transfers in a synchro-
modal network, to transport freights from their origin to their destination,
while minimizing costs over a multi-period horizon. In a synchromodal set-
ting, all freights are booked “mode-free”, meaning that there are no restric-
tions for selecting a transportation mode or deciding the number transfers
among the intermodal terminals. As an example, consider Figure 1. In
this figure, the star freight can be brought from its origin to its destination
directly by truck, or via a combination of any of five intermodal terminals
that have different transportation modes, schedules, and times. Although
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there is flexibility in the selection of services and transfers, all decisions are
encumbered by various time restrictions and by the variability in the arrival
of freights over time. In this paper, we study how these challenges can be
tackled, specially for large-sized problems, in order to select the services and
transfers that achieve the lowest expected costs.
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Figure 1: Example of a synchromodal network

In synchromodal planning, it is possible to change the transportation
plan, i.e., the services and transfers needed to bring a freight from its origin
to its destination, at any point in time. Even though the planner might
have a complete plan at a given moment, only the first part of such a plan
is implemented. The next decision moment, the planner has the flexibility
to change the original plan if necessary. Consequently, at each decision
moment, the planner can make three types of decisions for available freights
at each location: (i) transport a freight to its final destination, (ii) transport
a freight to an intermediate terminal, and (iii) postpone the transport of a
freight. All types of decisions incur some form of costs. The first and
the second type incur direct costs, which are costs realized by the services
required for the transportation of a freight. The third type has direct costs
only in case of holding costs. Since the problem is to minimize costs over
a multi-period horizon, the second and third type also incur future costs,
which are costs that are not incurred on the moment the decision was made,
but on a posterior moment within the planning horizon. Naturally, there
is uncertainty about future costs since these depend on the decisions that
will be made in the future, which in turn depend on new arriving freights.
The optimal balance between direct and future costs guarantees the best
performance for the multi-period horizon. However, anticipating future costs
is challenging.

The decisions and the evolution of the network over time are influenced
by two types of time restrictions. The first type corresponds to the du-
rations and schedules of services and transfers. As an example, consider
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Figure 2: Time evolution and planning example of service and transfer se-
lection corresponding to the synchromodal network of Figure 1.

Figure 2, which shows a possible plan spanning 5 days using both train and
barge. Note that the network corresponds to that of Figure 1. Although
the plan spans a 5 day horizon, only the first decision is implemented, and
as time progresses, re-planning decisions can be made if necessary. The sec-
ond type corresponds to the time-windows of freights. In combination with
service schedules and durations, time-windows limit the feasible transporta-
tion services and transfers, and thus the feasible decisions. In addition to
the time restrictions, the variability in the number of freights that arrive
each day and their characteristics (i.e., origin, destination, time-window),
also influence the evolution of the network. These freights and their char-
acteristics are unknown beforehand, but there is probabilistic information
about their variability. Every day, the planner must consider all these net-
work characteristics and select which freights use the services available that
day. Although we mention “days” in this paragraph, time can be discretized
into any arbitrary interval.

The objective of this paper is twofold: (i) to design a model and look-
ahead solution method that capture all problem characteristics and their
effect on the planning objective, and (ii) to explore the use of look-ahead
decision methods under several settings. We model the decision problem and
the evolution of the network using a Markov Decision Process (MDP) model.
With this model, the optimal trade-off between the three types of decisions,
over time and under uncertain demand, can be obtained. However, and as
with many optimal approaches, solving MDP models become unmanageable
as problem instances grow larger. To overcome this, we use Approximate
Dynamic Programming (ADP). ADP combines simulation, optimization,
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and statistical techniques to approximate the solution of an MDP model
without loosing any of its characteristics.

The remainder of this paper is organized as follows. In Section 2, we
briefly mention the relevant literature and specify our contribution to it. In
Section 3, we introduce the MDP model. In Section 4, we explain our ADP
solution approach. In Section 5, we test various designs within the ADP
algorithm, and provide a comparison with benchmark heuristics. Finally, we
close in Section 6 with conclusions and key research insights about modeling
and solving the problem of selecting services and transfers for freights in a
synchromodal network.

2 Literature Review

In this section, we briefly comment on the literature about synchromodal
planning. We focus our attention on the literature about planning problems
in dynamic and flexible intermodal transportation networks. Extensive lit-
erature reviews about this area can be found in [2] and [15].

Synchromodal planning is the proactive organization and control of inter-
modal transportation services based on the latest information available [15].
In such a planning paradigm, decision methods must balance the demand
with all available services and intermodal transfers each time new informa-
tion becomes known [13]. Although research about such methods in synchro-
modal planning problems is on its infancy, several studies show how existing
methods for intermodal transport planning can be extended to such problem
settings [17] and how significant gains can be achieved in practice [9,14,17].

In intermodal transport planning, Dynamic Service Network Design prob-
lems (DSND) are the closest to the synchromodal planning problems. DSND
involves the selection of transportation services and modes for freights, where
at least one feature of the network varies over time [15]. Due to the time-
space nature of DSND problems, graph theory and mathematical program-
ming approaches are commonly used in this area. However, these approaches
have computational limitations for large and complex time-evolving problem
instances [16], which are characteristics common to synchromodality [13].
To overcome these limitations, additional designs, such as decomposition
algorithms [5], receding horizons [6], and model predictive control [10], are
necessary. These additional designs are less suitable for including probabilis-
tic information in the decisions, which may explain why most DSND studies
assume deterministic demand [15] even though the need to incorporate it
has been recognized [7].

To incorporate stochasticity in DSND approaches, techniques such as
scenario generation [3, 7], two-stage stochastic programming [1, 8], and ap-
proximate dynamic programming (ADP) [4, 11] have been used. Although
these approaches perform better than their deterministic counterpart, they

4



have limitations when considering synchromodal planning. In the scenario
generation technique, plans do not change as new information becomes avail-
able. In the two-stage stochastic programming approach, explicit probabilis-
tic constraints and high computational requirements limit their applicability
to large instances. In ADP, a proper design and validation of the approxima-
tion algorithm is crucial and challenging. Nevertheless, the ADP approach
allows generic modeling of complex, time-revealing, stochastic networks and
a fast response time for updating plans.

To summarize, research in DSND problems provides a useful base for
synchromodal planning. Considering all challenges and opportunities men-
tioned before, we believe that our contribution to the scientific literature
of stochastic DSND problems and synchromodal planning has three key
points. First, we design a Markov Decision Process (MDP) model and so-
lution method based on Approximate Dynamic Programming (ADP) that
capture all problem characteristics and their effect on the planning objective.
Second, we explore the use of such a look-ahead approach, under different
problem settings, and provide design and validation insights. Third, we
compare the ADP approach against an advanced sampling procedure and
specify further research directions based on the insights.

3 Optimization Model

In this section, we first present the notation for our problem. As noted
before, our problem falls into the class of DSND problems, which are com-
monly modeled using a time-space representation of the transportation net-
work in a directed graph. Following this convention, we denote all problem
characteristics using a directed graph and present the MDP model for our
stochastic planning problem. We end with a discussion on the computational
limitations of the model.

3.1 Notation

We define a directed graphGt = (Nt,At), where t ∈ T = {0, 1, . . . , Tmax − 1}
represents the finite planning horizon (i.e., Tmax decision periods), Nt rep-
resents the set of all nodes at time t, and At represents the set of all directed
arcs at time t. In the remainder of the paper, we refer to a time period t as
a day, although it is important to note that time can be discretized in any
arbitrary interval. In the remainder of the model description, all notation
and formulations indexed by t correspond to that day. Nodes Nt represent
physical locations where freight can begin or end transportation, i.e., origins,
intermodal terminals, and destinations. We denote the set of origin nodes as
NO
t , the set of destination nodes as ND

t , and the set of intermodal terminal
nodes as N I

t . These three sets are mutually exclusive, make up the set of all
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nodes, and are all indexed with i, j and d. Arcs At represent all transporta-
tion services in the network. Similar to the node classification, we classify
the arcs into three types. The set of arcs between an origin and an inter-
modal node is denoted as AO

t =
{

(i, j)|i ∈ NO
t and j ∈ N I

t

}
. The set of arcs

between two intermodal terminal nodes is denoted as AI
t =

{
(i, j)|i, j ∈ N I

t

}
.

The set of arcs between an origin or an intermodal node, and a destination,
is denoted as AD

t =
{

(i, d)|i ∈ NO
t ∪N I

t and d ∈ ND
t

}
.

We make three modeling assumptions with respect to the transportation
services between different types of locations. First, we assume that services
beginning at an origin, i.e., AO

t , as well as services ending in a destination,
i.e., AD

t , are available every day and are realized by truck. This assumption
correspond to the usual pre- and end-haulage operations in an synchromodal
network. Second, we assume that services between two intermodal terminals,
i.e., AI

t, are done by high-capacity modes and never by truck. Although
this is a simplification of the network, trucks between intermodal terminals
are seldom used. Third, we assume there is at most one service between
two intermodal terminal nodes. Naturally, multiple services between two
intermodal terminals can be modeled using more than one pair of nodes
representing those terminals. Note that the services between two intermodal
terminals are not necessarily the same every day to represent the schedules
for the high-capacity modes.

Transportation services in the network have their starting and ending
location modeled as nodes within Gt. However, there are three other char-
acteristics that are relevant for the planning. First, there is a maximum
capacity Qi,j,t in the service between two intermodal terminals (i, j) ∈ AI

t,
measured in number of freights. For all services involving an origin or a
destination, we assume there is unlimited number of trucks. Second, all
services (i, j) ∈ At have a service duration of LAi,j,t days, which lasts at
least one day. Remind that time can be discretized into any arbitrary
interval. All transfer/handling operations at each location i ∈ Nt have
a duration of LNi,t days. To measure the total time required for the ser-
vice between two locations, we define the auxiliary parameter Mi,j,t =
LNi,t + LAi,j,t + LNj,t. We assume that traveling directly to a destination
by truck is always faster than going through an intermodal terminal, i.e.,

LAi,d,t < minj∈N I
t

{
Mi,j,t + LAj,d,t

}
,∀(i, d) ∈ AD

t . This assumption works in

a similar way as the triangle inequality in routing problems. Third, all
relevant costs from a service (i, j) ∈ At are captured in the cost function
Ci,j,t. This means that, although pre- and end-haulage decisions (e.g., first-
and last-mile routing), as well as freight handling decisions (e.g., container
stacking), are outside the scope of the planner, their costs can be captured
with the function Ci,j,t.

Each day t, freights with different attributes become known to the plan-
ner. These freights are characterized by an origin i ∈ NO

t , a destination
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d ∈ ND
t , a release day r ∈ Rt = {0, 1, 2, . . . , Rmax

t }, and a time-window
length k ∈ Kt = {0, 1, 2, . . . ,Kmax

t }, where Rmax
t and Kmax

t are the maxi-
mum release day and time-window length, respectively, that a freight can
have. Note that the absolute due-day is k days after r. Even though new
freights and their characteristics are only known until they arrive, there is
probabilistic knowledge about their arrival. In between two consecutive days
t− 1 and t, a total of f ∈ N freights arrive into the system with probability
pF
f,t. A freight that arrives has origin i ∈ NO

t with probability pO
i,t, destina-

tion d ∈ ND
t with probability pD

d,t, release-day r ∈ Rt with probability pR
r,t,

and time-window length k ∈ Kt with probability pK
k,t.

3.2 MDP Model

The stages of the MDP are defined by t ∈ T . To model freights in the
network, we introduce the variable Fi,d,r,k,t ∈ Z+ that represents the number
of freights at location i ∈ NO

t ∪ N I
t , that have destination d ∈ ND

t , release
day r ∈ Rt, and time-window length k ∈ Kt. The state St of the system
consists of all freights variables as seen in (1). The state space is denoted as
St, i.e., St ∈ St.

St = [Fi,d,r,k,t]∀i∈NO
t ∪N I

t ,d∈ND
t ,r∈R′t,k∈Kt

(1)

Note that we use a new setR′t for the release days. The release day definition
at origin nodes remains the same. The release day at an intermodal terminal,
however, is now used to represent the days “left” for a freight to arrive at that
node. For example, if a released freight is sent to an intermodal terminal j
on a barge whose total service duration is four days, this freight will appear
the day after it was sent, as a freight with r = 3 at location j. This new

set, which is defined as R′t =
{

0, 1, 2, . . . ,max
{
Rmax
t ,max(i,j)∈AI

t
Mi,j,t

}}
,

allows us to model multi-day durations of services without the need of re-
membering decisions from more than one day ago, i.e., to be more computa-
tionally efficient. Note that, in case no total service duration is larger than
Rmax
t , then Rt = R′t. Time-window lengths k still model the number of

days after the release-day r, within which the freight has to be at its final
destination. We will elaborate more on the evolution of the network over
time later on in this section.

At each stage, the planner must decide how many released freights to
transport and to postpone, for all locations. Remind that, in a synchro-
modal network, only the first part of the plan to transport a freight to its
destination is implemented at each decision moment. Consequently, at every
stage, the decision to transport a freight can be either to send it directly to
its final destination, or to send it to an intermodal terminal. To model this
decision, we introduce the variable xi,j,d,k,t ∈ Z+, which represents the num-
ber of freights having destination d ∈ ND

t and time-window length k ∈ Kt
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that are transported from location i to location j using service (i, j) ∈ At
. Thus, the decision vector xt consists of all transported freights in the
network, as seen in (2a).

xt = [xi,j,d,k,t]∀(i,j)∈At,d∈ND
t ,k∈Kt

(2a)

s.t.∑
j∈N I

t∪{d}

xi,j,d,k,t ≤ Fi,d,0,k,t, ∀i ∈ NO
t ∪N I

t , d ∈ ND
t , k ∈ Kt (2b)

xi,d,d,LAi,d,t,t
≥ Fi,d,0,LAi,d,t,t, ∀(i, d) ∈ AD

t , k ∈ Kt (2c)

xi,j,d,k,t = 0, ∀(i, j) ∈ At, d ∈ ND
t , k ∈ Kt|k < Mi,j,t +Mj,d,t (2d)∑

d∈ND
t

∑
k∈Kt

xi,j,d,k,t ≤ Qi,j,t, ∀(i, j) ∈ AI
t (2e)

Naturally, the decision xt depends on the state St, as well as on the ca-
pacity of the long-haul transportation services. The feasible decision space
Xt, with xt ∈ Xt, has four constraints. First, the number of freights trans-
ported from one location to all other locations cannot exceed the number
of released freights at hand at the start location, as seen in (2b). Second,
released freights whose time-window length is as long as the duration of
direct transport (i.e., trucking) must be transported using this service, as
seen in (2c). Third, freights whose time-window length is smaller than the
duration of the shortest path between an intermodal terminal and their des-
tination cannot be transported via that terminal, as seen in (2d). Fourth,
transport between two intermodal terminals cannot exceed the capacity of
the long-haul vehicle, as seen in (2e).

After making a decision xt−1, but before entering the state St, new
freights become known to the planner. We represent new freights with origin
i ∈ NO

t , destination d ∈ ND
t , release day r ∈ Rt, and time-window length

k ∈ Kt, by F̃i,d,r,k,t. We denote the vector of all new freights that arrive
between stages t− 1 and t by Wt, as seen in (3). This vector represents the
exogenous information that became known between stages t− 1 and t.

Wt =
[
F̃i,d,r,k,t

]
∀i∈NO

t ,d∈ND
t ,r∈Rt,k∈Kt

(3)

The evolution of the network over time is influenced by decisions, exogenous
information, and various time relations. To model this evolution, we intro-
duce the transition function SM as seen in (4a). The general idea of SM is
to define the freights at St using only the previous-stage decision xt−1 and
the exogenous information Wt. Although decisions can span more than one
day, we use freight release days and time-windows lengths to avoid the need
of remembering a decision for more than one stage. Naturally, when freights
are not transported, they remain at the same location and their release days
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and time-window lengths decrease. However, when freights are transported
from a given location i to an intermodal terminal j, they are modeled as
freights whose release day increases and their time-window length decreases
in line with the total duration of transport Mi,j,t. To model all these rela-
tions, SM classifies freight variables Ft,i,d,r,k into seven categories, as shown
in (4b) to (4h). To exemplify in detail the workings of these categories,
consider (4c). These constraints apply to released freights at an intermodal
terminal i with destination d and time-window length k. These freights
are the result of three types of freights: (i) released freights in the same
terminal, from the previous stage, that had the same destination, that had
one additional day in the time-window, and that were not transported to
any other node (i.e., Ft−1,i,d,0,k+1 −

∑
j∈At xt−1,i,j,d,k+1); (ii) freights in the

same node, from the previous stage, that had the same destination, that
had a release-day of one, and that had the same time-window length (i.e.,
Ft−1,i,d,1,k); and (iii) freights that arrived from other locations to i, that have
the same destination, whose total duration of transportation was one period,
and whose time-window length was k+Mj,i,t at the moment of the decision
xt−1 (i.e.,

∑
j∈At|Mj,i,t=1 xt−1,j,i,d,k+Mj,i,t

). All other constraints work in a
similar fashion.

St = SM (St−1, xt−1,Wt) (4a)

s.t.

Ft,i,d,0,k = Ft−1,i,d,0,k+1 −
∑
j∈At

xt−1,i,j,d,k+1 + Ft−1,i,d,1,k + F̃t,i,d,0,k, (4b)

∀i ∈ NO
t , d ∈ ND

t , k + 1 ∈ Kt
Ft,i,d,0,k = Ft−1,i,d,0,k+1 −

∑
j∈At

xt−1,i,j,d,k+1 + Ft−1,i,d,1,k

+
∑

j∈At|Mj,i,t=1

xt−1,j,i,d,k+Mj,i,t
,

(4c)

∀i ∈ N I
t , d ∈ ND

t , k + 1 ∈ Kt
Ft,i,d,0,Kmax

t
= Ft−1,i,d,1,Kmax

t
+ F̃t,i,d,0,Kmax

t
, (4d)

∀i ∈ NO
t , d ∈ ND

t

Ft,i,d,r,k = Ft−1,i,d,r+1,k + F̃t,i,d,r,k, (4e)

∀i ∈ NO
t , d ∈ ND

t , r + 1 ∈ Rt|r ≥ 1, k ∈ Kt
Ft,i,d,r,k = Ft−1,i,d,r+1,k +

∑
j∈At|Mj,i,t=r+1

xt−1,j,i,d,k+Mj,i,t
, (4f)

∀i ∈ N I
t , d ∈ ND

t , r + 1 ∈ R′t|r ≥ 1, k ∈ Kt
Ft,i,d,|R′t|,k =

∑
j∈At|Mj,i,t=|R′t|+1

xt−1,j,i,d,k+Mj,i,t
, (4g)
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∀i ∈ N I
t , d ∈ ND

t , k ∈ Kt
Ft,i,d,Rmax

t ,k = F̃t,i,d,Rmax
t ,k, (4h)

∀i ∈ NO
t , d ∈ ND

t , k ∈ Kt

The goal is to minimize the total costs over a multi-period horizon, consid-
ering all possible states that can occur in each day of the horizon. We define
a set of decisions for all possible states as a policy π, i.e., a function that
maps each possible state St ∈ St to a decision xπt ∈ Xt. Consequently, the
objective is to determine the policy π from the set of all policies Π that min-
imizes the expected costs over the planning horizon, given an initial state
S0, as seen in (5):

min
π∈Π

E

∑
t∈T

Ct (xπt ) =
∑
t∈T

∑
(i,j)∈At

Ci,j,t · ∑
d∈ND

t

∑
k∈Kt

xπi,j,d,k,t

∣∣∣∣∣∣S0

 (5)

To solve the sequential decision problem, we transform (5) into the Bell-
man’s equations of (6). In these equations, the expected next-stage costs
is computed using the value of the next-stage state St+1 (obtained using
SM ), the decision xπt , a realization of the exogenous information ω ∈ Ωt+1,

and the associated probability p
Ωt+1
ω . The solution to all recursive equations

of (6) provide the optimal policy for the MDP at stage t, and by iterating
backwards through time, from the end of the planning horizon, the objective
in (5) is achieved.

Vt (St) = min
xπt ∈Xt

Ct (xπt ) +
∑

ω∈Ωt+1

pΩt+1
ω · Vt+1

(
SM (St, x

π
t , ω)

), ∀St ∈ St
(6)

However, solving the Bellman equations in (6) for large problems is com-
putationally challenging. The state space St, decision space Xt, and the
realizations of the exogenous information in Ωt grow larger with an increas-
ing size of the problem instance. Due to these three “curses of dimen-
sionality” [12], our MDP model is solvable only for tiny problem instances.
Notwithstanding, the MDP model serves as a base for our large instance
solution approach.

4 Solution Approach

Our solution approach is based on Approximate Dynamic Programming
(ADP). ADP approximates the expected next-stage costs in (6) through an
algorithmic strategy that steps forward through time and uses simulation
for the exogenous information Ωt+1. For such an approach, a more natural
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form of the Bellman’s equations in (6) is the expectational form given by:

Vt (St) = min
xπt ∈Xt

(
Ct (xπt ) + Eω

[
Vt+1

(
SM (St, x

π
t , ω)

)])
∀St ∈ St (7)

In our ADP approach, the entire expectation Eω[·] in (7) is replaced by
an approximate value function V

n
t (Sx,nt ), where Sx,nt is the so-called post-

decision state, i.e., the state after a decision has been made but before the
new exogenous information becomes known. As seen in (8), this construct
avoids the dimensionality issue of the large number of realizations of the
exogenous information.

V n
t (Snt ) = min

xπt ∈Xt

(
Ct (xπt ) + V

n
t (Sx,nt )

)
(8)

To avoid the large state space, the optimality equations in (8) are solved for
one state at each stage, starting from the initial state S0. The transition
from one state to the next uses a sample from Ωt+1, obtained through a
Monte Carlo simulation, and the transition function SM defined in (4a).
This process is performed for the entire planning horizon, and repeated for
N iterations, hence the superscript n in the approximate value function and
post-decision state.

The general outline of an ADP algorithm can be found in Figure 4.7,
page 141, of the book of [12]. We now focus on two designs (i.e., variations)
we propose for that algorithm. Our first design uses a commonly proposed
ADP setup. We use basis functions for V

n
t (Sx,nt ) and the non-stationary

least squares method for updating this function. A basis function φa(S
x,n
t )

is a quantitative characteristic of a given feature a of a post-decision state
Sx,nt that describes, to some extent, the value of that post-decision state.
Examples of features in our problem are the number of freights for a given
destination and the number of freights at a given intermodal terminal. Given
a set of features A, the approximated next-stage costs in (8) are the result
of the product between the basis function φa(S

x,n
t ) and the weight θna,t for

each feature a ∈ A, as seen in (9).

V
x,n
t (Sx,nt ) =

∑
a∈A

θna,tφa (Sx,nt ) (9)

The weight θna,t depends on the iteration n because, at iteration n, costs
from the previous approximation at n − 1 have been observed, and can be
used to update the weights. We use a Non-stationary Least Squares (NLS)
method for updating these weights since it gives more emphasis to the re-
cent observation than to the previous one. This emphasis is necessary at
early iterations, where initial conditions might bias the approximation and
the result of the ADP approach. The weights θna,t, for all a ∈ A, are up-
dated each iteration n using the observed error (i.e., difference between the

next-stage estimate from the previous iteration V
n−1
t−1

(
Sx,nt−1

)
and the current
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estimate v̂nt ), the value of all basis functions φa (Sx,nt ), the optimization ma-
trix Hn, and the previous weights θn−1

a,t , as seen in (10). For a comprehensive
explanation on the NLS method, we refer to [12].

θna,t = θn−1
a,t −Hnφa (Sx,nt )

(
V
n−1
t−1

(
Sx,nt−1

)
− v̂nt

)
(10)

The first design considers downstream costs only through a one-step esti-
mate. Since estimates can be off, especially in early iterations, it might be
beneficial to do “look” at more than one step ahead. To do this, our second
design builds on the first one and uses two additional constructs. First, we
add a valid inequality to the decision space Xt as follows. If a direct service
(i.e., truck) for a freight between its origin and its destination is cheaper
than going from its origin to a given intermodal terminal and subsequently
to its destination, we prevent this freight from going to that intermodal
terminal when its time-window length allows only a direct service after the
intermodal terminal. Second, we add another estimate to V

n
t (Sx,nt ), as seen

in (11). In this new approximate value function, C
n
t (Sx,nt ) is a cost estimate

about all costs through the end of the planning horizon obtained with a
sampling method, and α is a weight to balance the use of basis functions
and samples for V

n
t (Sx,nt ).

V
x,n
t (Sx,nt ) = α

∑
a∈A

θna,tφa (Sx,nt ) + (1− α)C
n
t (Sx,nt ) (11)

At last, the output of our two ADP designs are the weights θNa,t. The result-
ing policy π maps state St ∈ St to decision xπt as seen in (12).

xπt = arg min

Ct (xπt ) +
∑

a∈A(Sxt )

θNa,tφa (Sxt )

 (12)

5 Numerical Experiments

In this section, we explore the value of our ADP designs through a series of
numerical experiments. Using three small instances, we compare the costs
achieved by our ADP approach in three small instances against a benchmark
policy and an advance sampling procedure. The section is divided as follows.
First, we introduce our experimental setup. Second, we show, analyze, and
discuss the results of our experiments.

5.1 Experimental Setup

For the three instances, we use a network containing a single origin, three
intermodal terminals, and three destinations over a planning horizon of 15
days. Each day, there are three services between the intermodal terminals,
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with capacities and durations as shown in Figure 3. The fixed costs of
these services are of CF1,2 = CF2,3 = 100 and CF1,3 = 150. The variable
costs range between 36 and 44, and are equal to the Euclidean distance
between the terminals in a plane of 100x50 distance units, as shown to
scale in Figure 3. In addition, every day there is a direct service between
the origin and the terminals, between the origin and the destinations, and
between the terminals and the destinations; and they all have duration of
one day. There are no fixed costs for the direct services, and the variable cost
range varies between 241 and 927, and are equal to ten times the Euclidean
distance between the two locations they connect. The number of freights
that arrives each day varies between f = {0, 1, ..., 4}, with probability pF

f

as shown in Figure 3. In the three instances, each freight has destination
d ∈ {4, 5, 6} with probability pD

d as shown in Figure 3, and is always released
(i.e., pR

0 = 1). Each freight has a time-window length k = {1, 2, . . . , 5} with
probability pK

k according to the instances considered, as shown in Figure 3.
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Figure 3: Network characteristics for instances I1 and I2

Using the two problem instances, we test four planning methods: a
benchmark heuristic, our two ADP designs (named ADP 1 and ADP 2),
and an advance sampling procedure. The set of features A consists of all
state variables and a constant of 1. The weight α for ADP 2 is defined
as α = max {25/ (25 + n− 1) , 0.05} and the sampling method is the same
as the advance sampling procedure introduced in the next paragraph. The
ADP algorithm runs for 100 iterations and the NLS parameters used are
those recommended by [11].

The benchmark heuristic strikes for a balance between using the inter-
modal services efficiently (consolidate as many freights as possible) and the
postponement of freight. It consists of fours steps: (i) define the shortest and
second shortest path for each freight to its final destination, without con-
sidering fixed costs for services between terminals, (ii) calculate the savings
between the shortest and second shortest path and define these as savings
of the first intermodal service used in the shortest path, (iii) sort all freights
in non-decreasing time-window length, i.e., closest due-day first, and (iv)
for each freight in the sorted list, check whether the savings of the first in-
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termodal service of its shortest path are larger than the fixed cost for this
service; if so, use this service for the freight, if not, postpone the transport
of the freight. Naturally, all capacities, durations, and time-windows must
be checked while doing these steps.

The sampling procedure consists of three steps: (i) enumerate all feasible
decisions, (ii) for each feasible decision, estimate future costs by sampling,
in a Monte Carlo fashion and using common random numbers across the
decisions, realizations of the exogenous information for the remainder of the
planning horizon, and simulating the use of the benchmark heuristic for
making decisions with these samples, and (iii) choose the decision with the
lowest sum of direct and estimated future costs. Although heavily compu-
tationally intensive (i.e., not applicable to larger instances), this procedure
exploits all possible benefits of looking-ahead in decision making.

The tests are done in a simulation of each planning method consisting
of 100 replications of the planning horizon, using common random numbers,
and using ten commonly encountered states in each instance. Note that
these 100 replications are different from the 100 iterations of the ADP algo-
rithm. Thus, we test the ADP approach in two phases: (i) learning phase
through 100 iterations and (ii) simulation phase of using the resulting policy
in (12) for 100 replications. To define the ten test states in each instance, we
do a simulation of the benchmark heuristic, beginning with an empty sate,
for a horizon of 15 days. We save the state at the end of the horizon. We
replicate this procedure 10,000 times, and choose the ten states that were
observed the most.

5.2 Experimental Results and Discussion

First, we analyze Instance I1. This is the most flexible instance of the three,
since all freights that arrive have a time-window length of 5 days. The re-
sults of the ten chosen states are shown in Table 5.2. We show the costs
for the benchmark heuristic, and the relative savings, as a percentage, of
the other planning methods when compared to the benchmark. In addition,
we show characteristics of the initial state. Note that these initial states
are ordered by decreasing number of observations during our experimental
setup.

On average, ADP 1 achieves savings of 12.8%, ADP 2 of 29.2%, and the
advanced sampling procedure of 41.2% when compared to the benchmark
heuristic. All three methods that explicitly look-ahead in their decisions
perform better than the benchmark that does so only implicitly. The sam-
pling method performs the best, at a high computational expense. For large
instances, or even small ones where time is discretized into smaller intervals,
this method would not be applicable. ADP 2 performs second best, at a
higher computational expense during the learning phase than ADP 1. How-
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Table 1: Results for Instance I1

State
Freights

Benchmark ADP 1 ADP 2 Sampling
Total k < 3 k ≥ 3

1 4 2 2 12221 -13.6% -33.9% -43.3%
2 7 3 4 14684 -12.8% -32.7% -39.9%
3 5 2 3 13042 -13.1% -27.5% -41.5%
4 6 3 3 13863 -12.3% -25.9% -39.0%
5 6 2 4 13863 -12.0% -30.0% -42.3%
6 6 2 4 13863 -10.4% -31.3% -42.9%
7 5 2 3 13042 -12.6% -23.4% -41.5%
8 4 3 1 12221 -14.7% -25.0% -38.9%
9 2 1 1 10579 -14.9% -29.9% -42.4%
10 5 3 2 13042 -11.2% -32.9% -40.6%

ever, during the updating of decisions in the planning horizon, both ADP
designs take the same time, which is significantly faster the sampling pro-
cedure (e.g., milliseconds against minutes per decision in our experiments).
ADP 1 lowest savings indicate that a one-step look-ahead is not sufficient
for achieving the best performance. Furthermore, the difference between the
two ADP designs suggests that further research that explicitly considers a
few stages in advance, such as rolling-horizon procedures within the ADP
framework, can improve performance significantly.

The average results across the test states of I2 and I3 are shown in Ta-
bles 5.2, respectively. Note that each instance has its own set of test states,
which differs from the other instances. Furthermore, note that I2 and I3

have significantly less flexibility than I1: due to their time-window length,
only 40% and 0.05% of arriving freights can use any intermodal connection,
respectively.

Table 2: Average results for Instance I2 and I3

Instance Benchmark ADP 1 ADP 2 Sampling

I2 11078 -5.2% -9.8% -31.2%
I3 12874 2.9% 0.4% -3.3%

The larger savings from all look-ahead methods I1 and I2, compared to
I3, indicate that the more flexibility there is, and the more freights a state
has, the better it is to look-ahead in the decision making. In I2, similar
results to I1 are achieved, but with significantly less cost savings. In I3,
the benchmark heuristic performs better than the ADP approach, and the
sampling achieves small savings. In most states of I3, the only feasible
option (time-wise) for freights is to use a direct service via truck. In such
a setting, decision making methods that focus on current costs, such as
the benchmark heuristic, perform well since there are hardly consolidation
opportunities to anticipate for. However, a robust ADP design should be
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able to learn such a policy, as the sampling method seems to do. Further
research on adaptations of the ADP algorithm for such settings, such as
aggregate functions and state representatives, is necessary.

6 Conclusions

We developed an MDP model and an ADP algorithm for selecting services
and transfers for freights in a synchromodal network. With the MDP model,
the optimal balance between transporting and postponing freights, in differ-
ent locations of the network, over time, and under uncertain demand, can
be achieved. With the ADP algorithm, the computational burden of the
MDP model is reduced while preserving all of its modeling functionalities.

Through numerical experiments, we explored the value of using look-
ahead decisions in our planning problem and reflected on the value and the
limitations of our ADP designs. We observed that the more time-window
flexibility and number of freights there are, the better the look-ahead meth-
ods perform. We also observed that the two methods that look-ahead more
than one stage performed better than the standard one-step look-ahead ADP
approach. Further research about ADP designs that explicitly consider a few
stages in advance (e.g., rolling horizon, sampling, approximate policy iter-
ation) and other, possibly non-linear, value function approximations, are
relevant for synchromodal planning.
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