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Abstract

The coordination of maintenance tasks for complex systems with a large number of components is

a challenging optimization problem. Many opportunistic maintenance policies have been proposed in

the literature to reduce fixed setup costs of maintenance and downtime costs. Most of the opportunistic

maintenance policies treat the unscheduled downs from some components as the opportunities to perform

preventive maintenance for other components that are approaching to failures. Yet the scheduled downs

from periodic inspections may be used as the opportunities to perform preventive maintenance for com-

ponents. Therefore, in this research we propose a new opportunistic maintenance model to determine the

optimal age limits of components by considering not only the opportunities of unscheduled downs but also

the opportunities of scheduled downs, which will further reduce the total cost rate of maintenance. An

approximation method is proposed for evaluating the total cost rate for a single component, as well as an

heuristic approach to optimize the multi-component model. A numerical study is provided to verify the

accuracy of our approximation method. Moreover, the cost-saving potential of our model is demonstrated.

keywords: Multi-component systems, opportunistic maintenance, approximation, heuristic optimiza-

tion

1. Introduction

Complex engineering systems are widely used in the production of goods and delivery of services nowadays,

e.g., lithography machines in the semiconductor industry, automatic cutting systems in the food-processing

industry, baggage handling systems in the airports. These advanced capital goods increase the efficiencies

of production or service dramatically. However, for systems with a large number of components and com-

plex system structure, scheduling maintenance tasks is challenging. If no strong dependence exists among

all the different components, single-component maintenance models can be independently applied to each

component in order to obtain optimal replacement schedule. But most of the time, there are economic de-

pendence, structural dependence or stochastic dependence [3, 7, 10, 18, 22] among the different components
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of a system, which make the optimization of maintenance schedule complicated. In this paper, we mainly

focus on the economic dependence of components, for which the joint maintenance of several components

can save the fixed setup cost of maintenance and total downtime. The fixed setup cost refers to a fixed cost

that is incurred for a maintenance visit regardless of what maintenance actions are performed [25].

Opportunistic maintenance policies are one type of methods to solve this maintenance problem of multi-

component systems with economic dependence [22]. However, most of the previous works on opportunistic

maintenance policies only considered the use of one type of opportunities in the maintenance models, i.e.,

the unscheduled downs of a system. The scheduled downs of a system, e.g., periodic inspections, have rarely

been treated as the opportunities for joint maintenance. This may be because the durations of scheduled

downs are relatively short compared with the corrective maintenance periods, which makes it less attractive

to use the scheduled downs as opportunities if we aim to reduce downtime. But under some circumstances,

the fixed setup cost of maintenance can be significant. For example, some lithography machines require

vacuum environments and the setups after system shutdowns are costly; some wind farms or solar farms are

far away from the service centers and the costs of sending maintenance teams to the sites can be expensive.

For these cases, it can be beneficial to take the opportunities of both the scheduled and unscheduled downs

to jointly perform preventive maintenance tasks of components. In this research, we explore the potential

of combining different types of opportunities for the joint maintenance of different components in a system

and propose a new optimization model to determine the age limits of opportunistic maintenance.

There are many age/time-based models proposed for multi-component systems considering the economic

dependence. Radner and Jorgenson [14] introduced an (n,N) policy, which distinguished two types of com-

ponents, 0 and 1. The parameter n is the age threshold for opportunistic replacements of component 0 when

component 1 fails and N is the preventive replacement threshold of component 0 when component 1 is good.

Vergin [21] showed that the (n,N) policy is near-optimal with respect to a wide range of cost parameters.

Some exact methods [8, 11] (e.g., via Markovian framework) for finding the optimal solution are intractable

for systems with large amounts of components, due to the exponentially increasing state spaces. Hence, var-

ious heuristics were proposed to reduce the computational complexity [2, 19, 20]. As different approaches,

one can make a decision on taking either the current opportunity or the next opportunity after X time

units, based upon a marginal cost function and the distribution of time between maintenance opportunities

[5, 6]. Dagpunar[4] pointed out these policies [5, 6] were not appropriate if the mean residual lifetimes of

components are high. Instead a policy with a control limit on age is proposed, by assuming the opportunity

process is Poisson. Moreover, Zheng [24] introduced a (T −w, T ) policy. If the ages of components exceed T ,

preventive maintenance actions will be taken, which are also considered to be opportunities to preventively

replace other components with their ages between T − w and T . This policy is similar to the (n,N) policy,

but it was developed by renewal theory.

Wildeman et al. [23] developed a dynamic clustering method (often called the “group maintenance”)

to coordinate maintenance tasks at the system level, by considering the penalty cost of deviating from the

optimal maintenance schedule of individual components. The optimal policy structure is proved by specifying

the expected deterioration cost function based on a Weibull process, which reduced the complexity of the

large-scale optimization problem. Unlike Wildeman et al. ’s work, Laggoune et al. [9] developed a dynamic

clustering model based on simulation. In this model, preventive maintenance is scheduled at each fixed time

point kτ , with an interval τ and k ∈ N. Each component j can only be preventively replaced at a multiple

of τ , kjτ(kj ∈ N). If unscheduled system downs occur, a decision on taking the opportunities or not will be
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made, according to the marginal costs. As an extension of age-based and block replacement policy, Berg and

Epstein introduced a (b, t) model, where t is a fixed maintenance interval and b is a control limit in terms of

age. At each point nt, n ∈ N, preventive maintenance is performed on the components whose ages are larger

than b.

Regarding k -out-of-n systems, Popova and Wilson [13] provided a (k, T ) policy. This policy suggests the

replacement of all components either at the time of the kth failure or time T , whichever occurs first. As an

extension, Pham and Wang [12] proposed a (τ, T ) policy. According to this policy, no preventive maintenance

is taken and only minimum repairs are performed on failures in the period (0, τ ]. In the period (τ, T ], if k

components fail, those k components are replaced and all other components are preventively replaced; if the

failed components are less than k, all components are preventively replaced at time point T . Similarly, a

generalized group maintenance policy (T, T + w, k) was introduced [16], which also includes k failures as a

decision variable. In the period (0, T ], this policy distinguishes two types of failures: i) “minor” failures that

will be fixed by minimum repair and ii) “catastrophic” failures that will be fixed by replacements. In the

period (T, T + w], if k “catastrophic” failures happen, all components are jointly replaced; otherwise, this

joint maintenance will be delayed till T + w.

Recently, Taghipour and Banjevic [17] proposed a model that considers both scheduled inspection and

unscheduled hard failures of systems as opportunities to perform inspections on soft-failure components. In

their work, soft-failure components are under periodic and opportunistic inspections, while hard-failure com-

ponents are under periodic inspections. A simulation-based algorithm was created to evaluate the expected

cost per cycle.

Different from existing research on opportunistic maintenance policies, we consider both scheduled and

unscheduled system downs as opportunities for preventive maintenance. The opportunities from unsched-

uled system downs are due to random failures of other components in the system, whereas the opportunities

from scheduled downs are because of periodic inspections. It is important to consider both the scheduled and

unscheduled system downs as opportunities for joint maintenance when the fixed setup costs of maintenance

are high. The high setup costs of maintenance will be reduced further by considering multiple types of oppor-

tunities together in opportunistic maintenance models, compared with using only one type of opportunities.

We develop an efficient and accurate approximation method for evaluating the total cost rate. In the litera-

ture, the cost rate evaluation using renewal theory is usually based on the assumption that scheduled downs

will be planned by starting from the most recent renewal point. This assumption will simplify the modeling.

However, in practice, once the scheduled downs are planned, it will not be rescheduled after maintenance

actions. Hence, we relax this assumption and propose an iterative approximation method for the cost rate

evaluation. The opportunistic maintenance model proposed by us is aimed at constructing a optimization

model for multi-component systems. Via an iterative procedure, we demonstrate that the single-component

model is a building block of the multi-component model and one can find a heuristic solution in a relatively

short computation time for the multi-component model.

The outline of this paper is as follows. The description of the model and the assumptions are given in

Section 2. The details of the approximation method are explained in Section 3. In Section 5.1, a numerical

example is given, where our opportunistic maintenance policy is compared with a failure-based maintenance

policy. Moreover, in Section 5, numerical experiments are performed to investigate the accuracy of our

approximate evaluation and the cost-saving potential under various parameter settings. To demonstrate
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that our model is a building block to solve multi-component problems, we provide an example of a system

consisting of 20 components in Section 6. Finally, the conclusions are given in Section 7.

2. Model description

Consider a system consisting of multiple different components, denoted by set I = {1, ..., |I|}. A single

component i ∈ I is subject to opportunistic maintenance policy in this multi-component system. The in-

terval of scheduled downs (SDs) τ is given as a decision variable in this maintenance policy. The arrivals

of unscheduled downs (USDs) are assumed to be a Poisson process with rate λi. The USDs are caused by

other components I \ i in the system. Preventive maintenance actions at USDs and SDs can be performed

on this component i:

• Preventive Maintenance at an USD (PM-USD): when the system stops due to an USD which is caused

by other components I \ i in the system, it is an opportunity for the component i to be maintained to-

gether with the failed components. If this opportunity is taken, a cost cPM−USDi will be incurred which

includes the repair cost of the component i and the cost of the extra downtime caused by maintaining

this component i. But the fixed setup cost and part of the downtime cost caused by this component i

can be saved by conducting its maintenance action together with other components.

• Preventive Maintenance at a SD (PM-SD): when the system stops due to a SD, it is an opportunity

for the component i to be maintained without paying the fixed setup cost. If this opportunity is taken,

a cost cPM−SDi will be incurred which includes the repair cost of the component i and the additional

downtime cost caused by this component i.

Suppose the life time of this component Ti follows a certain distribution with a p.d.f. fi(t). If the random

failures of this component i occur, corrective maintenance (CM) actions should be taken with a cost cCMi ,

which consists of not only the repair cost of the component i, but also the fixed setup cost and entire

downtime cost. Notice that cPM−USDi and cPM−SDi are much smaller than cCMi . In other words, if the

component is maintained at an opportunity, instead of correctively maintained by itself, the fixed setup cost

and downtime cost of this component i can be partially saved from the system’s viewpoint.

Although there are advantages of taking opportunities for preventive maintenance before unexpected

failures, the maintenance cost rate can be increased if we take opportunities too frequently since the usage

lifetime of the component can be wasted. Hence, we have to make decisions on the timing of taking opportu-

nities for preventive maintenance actions, in order to minimize the total cost rate of the system. An age limit

Ai is introduced as a decision variable to specify our opportunistic maintenance policy: if an opportunity at

SD or USD appears at time t < Ai, do nothing at this opportunity; if an opportunity at SD or USD appears

at time t ≥ Ai, take this opportunity to do preventive maintenance (if a random failure of this component i

occurs, perform corrective maintenance).

We assume that the maintenance actions can restore the component to a state as good as new, and the

lifetime of the component is independent of the SDs and USDs caused by other components in the system.

The service life of the system is assumed to be much longer than the lifetime of the component, and the
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time of maintenance is negligible compared with the lifetime of the component. Based on these assump-

tions, renewal theory is often applied to evaluate the long-run average cost rate of the component. The

interval between two consecutive maintenance actions is a renewal cycle, which is also called maintenance

cycle in Figure 1. However, in practice, the scheduled downs are planned at fixed time points in advance

(see Figure 1-(B)), and can not be changed according to the maintenance actions of the component. The

renewal property does not hold if scheduled downs (with interval τ) do not restart scheduling at the end

of each maintenance cycle as shown in Figure 1-(A). Hence, the evaluation of average cost rate by renewal

theory is not accurate from this perspective. We develop an approximation method to improve the cost rate

evaluation for the case in which the scheduled downs are at fixed time points, as introduced in Section 3.

Figure 1: The three maintenance actions of a component in the context of renewal theory (A) and practical situation (B)

This single-component model for opportunistic maintenance can be used as a building block to construct

an opportunistic maintenance model for multi-component systems. The system consists of multiple different

components, denoted by set I = {1, ..., |I|}. The lifetime of component i ∈ I, Ti, has the p.d.f. fi(t) . To

specify the age limits A = {A1, ..., A|I|} for all the components in the system, we not only need to know the

lifetime distributions of all the components, but also need to determine the interval of scheduled downs τ
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and estimate the arrival rate of unscheduled downs λi(∀i ∈ I). The interval of scheduled downs τ can be a

decision variable in the optimization model of opportunistic maintenance for multi-component systems. The

arrival rate of unscheduled downs λi is determined by the processes of random failures from all the other

components I \ i, which is dependent on the lifetimes of components I \ i and the age limits A \ Ai. It

is interesting to notice that the changes of the age limits of components I \ i will influence the processes

of random failures, e.g., if the age limit of a component j ∈ {I \ i} decreases, it is more likely that the

component j will take a preventive maintenance action and thus less random failures will be generated by

this component j. Therefore, the parameter λi(∀i ∈ I) should be estimated in an iterative manner while

optimizing the age limits A. We propose a heuristic approach in Section 4 to choose the age limits of

components for minimizing the total cost rate.

The total cost rate of the system is thus given as

Zsyst(τ,A) =
SSD

τ
+
∑
i∈I

Zi(τ,A), (1)

where SSD is the fixed setup cost of maintenance, and Zi(τ,A) is the cost rate of maintenance incurred

by component i. The cost rate of component i, Zi(τ,A), includes the opportunistic maintenance cost and

corrective maintenance cost of component i. It is dependent on τ and all the age limits A, as we discussed.

The optimal solution (τ∗,A∗) can be obtained by minimizing Equation 1. The difficulties of solving this

optimization problem arise from the evaluation of Zi(τ,A) and the optimization procedure coupled with it,

which will be introduced in Section 3 and 4 respectively.

2.1 Notation

τ : interval of scheduled downs

λ : arrival rate of unscheduled downs

A : age limit for opportunistic maintenance

Z(.) : average cost rate of maintenance

cPM−USD : PM cost at an USD

cPM−SD : PM cost at a SD

cCM : CM cost

Figure 2: The deviation of the renewal point ξ
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3. Approximation of single-component model

Suppose the interval of scheduled downs τ and the arrival rate of unscheduled downs λi are given. We

propose an approximate method to evaluate the cost rate of component i ∈ I, Zi(.) (notice that since the

arrival rate of unscheduled downs λi is given the cost rate of component i is not dependent on all the age

limits A anymore ). The renewal property is violated since scheduled downs do not restart scheduling at the

end of each maintenance cycle as shown in Figure 1. A maintenance cycle will start at ξ time units away

from the previous SD (0 ≤ ξ < τ), as shown in Figure 2. This deviation of a renewal point from SDs, ξ, is

changing from maintenance cycle to maintenance cycle. But given this deviation ξ of a certain maintenance

cycle, we can derive the cycle cost and cycle length by analyzing the renewal events. For instance, if a failure

occurs before Ai, a corrective maintenance action will be taken. The corresponding probability is

Pr
{
Ti < Ai

}
=

∫ Ai

0

fi(u) du. (2)

If the lifetime of component i is larger than the age limit Ai but smaller than the arrival time of the first SD

after Ai (i.e., niτ − ξ, where ni = dAi+ξτ e), the component will not be able to be preventively maintained

at a SD. A preventive maintenance action will be taken upon the arrival of the first USD after Ai; or the

component will be correctively maintained if there’s no USDs before the component fails. In this case, the

probability of PM-USD is

Pr
{
Ai < Ti < niτ − ξ, an USD appears before Ti

}
=

∫ niτ−ξ

Ai

(1− e−λi(u−Ai)) fi(u) du, (3)

where (1 − e−λi(u−Ai)) is the probability that the first USD after Ai appears before Ti. The probability of

CM in this case is

Pr
{
Ai < Ti < niτ − ξ, an USD does not appear before Ti

}
=

∫ niτ−ξ

Ai

e−λi(u−Ai) fi(u) du. (4)

If the lifetime of component i is larger than the arrival time of the first SD after Ai(i.e., niτ − ξ), the

component will be preventively maintained at a SD if there’s no USDs before niτ − ξ. The probability of

PM-SD in this case is

Pr
{
Ti > niτ − ξ, an USD does not appear before niτ − ξ

}
=

∫ ∞
niτ−ξ

e−λi(niτ−ξ−Ai) fi(u) du, (5)

where e−λi(niτ−ξ−Ai) is the probability that the first USD after Ai does not appear before niτ − ξ. Or a

preventive maintenance action will be taken upon the arrival of the first USD after Ai if the arrival of the

first USD is before the arrival of the first SD. In this case, the probability of PM-USD is

Pr
{
Ti > niτ − ξ, an USD appears before niτ − ξ

}
=

∫ ∞
niτ−ξ

(1− e−λi(niτ−ξ−Ai)) fi(u) du. (6)

To summarize, under our opportunistic maintenance policy for component i, the occurrence of the three

possible maintenance actions at the end of a maintenance cycle depends on which event happens first, the

failure of component i, the first SD after Ai, or the first USD after Ai. The probability of PM-USD con-

ditioned on the deviation ξ, Ṗ1(ξ), is the sum of Equation 3 and Equation 6 ; the probability of PM-SD

conditioned on ξ, Ṗ2(ξ), is equal to Equation 5 ; the probability of CM conditioned on ξ, Ṗ3(ξ), is the sum
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of Equation 2 and Equation 4. (Notice that the sum of Ṗ1(ξ), Ṗ2(ξ) and Ṗ3(ξ) is equal to one.)

Based on the above analysis of renewal events, the expected cycle length of component i conditioned on

ξ can be obtained by

L̇i(Ai|ξ) =

∫ Ai

0

ufi(u)du

+

∫ niτ−ξ

Ai

(∫ u−Ai

0

(Ai + s)λie
−λisds+ ue−λi(u−Ai)

)
fi(u)du

+

∫ ∞
niτ−ξ

(∫ niτ−ξ−Ai

0

(Ai + s)λie
−λisds+ (niτ − ξ)e−λi(niτ−ξ−Ai)

)
fi(u)du, (7)

where λie
−λis is the p.d.f. of the arrival time of the first USD after Ai. As mentioned previously, the

deviation of ξ is changing from maintenance cycle to maintenance cycle. We use a random variable ∆ to

describe the distribution of the deviations among all the maintenance cycles. The distribution of ∆ depends

on the renewal events at the end of every maintenance cycle. If a PM-SD action is taken, the ξ for the

next maintenance cycle will be equal to 0. If a PM-USD action or a CM action is taken, the ξ for the next

maintenance cycle can be any possible value in (0, τ). Since the arrivals of USDs are assumed to follow

a Poisson process, the ξ can take any value in (0, τ) with equal chances, given that a PM-USD action is

taken at the end of the previous maintenance cycle. Furthermore, if we assume that the intervals of SDs

are relatively small compared with the average value of the lifetime Ti, the ξ will also be approximately

evenly-distributed over (0, τ), given that a CM action is taken at the end of the previous maintenance cycle.

Hence, the following probability density function can be used to approximately describe the random variable

∆,

f∆(ξ) =

{ q, if ξ = 0,
(1−q)
τ , if 0 < ξ < τ ,

0, otherwise.

(8)

We can see that ∆ is uniformly-distributed on (0, τ) except that there is a positive probability mass q

at ξ = 0. After specifying the probability density function f∆(ξ) (or equivalently the parameter q), the

unconditional probabilities of PM-USD, PM-SD and CM (denoted by P1, P2, and P3 respectively) can be

obtained by the law of total probability,

P1 = Ṗ1(0)q +

∫ τ

0

Ṗ1(ξ)
(1− q)
τ

dξ,

P2 = Ṗ2(0)q +

∫ τ

0

Ṗ2(ξ)
(1− q)
τ

dξ,

P3 = Ṗ3(0)q +

∫ τ

0

Ṗ3(ξ)
(1− q)
τ

dξ.

(9)

Obviously, the accuracy of the approximation method is dependent on the selection of the probability density

function f∆(ξ) or the parameter q. Notice that the parameter q represents the probability that a PM-SD

action is taken at the end of the previous maintenance cycle, which should be equal to the unconditional

probability of PM-SD, P2. Hence, the parameter q can be determined by solving the second equation in
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Equation 9, which is given as

q =

∫ τ
0
Ṗ2(ξ) dξ

τ − τṖ2(0) +
∫ τ

0
Ṗ2(ξ) dξ

. (10)

The expected cycle length of component i without the condition can be derived by

Li(Ai) = L̇i(Ai|ξ = 0)q +

∫ τ

0

L̇i(Ai|ξ)
(1− q)
τ

dξ. (11)

The expected cycle cost of component i can be obtained by

Ki(Ai) = P1 c
PM−USD
i + P2 c

PM−SD
i + P3 c

CM
i . (12)

According to renewal theory [15], the expected maintenance cost rate of component i, Zi(Ai), is equal

to Ki(Ai)/Li(Ai). Therefore, given the interval of scheduled downs τ and the arrival rate of unscheduled

downs λi, we can approximately evaluate the expected cost rate of component i,Zi(Ai), by Equation 11 and

12.

The expected cost rate Zi(Ai) is not a continuous function with respect to Ai, since P1, P2, P3 and Li

are not continuous functions with respect to Ai. This is due to the fact that in Equation 3,4,5,6 and 7, the

variable ni is the ceiling function of (Ai + ξ)/τ , i.e., ni = dAi+ξτ e, which is discontinuous at the values of Ai

that are in the set {Ai|(Ai + ξ)/τ ∈ N}, for a given ξ; then Ṗ2(0) and Ṗ2(ξ) are discontinuous with respect

to Ai; since the unconditional probability of PM-SD action P2 (or equivalently q) is obtained by solving

the second equation in Equation 9, q or P2 is discontinuous with respect to Ai (notice that the integrals in

Equation 9 are improper integrals [1]); therefore, P1, P3, Li are not continuous functions with respect to Ai.

Difficulties thus arise in the search of optimal solutions for Ai.

4. Heuristic approach for optimization

The optimal solution (τ∗,A∗) for a system consisting of multiple components {1, ..., |I|} can be obtained

by minimizing Equation 1. But there are two difficulties for this optimization problem. One is that the

evaluation of the cost rate Zi(.),∀i ∈ I, needs an approximation method as discussed in Section 3. The other

one is that the optimization problem is not decomposable with respect to
∑
i∈I Zi(τ,A). This is because

the evaluation of Zi(.) needs the arrival rate of unscheduled downs λi (see Section 3), which is dependent on

the age limits A \ Ai. As discussed in Section 2, the age limits A together with the lifetimes {T1, ..., T|I|}
determine the arrival process of USDs which will be used in the approximation method (proposed in Section

3) to evaluate the cost rate of Zi(.),∀i ∈ I. Hence, it is not possible to minimize
∑
i∈I Zi(τ,A) by minimizing

Zi(τ,A) (∀i ∈ I) separately.

We develop a heuristic approach based on our approximation method for optimization. In this heuristic

approach, we choose the values of (τ,A) in a nested way. For a given τ , we search for the age limits Ã that

minimize
∑
i∈I Zi(τ,A) by an iterative procedure. Then we specify the value of τ to minimize Zsyst(τ, Ã)

by enumeration.

Algorithm

Step 1 For every τ ∈ (τLB , τUB), evaluate and minimize the cost rate of Zi(τ, Ã).((τLB , τUB) is the range

of search for τ)
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Step 1.1 Initiation (k = 1): ∀i ∈ I, set Ai = ∞, and calculate the arrival rate of USDs from

component i at the first iteration, θi,1 = 1/Li,1 , where Li,k is the expected cycle length of

component i at the first iteration. (Li,1 equals the expected lifetime of component i when Ai =∞
since there’s no preventive maintenance actions ; θi,1 refers to the USDs generated by component

i, whereas λi refers to the USDs generated by components I \ i )

Step 1.2 Repeat the following iteration with the updated θi,k until |θi,k − θi,k−1| < ε for all compo-

nents :

• For all i ∈ I: By using the rate of USDs λi =
∑
j∈{I\i} θj,k, we can find optimal age limit

A∗i,k to minimize Zi(.) in a certain range (Ai
LB , Ai

UB) (by enumeration), and update

θi,k+1 = P 3
i,k(τ,A∗i,k)/Li,k(τ,A∗i,k),

where P 3
i,k(τ,A∗i,k) is the probability of CM (see Equation 9 and 11 in Section 3).

• Let k := k + 1.

Step 1.3 Obtain the Ã = {A∗i,k, ∀i ∈ I} for each τ ; Zi(τ, Ã) is minimized for each τ .

Step 2 Optimize τ with respect to Zsyst(τ,A). Given the optimal interval τ∗, Ã can be obtained from the

results of Step 1.

Recall that for the approximate evaluation of single component in Section 3, the arrival process of USDs

from all other components is assumed to be a Poisson process. However, the aggregated failure occurrences

of all other components is a superposition of the failure processes of all other components, which does not

have i.i.d. exponential distributions as interoccurrence time distribution. Thus in this heuristic approach,

the modeling of the arrival processes of USDs is an approximation for the real situation.

This heuristic algorithm will be guaranteed to terminate if the arrival rates of USDs generated by all the

components, θk = {θ1,k, θ2,k, ..., θi,k, ..., θ|I|,k}, converges to a fixed point θ0 = {θ1,0, θ2,0, ..., θi,0, ..., θ|I|,0}.

5. Numerical experiments

The approximation of single-component model determines the accuracy of our evaluation procedure, as well

as the quality of the heuristic solutions for the optimization of multi-component systems. Therefore, in

this section, we will first give a numerical example of the approximation method proposed in Section 3,

in order to have the first impression about our opportunistic maintenance policy and the accuracy of the

approximation method. To further validate our approximation method under various parameter settings, we

conduct numerical experiments on full factorial test beds in Subsection 5.2 and 5.3. We also evaluate the

cost reduction potential of our proposed policy in comparison with other maintenance policies in Subsection

5.4.

5.1 Numerical example

To demonstrate the usage of the model, we first show a numerical example of the single-component model

proposed in Section 3. The lifetime distribution of the component is a Weibull distribution with a scale
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Table 1: The parameter setting

Parameter Explanation

cPM−SD = 1 Preventive maintenance due to scheduled downs [thousand Euro]

cPM−USD = 2 Preventive maintenance due to unscheduled downs [thousand Euro]

cCM = 10 Corrective maintenance [thousand Euro]

τ = 0.2 The interval of scheduled downs [year]

α = 1.129 Scale parameter of Weibull distribution

β = 2.101 Shape parameter of Weibull distribution

λ = 2 Poisson arrival rate of unscheduled downs [per year]

parameter α and a shape parameter β. In this case, according to Equation 2 - 6, the probabilities of PM-

USD, PM-SD and CM conditioned on the deviation ξ are (notice that we exclude the index i, because we

are dealing with the single-component model in this section)

Ṗ1(ξ) =

∫ nτ−ξ

A

(
1− e−λ(u−A)

)(βu(β−1)

αβ
e−( uα )β

)
du +

(
1− e−λ(nτ−ξ−A)

)(
1− F (nτ − ξ)

)
,

Ṗ2(ξ) =
(
e−λ(nτ−ξ−A)

)(
1− F (nτ − ξ)

)
,

Ṗ3(ξ) = F (A) +

∫ nτ−ξ

A

(
e−λ(u−A)

)(βu(β−1)

αβ
e−( uα )β

)
du,

(13)

where F (u) = 1− e−( uα )β is the c.d.f. of Weibull distribution.

The input parameters are given in Table 1. We set β = 2.101 and α = 1.129 for the Weibull distribu-

tion, so that the expected life time of the component E[T ] is equal to 1 year, which normalizes the time unit.

The optimal age limit A∗ can be found by minimizing the average cost rate Z(A), which can be approxi-

mately evaluated by the method proposed in Section 3. As a comparison, we simulate the average cost rate

Ẑ (see Appendix A under different A. Figure 3 illustrates the changes of the average cost rate over the age

limit A via the approximate evaluation and the simulation with a 95% confidence interval.

The first observation is that the curves of the average cost rate obtained via the approximate evaluation and

the simulation method are very close, which means our approximate evaluation is relatively accurate. The

optimal maintenance policy via the approximate evaluation has a age limit A∗ = 0.400 year and a minimum

cost rate Z(A∗) = 5.189 thousand euro per year (see Figure 3), which is slightly different from the simulation

results Â∗ = 0.380 and Ẑ(Â∗) = 5.185± 0.006 in Table 2. Moreover, the confidence interval is very small in

Figure 3 (More details in Appendix A).

Table 2 shows i) the optimal policy via the approximate evaluation, including the optimal age limit A∗,

its minimum cost rate Z(A∗), its probabilities of three maintenance actions
{
P1, P2, P3

}
and its expected

cycle length L; ii) the simulation results under the optimal age limit A∗ obtained via the approximate evalua-

tion, where Ẑ(A∗) denotes the average cost rate,
{
P̂1, P̂2, P̂3

}
denotes the probabilities of three maintenance

actions and L̂ denotes the mean cycle length; iii) the optimal age limit Â∗ obtained via simulation-based

optimization with its minimum cost rate Ẑ(Â∗), its probabilities of three maintenance actions
{
P̂1, P̂2, P̂3

}
11



Figure 3: Average cost rate [thousand euro per year] over A [year]. The approximate result Z is compared with the simulated

result Ẑ in a 95% confidence interval with a lower and upper bound

and its mean cycle length L̂.

Table 2: The optimal maintenance policies under the parameter setting in Table 1 ({P1, P2, P3} and {P̂1, P̂2, P̂3} are the

probabilities of taking PM-USD, PM-SD and CM actions by approximate evaluation and simulation respectively)

Approximation Result Simulation Result 1 Simulation Result 2

Z(A∗) = 5.189 [K euro per year] Ẑ(A∗) = 5.289± 0.008 [K euro per year] Ẑ(Â∗) = 5.185± 0.006 [K euro per year]

A∗ = 0.400 [year] A∗ = 0.400 [year] Â∗ = 0.380 [year]{
P1, P2, P3

}
= {0.0269, 0.8570, 0.1161}

{
P̂1, P̂2, P̂3

}
= {0.0601, 0.8132, 0.1267}

{
P̂1, P̂2, P̂3

}
= {0.0485, 0.8420, 0.1095}

L = 0.3993 [year] L̂ = 0.4161 [year] L̂ = 0.3923 [year]

|Gap1|: |
(
Ẑ(A∗)− Z(A∗)

)
/Ẑ(A∗)| = 1.88%; |Gap2|: |

(
Ẑ(Â∗)− Ẑ(A∗)

)
/Ẑ(Â∗)| = 1.96%

Based on the results in Table 2, we observe that the absolute relative deviation |
(
Ẑ(A∗)− Z(A∗)

)
/Ẑ(A∗)|,

denoted as Gap 1, is only 1.88%, which shows that the average cost rate evaluated through our approximate

method is very close to the simulation result in this numerical example, under the same A∗ value. The

absolute relative deviation |
(
Ẑ(Â∗) − Ẑ(A∗)

)
/Ẑ(Â∗)|, denoted as Gap 2, is only 1.96%. This implies that

the deviation of A∗ from Â∗ does not lead to a large deviation on the simulated cost rate, which is due to the

fact that the cost rate Ẑ(A) is relatively flat in the neighborhood of its minimum. Hence, in practice, the

optimal maintenance policy based on our approximate evaluation will result in an optimal solution having

an average cost rate that is very close to the true minimum cost rate. Also notice that the values of P2, P3

and L via the approximate evaluation are very close to the simulated values of P̂2, P̂3 and L̂ (the value of

P1 is relatively less accurate due to the fact that the probability of the occurrence of USDs is small in this

numerical example). Therefore, we can conclude that the gaps are small and our approximate evaluation is

relatively accurate in this numerical example.

It is very interesting to observe that the average cost rates of approximate evaluation and simulation are not

12



Figure 4: The probabilities of three maintenance actions (i.e., PM-USD, PM-SD and CM) over A [year]. The approximate

result
{
P1, P2, P3

}
is compared with the simulated result

{
P̂1, P̂2, P̂3

}

smooth curves. To have insights further on the spikes of the curves, we plot the probabilities P1, P2 and P3

in Figure 4 and the expected cycle length L in Figure 5.

Figure 5: Expected cycle length [year] over A [year]. The approximate result L is compared with the simulated result L̂

The first observation is that the differences between the values of P1, P2 and P3 and L obtained via the

approximate evaluation and the simulation method are very small, which verifies the accuracy of our ap-

proximate evaluation. The spikes in Figure 4 and the jumps in Figure 5 appear at scheduled downs nτ ,

where τ = 0.2 and n ∈ N. The reason is that our model has a strict age limit for taking opportunities.
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Consider two cases: 1) when A is just before nτ , or A + ε = nτ where ε is infinitely small and positive,

the next opportunity after A is almost certain to be a scheduled down; the probability of PM-SD is thus

relatively large compared with the other settings of A in ((n − 1)τ, nτ). 2) However, if A is just after nτ

or A = nτ + ε, then the next SD opportunity is at (n + 1)τ , instead of nτ ; therefore, P2 is much smaller

in this case compared with the previous case. At the same time, P1 is much smaller in Case 1 compared

with Case 2, because for case 2 there is longer period of waiting for the USD opportunities before the SD

opportunity comes at (n + 1)τ . When A becomes larger, much less USD and SD opportunities are taken

and the probability of CM becomes larger. This means that the renewal cycles end with failures more often.

Therefore, P1 and P2 are approaching to zero in Figure 4 and the spikes are becoming less sharp when A

increases. The jumps of the expected cycle length in Figure 5 is due to the delayed SD opportunity in Case

2. The magnitude of the jumps in Figure 5 becomes less at larger values of A since the probability of CM

becomes larger and the impact of the probability of PM-SD is less apparent.

5.2 Accuracy of the approximate evaluation

The accuracy of our approximate evaluation is assessed based on the gap between the simulation result

Ẑ(A) and the approximation result Z(A). We vary four factors in our test bed: the variable A and three

parameters τ , λ and σ 1. Notice that τ and λ are varied, because they determine the frequencies of the

SD and USD opportunities(see Section 2). Moreover, to show the impact of the variance of the life time

distribution, we choose the standard deviation σ as a varying parameter. Three different levels of the age

limit A, {0.5, 1.0, 1.5}, are chosen. For each of the other three parameters, three different levels are obtained

by multiplying a base value with a set of coefficients, {50%, 100%, 150%} (see Table 3). The base values are

the same as the parameter setting given in Table 1. Hence, in Table 3, a full factorial test bed is set up

and a space of instances Λ is defined as {(Aj , σl, λk, τm) ∈ Λ|∀j, l, k,m ∈ {1, 2, 3}}, which leads to |Λ| = 81

instances in the test bed.

Table 3: Parameter setting of the test bed

Parameter Explanation

{τ1, τ2, τ3} = 0.2 ∗ {50%, 100%, 150%} The interval of scheduled downs [year]

{λ1, λ2, λ3} = 2 ∗ {50%, 100%, 150%} Poisson arrival rate of unscheduled downs [per year]

{σ1, σ2, σ3} = 1/2 ∗ {50%, 100%, 150%} Standard deviation of component life time [year]

{A1, A2, A3} = {0.5, 1.0, 1.5} Age limit values [year]

E[T ] = 1 Expected component life time [year]

We set the expected life time E[T ] of the component to be equal to 1, which normalizes the time unit. By

fitting the two moments of the component life time, the shape and scale parameters of the Weibull distribu-

tion can be calculated.

Notice that no cost parameters are chosen as factors in this test bed, since the approximate evaluation

of the objective function is fully determined by the estimations of the probabilities of the three maintenance

1σ2 = E[T 2] − E[T ]2, where E[T ] and E[T 2] are the 1st and 2nd moment of the component life time. σ is the standard

deviation of the component life time distribution T
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actions and the expected cycle length. This also helps to reduce the size of the test bed. We compare

the probabilities of PM-USD, PM-SD and CM and the expected cycle length obtained by the approximate

evaluation method
(
P1, P2, P3, L

)
and the simulation method

(
P̂1, P̂2, P̂3, L̂

)
, which is similar to Table 2 in

Section 5.1. To see how much the approximation results deviate from the simulation results, we define a

deviation vector
[
δ1, δ2, δ3, δ4

]
=
[
P̂1−P1, P̂2−P2, P̂3−P3, (L̂−L)/L̂

]
. The deviation vectors of 81 instances

are shown in Table 9 and 10 of Appendix B. There are three levels for each factor in the test bed Λ. We

categorize the instances that have the same level of a certain factor into a subset. For example, a subset of

instances containing A1 is defined as ΛA1 =
{

(A1, σl, λk, τm)|∀l, k,m ∈ {1, 2, 3}
}

. For each of these subsets,

the average of the absolute deviations (denoted by AAD) and the maximum of the absolute deviations (de-

noted by MAD) are summarized in Table 4.

Table 4: The average absolute difference (AAD) and the maximum absolute difference (MAD) between the simulation results

and the approximation results

|δ1| |δ2| |δ3| |δ4|
{AAD,MAD} {AAD,MAD} {AAD,MAD} {AAD,MAD}

ΛA1
{0.0058, 0.0224} {0.0086, 0.0268} {0.0037, 0.0089} {0.32%, 0.96%}

ΛA2 {0.0017, 0.0044} {0.0031, 0.0071} {0.0029, 0.0100} {0.92%, 1.73%}
ΛA3

{0.0011, 0.0040} {0.0034, 0.0085} {0.0036, 0.0102} {1.51%, 2.65%}
Λσ1 {0.0029, 0.0131} {0.0042, 0.0183} {0.0028, 0.0063} {0.88%, 2.04%}
Λσ2 {0.0027, 0.0191} {0.0052, 0.0253} {0.0034, 0.0089} {0.87%, 2.65%}
Λσ3 {0.0030, 0.0224} {0.0057, 0.0268} {0.0040, 0.0102} {1.01%, 2.65%}
Λλ1

{0.0016, 0.0076} {0.0041, 0.0134} {0.0030, 0.0089} {0.93%, 2.65%}
Λλ2

{0.0028, 0.0131} {0.0043, 0.0197} {0.0027, 0.0102} {0.93%, 2.04%}
Λλ3

{0.0041, 0.0224} {0.0068, 0.0268} {0.0044, 0.0100} {0.90%, 2.65%}
Λτ1 {0.0010, 0.0032} {0.0024, 0.0084} {0.0027, 0.0102} {0.77%, 2.65%}
Λτ2 {0.0048, 0.0224} {0.0078, 0.0268} {0.0038, 0.0089} {1.13%, 2.65%}
Λτ3 {0.0027, 0.0105} {0.0048, 0.0194} {0.0037, 0.0100} {0.85%, 2.60%}
Λ {0.0028, 0.0224} {0.0050, 0.0268} {0.0034, 0.0102} {0.92%, 2.65%}

The first insight from Table 4 is that the AADs and MADs of δ1, δ2, δ3 and δ4 are small, which implies that

our approximate evaluation is accurate under all parameter settings (including the age limit A). The AADs

and MADs of δ1, δ2 and δ3 are at the magnitude of 10−3 and 10−2 respectively. The AADs of δ4 are around

1% and the MAD of δ4 are less than 3%.

5.3 Heuristic optimization based on the approximate evaluation

The results in Table 2 of Section 5.1 show that the optimal policies via the approximate evaluation method

and the simulation method are close to each other. In this subsection, we intend to verify these re-

sults further under various parameter settings. Similar to Table 2, we evaluate two gaps: i) Gap 1,(
Ẑ(A∗) − Z(A∗)

)
/Ẑ(A∗), shows how much the true cost rate deviates from the cost rate of approximate

evaluation, while using the optimal age limit that is obtained from our approximate evaluation model; and

ii) Gap 2,
(
Ẑ(Â∗) − Ẑ(A∗)

)
/Ẑ(Â∗), shows how much the optimal maintenance policy of our approximate

evaluation deviates from the true optimal policy.

The space of instances Ω has (σl, λk, τm) ∈ Ω,∀l, k,m ∈ {1, 2, 3}; which leads to |Ω| = 27 instances in
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Table 5: The average absolute difference (AAD) and the maximum absolute difference (MAD) between the simulation results

and the approximation results for Gap 1, Gap 2 and (Â∗ −A∗)/Â∗

(Â∗ −A∗)/Â∗ Gap1 Gap2

{AAD,MAD} {AAD,MAD} {AAD,MAD}
Ωσ1 {4.07%, 6.67%} {1.83%, 3.21%} {1.63%, 3.04%}
Ωσ2 {4.35%, 6.67%} {2.31%, 3.13%} {2.28%, 3.01%}
Ωσ3 {10.6%, 25.0%} {3.19%, 4.79%} {2.67%, 5.21%}
Ωλ1

{6.57%, 25.0%} {1.99%, 4.38%} {2.19%, 5.21%}
Ωλ2

{6.20%, 25.0%} {2.50%, 3.84%} {2.15%, 3.10%}
Ωλ3

{6.20%, 25.0%} {2.84%, 4.79%} {2.23%, 4.82%}
Ωτ1 {10.6%, 25.0%} {2.16%, 3.21%} {1.59%, 2.63%}
Ωτ2 {3.61%, 5.00%} {2.80%, 4.79%} {2.71%, 5.21%}
Ωτ3 {4.81%, 6.67%} {2.37%, 3.82%} {2.26%, 3.10%}
Ω {6.33%, 25.0%} {2.44%, 4.79%} {2.19%, 5.21%}

the test bed. The cost parameters are the same as the settings in Table 1. The deviation vectors of 27

instances are shown in Table 11 of Appendix B. For each factor, we categorize the instances that have the

same level of a certain factor into a subset. For example, a subset of instances containing σ1 is defined as

Ωσ1
=
{

(σ1, λk, τm)|∀k,m ∈ {1, 2, 3}
}

. For each of these subsets, the average of the absolute deviations

is denoted by AAD and the maximum of the absolute deviations is denoted by MAD. These results are

provided in Table 5.

The first insight from Table 5 is that the AADs and MADs of Gap 1 and Gap 2 are relatively small,

even though the AADs and MADs of (Â∗−A∗)/A∗ are larger. This implies two points: 1) the neighborhood

of the minimum Ẑ is flat and it is robust to the deviations of age limits; 2) our approximate evaluation

is accurate in the neighborhood of the optimal solution. Comparing Gap 1 with Gap 2, we observe that

the AADs of Gap 2 are smaller than Gap 1. This implies that the deviations of A∗ from Â∗ do not lead

to big differences on the simulated cost rates under various parameter settings; even though the approxi-

mated results (or Gap 1) are slightly less accurate. Hence, in practice, the optimal maintenance policy of

our approximate evaluation will lead to an average cost rate that is very close to the true minimum cost rate.

5.4 Cost reduction potential

To show the cost benefits of including the opportunities at USDs and SDs for the age-based maintenance

policy, three policies are considered:1) an only-SD-opportunistic policy, which means that only SDs are con-

sidered as opportunities and no opportunistic preventive maintenance actions are taken at USDs; 2) an

only-USD-opportunistic policy, which means that only USDs are considered as opportunities and no oppor-

tunistic preventive maintenance actions are taken at SDs; and 3) a failure-based policy, which means that

neither USDs nor SDs are considered as opportunities for preventive maintenance. Notice that Policy 1 can

be analyzed as a special case of our policy, where λ = 0; Policy 2 can be analyzed as a special case of our

policy, where τ =∞; and Policy 3 can be analyzed as a special case of our policy, where A =∞.

To show the cost benefits under various parameter settings, we use the same test bed and parameter settings

as in Section 5.3. The minimum average cost rate of our policy that includes opportunities at both USDs

and SDs is denoted by Z. The minimum average cost rates of Policy 1 and 2 are denoted by Z̃1 and Z̃2
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respectively. Notice that no opportunity is considered in Policy 3; then its cost rate Z̃3 remains unchanged

under different parameter settings, which is 10 thousand euro per year.

Table 6: Summary of the cost saving percentages by using opportunities at USDs and SDs; including the mean, minimum

and maximum values of 4A, 4B and 4C respectively.

4A 4B 4C
mean min max mean min max mean min max

Ωσ1 63.7% 60.5% 65.4% 58.8% 55.9% 60.3% 28.7% 19.6% 36.1%

Ωσ2 47.8% 45.9% 48.9% 41.0% 39.7% 41.7% 19.7% 14.1% 24.3%

Ωσ3 32.7% 30.7% 33.9% 24.2% 23.0% 25.0% 12.2% 9.1% 14.6%

Ωλ1
48.5% 32.2% 65.4% 41.3% 23.0% 60.3% 14.3% 9.1% 19.6%

Ωλ2
48.1% 31.4% 65.3% 41.3% 23.0% 60.3% 21.4% 12.9% 30.4%

Ωλ3
47.7% 30.7% 65.2% 41.3% 23.0% 60.3% 25.0% 14.6% 36.1%

Ωτ1 49.2% 33.4% 65.4% 42.3% 25.0% 60.3% 20.2% 9.1% 36.1%

Ωτ2 48.7% 32.6% 65.2% 42.1% 24.7% 60.2% 20.2% 9.1% 36.1%

Ωτ3 46.3% 30.7% 61.4% 39.5% 23.0% 55.9% 20.2% 9.1% 36.1%

Ω 48.1% 30.7% 65.4% 41.3% 23.0% 60.3% 20.2% 9.1% 36.1%

We use Z̃3 as the basis of the comparison. In total, we have three comparisons: A) the cost saving percent-

age of including opportunities at both USDs and SDs, denoted by 4A = (Z̃3 − Z)/Z̃3; B) the cost saving

percentage of using only opportunities at SDs (i.e., Policy 1), denoted by 4B = (Z̃3 − Z̃1)/Z̃3; C) the cost

saving percentage of using only opportunities at USDs (i.e., Policy 2), denoted by 4C = (Z̃3 − Z̃2)/Z̃3.

Similar to Subsection 5.3, we categorize the instances that have the same level of a certain factor into a

subset. For example, a subset of instances containing σ1 is defined as Ωσ1 =
{

(σ1, λk, τm)|∀k,m ∈ {1, 2, 3}
}

.

The means, minimums and maximums of the cost saving percentages of these 9 subsets are provided in Table

6. The results of all instances are shown in Table 12 in Appendix B.

The first observation from Table 6 is that our policy (using opportunities at both SDs and USDs) is better

than Policy 1 (using opportunities at SDs only), Policy 2 (using opportunities at USDs only) and Policy 3

(using no opportunities) from the perspective of cost savings. The mean values of 4A are bigger than 4B
and 4C , because more opportunities for preventive maintenance (cheaper than corrective maintenance) are

included in our policy compared with Policy 1 and 2. The mean values of 4B are bigger than 4C , because

the cost of preventive maintenance at a SD is cheaper than at an USD. Regarding the variation of the mean

values under various parameter settings, we observe that i)4A is inversely proportional to σ, λ and τ ; ii)4B
is inversely proportional to σ and τ (it remains unchanged on different λ, because no USD opportunities is

considered in Policy 1); iii) 4C is proportional to λ and inversely proportional to σ (it remains unchanged on

different τ , because no SD opportunities is considered in Policy 2). A higher σ means a higher variance in the

lifetime distribution of the component, which leads to a higher probability of having corrective maintenance

(more expensive than preventive maintenance). Hence, the mean values of 4A, 4B and 4C decrease when

σ increases. Moreover, the cost of taking opportunities at SDs is cheaper than at USDs. A higher λ leads

to more opportunities at expensive USDs. Hence, 4A decreases when λ increases. A higher τ leads to less

opportunities at cheaper SDs. Hence, 4A decreases when τ increases. For the same reason, a higher τ leads

to a lower 4B . However, 4C increases at a higher λ, because only opportunities at USDs are considered in

Policy 2. In this case, a higher λ leads to more opportunities to take, so that higher cost saving percentages
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can be observed.

6. Demonstration in a case of multi-component systems

The high accuracy of our approximate evaluation has been shown in Section 5. Hence, we can use this model

for a single component as a building block to construct a model for a multi-component system, as mentioned

in Section 2. To be able to solve the maintenance optimization problem for multi-component systems, we

develop an heuristic approach with an iterative procedure in Section 4. We give a simple example of a system

consisting of 20 components with their lifetime distributions modeled by Weibull distribution in this section.

The input parameters are given in Table 7, where 1) αi and βi are the scale and shape parameters of the

Weibull distribution respectively, for component i; and 2) cPM−USDi , cPM−SDi and cCMi are the costs of

PM-USD, PM-SD and CM actions respectively, for component i. The fixed setup cost of maintenance SSD

is set at 2 thousand euros.

Table 7: The parameter setting for a system consisting of 20 components

Input

Component parameters αi βi cPM−USD
i cPM−SD

i cCMi
1 1.13 2.10 2.00 1.00 10.0

2 1.15 2.15 2.05 1.03 10.3

3 1.18 2.19 2.11 1.05 10.5

4 1.20 2.23 2.16 1.08 10.8

5 1.22 2.28 2.21 1.11 11.1

6 1.25 2.32 2.26 1.13 11.3

7 1.27 2.37 2.32 1.16 11.6

8 1.30 2.41 2.37 1.18 11.8

9 1.32 2.46 2.42 1.21 12.1

10 1.34 2.50 2.47 1.24 12.4

11 1.37 2.54 2.53 1.26 12.6

12 1.39 2.59 2.58 1.29 12.9

13 1.41 2.63 2.63 1.32 13.2

14 1.44 2.68 2.68 1.34 13.4

15 1.46 2.72 2.74 1.37 13.7

16 1.49 2.76 2.79 1.39 13.9

17 1.51 2.81 2.84 1.42 14.2

18 1.53 2.85 2.89 1.45 14.5

19 1.56 2.90 2.95 1.47 14.7

20 1.58 2.94 3.00 1.50 15.0

Via the heuristic approach, we find a heuristic solution for this multi-component system. The solution of

τ∗ is 0.35 year. For all components, we obtain the age limits Ã, as shown in Table 8. The average cost rate of

the system Zsyst under this heuristic solution is approximated to be 99.66 thousand euros per year. To check

the accuracy of the approximation through the heuristic approach, we also simulate our multi-component

maintenance policy by using the same heuristic solution {τ∗, Ã}; the average cost rate Zsim of the simulation

method can be obtained, together with a 95% confidence interval. Figure 6 illustrates the changes of the

average cost rates over the decision variable τ via the heuristic approach and the simulation method. The
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curves of the average cost rates obtained via the heuristic approach and simulation are very close, especially

in the range that is around the heuristic solution τ∗ = 0.35. Notice that the average cost rate obtained

via the heuristic approach Zsyst deviates more from the simulation result Zsim in the range that is around

τ = 0.7. This is due to the fact that our approximation is based on the assumption that the intervals of

SDs are relatively small compared with the average values of the lifetimes of components; when τ = 0.7, the

intervals of SDs (0.7) are comparable to the average values of the components’ lifetimes ({1, ..., 1.41}).
Moreover, in Table 8, the heuristic results for the cost rate of maintenance incurred by each component in

the system, {Zi(τ∗, Ã),∀i ∈ I}, are provided; the simulated results for the cost rate of maintenance incurred

by each component in the system, {Ẑi(τ∗, Ã),∀i ∈ I}, are also provided, as well as the gaps between the

simulated results and the heuristic results (|(Ẑi(Ãi)−Zi(Ãi))/Ẑi(Ãi)|). Based on the results in Table 8, we

observe that the gaps between the simulated results and the heuristic results are relatively small for most of

the components, under the same decision variables {τ∗, Ã}.

Figure 6: Average cost rate [thousand euro per year] of a multi-component system over τ [year]. The approximate result

Zsyst is compared with the simulated result Zsim

7. Conclusions

In this paper, we proposed a new opportunistic maintenance policy for multi-component systems with age

information. In order to further minimize the downtime cost and setup cost of maintenance we included

both the scheduled and unscheduled system downs as opportunities for preventive maintenance. The age

limits were introduced to determine the timing of taking opportunities to preventively maintain a component

together with other failed components in the system. We discovered that if we want to model the situation

that the scheduled downs are set at fixed time points, the average cost rate needs to be approximately

evaluated since the renewal property does not hold for this situation. Hence, we proposed an approximation
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Table 8: The heuristic and simulated results of a system with 20 components

Component Ãi Zi(Ãi) Ẑi(Ãi) Gap

1 0.35 5.25 5.21± 0.06 0.85%

2 0.35 5.16 5.11± 0.08 0.91%

3 0.35 5.08 5.03± 0.06 0.97%

4 0.35 5.00 5.02± 0.08 0.24%

5 0.35 4.94 4.91± 0.09 0.47%

6 0.35 4.88 4.80± 0.06 1.66%

7 0.35 4.83 4.79± 0.04 0.90%

8 0.35 4.78 4.77± 0.05 0.39%

9 0.35 4.75 4.74± 0.05 0.17%

10 0.35 4.72 4.74± 0.05 0.32%

11 0.35 4.70 4.66± 0.04 0.88%

12 0.35 4.68 4.69± 0.04 0.04%

13 0.35 4.68 4.66± 0.04 0.24%

14 0.35 4.67 4.70± 0.04 0.59%

15 0.35 4.56 4.62± 0.08 1.27%

16 0.70 4.45 4.58± 0.05 2.84%

17 0.70 4.35 4.34± 0.08 0.12%

18 0.70 4.25 4.26± 0.07 0.39%

19 0.70 4.16 4.26± 0.07 2.42%

20 0.70 4.07 4.15± 0.08 2.06%

method to evaluate the average cost rate of a single component. An heuristic approach was also developed

to solve the optimization problem of multi-component systems based on the approximate evaluation.

To validate our model, we compared our approximation results with the simulation results under vari-

ous parameter settings. In the extensive numerical experiments, our model showed a good accuracy and a

considerable cost-saving potential. We also demonstrated the usage of our model for a multi-component sys-

tem. By comparing the heuristic results with the simulated results, we observed that our heuristic approach

is relatively accurate.

It is also interesting to observe the spikes and jumps of the average cost rate when the age limit is a

multiple of the interval of scheduled downs, which is unexpected. This is due to the fact that we have strict

age limits and it is more beneficial to take cheap SD opportunities for preventive maintenance. Thus it is

more beneficial to allow the component to take opportunities for preventive maintenance right before the SD

opportunity comes and set the age limit approximately equal to the multiple of the intervals of SDs. This

observation was also verified by the demonstration case of multi-component systems.

8. Appendices

A. Simulation procedures

To evaluate the accuracy of the approximation, we run a simulation to compare with the approximate

evaluation results in Section 5. There are m runs in the simulation (e.g., m = 100). For each run i ∈
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{1, 2, ...,m}, we generate 1) a Poisson process with a rate λ and random arrival time points D = {d1, d2, ...};
2) a set of random failure times T = {t1, t2, ...}; and 3) a constant set B = {τ, 2τ, ...}, on a time horizon

(0, Tmax) that is sufficiently large(e.g., 106 times larger than the mean value of the lifetime). Then by using

the method of discrete event simulation, we record the number of PM-USD actions, PM-SD actions and CM

actions separately for each run, as well as the average cycle length. The probabilities of PM-USD actions,

PM-SD actions and CM actions can be calculated based on these results for each run. We also can compute

the expected cost rate for each run Ẑi after obtaining the probabilities of PM-USD actions, PM-SD actions

and CM actions and the average cycle length. The final result of the simulation is the mean value of the m

runs, with a 100(1− α)% confidence interval

Ẑ ± t(1− α/2,m− 1)

√
S2

m

where S =
∑m
i=1

(Ẑi−Ẑ)2

m−1 and t(1−α/2,m− 1) is the upper 1−α/2 critical point for the t-distribution with

(m− 1) degrees of freedom (in our case, m = 100 and α = 5%).

B. Detail results of Test bed 1 and 2

Detail results of Tables 4, 5 and 6 are given in the following tables
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Table 9: A full factorial test bed including {P̂1, P̂2, P̂3, L̂} from the simulation and the deviation
[
δ1, δ2, δ3, δ4

]
from the

approximation

Simulation Deviation{
P̂1, P̂2, P̂3, L̂

} {
δ1, δ2, δ3, δ4

}
(A1, σ1, λ1, τ1) {0.003, 0.915, 0.082, 0.493} {−0.001, 0.0000.000− 0.2%}
(A1, σ1, λ1, τ2) {0.090, 0.775, 0.135, 0.577} {0.006,−0.009, 0.003, 0.6%}
(A1, σ1, λ1, τ3) {0.093, 0.766, 0.142, 0.583} {−0.001, 0.0000.001,−0.1%}
(A1, σ1, λ2, τ1) {0.006, 0.914, 0.080, 0.493} {−0.001, 0.003,−0.002,−0.2%}
(A1, σ1, λ2, τ2) {0.169, 0.697, 0.133, 0.574} {0.011,−0.015, 0.004, 0.8%}
(A1, σ1, λ2, τ3) {0.184, 0.677, 0.139, 0.582} {0.004,−0.003,−0.001, 0.4%}
(A1, σ1, λ3, τ1) {0.009, 0.912, 0.079, 0.493} {−0.001, 0.004,−0.003,−0.2%}
(A1, σ1, λ3, τ2) {0.250, 0.617, 0.133, 0.569} {0.026,−0.032, 0.006, 0.8%}
(A1, σ1, λ3, τ3) {0.275, 0.585, 0.140, 0.579} {0.016,−0.019, 0.003, 0.5%}
(A1, σ2, λ1, τ1) {0.007, 0.824, 0.169, 0.478} {0.0000.002,−0.002,−0.1%}
(A1, σ2, λ1, τ2) {0.081, 0.693, 0.226, 0.548} {0.006,−0.004,−0.003, 0.2%}
(A1, σ2, λ1, τ3) {0.085, 0.678, 0.238, 0.558} {−0.001, 0.004,−0.003, 0.0%}
(A1, σ2, λ2, τ1) {0.014, 0.815, 0.171, 0.477} {0.0000.0000.000− 0.400%}
(A1, σ2, λ2, τ2) {0.151, 0.618, 0.231, 0.546} {0.010,−0.016, 0.006, 0.5%}
(A1, σ2, λ2, τ3) {0.172, 0.589, 0.239, 0.557} {0.007,−0.008, 0.001, 0.4%}
(A1, σ2, λ3, τ1) {0.018, 0.815, 0.166, 0.479} {−0.002, 0.006,−0.004,−0.1%}
(A1, σ2, λ3, τ2) {0.214, 0.562, 0.223, 0.541} {0.015,−0.016, 0.002, 0.4%}
(A1, σ2, λ3, τ3) {0.257, 0.513, 0.230, 0.553} {0.021,−0.017,−0.004, 0.3%}
(A1, σ3, λ1, τ1) {0.009, 0.748, 0.243, 0.462} {0.000− 0.008, 0.008,−0.4%}
(A1, σ3, λ1, τ2) {0.072, 0.634, 0.294, 0.526} {0.004,−0.007, 0.003, 0.3%}
(A1, σ3, λ1, τ3) {0.076, 0.611, 0.313, 0.533} {−0.005,−0.004, 0.009,−0.6%}
(A1, σ3, λ2, τ1) {0.015, 0.752, 0.233, 0.462} {−0.002, 0.004,−0.002,−0.3%}
(A1, σ3, λ2, τ2) {0.139, 0.569, 0.292, 0.523} {0.009,−0.014, 0.005, 0.5%}
(A1, σ3, λ2, τ3) {0.154, 0.541, 0.305, 0.531} {−0.001,−0.004, 0.004,−0.3%}
(A1, σ3, λ3, τ1) {0.024, 0.746, 0.230, 0.463} {−0.002, 0.007,−0.005,−0.1%}
(A1, σ3, λ3, τ2) {0.199, 0.514, 0.287, 0.517} {0.016,−0.018, 0.003, 0%}
(A1, σ3, λ3, τ3) {0.228, 0.473, 0.299, 0.529} {0.008,−0.010, 0.002,−0.1%}
(A2, σ1, λ1, τ1) {0.012, 0.451, 0.537, 0.861} {0.000− 0.003, 0.003,−0.9%}
(A2, σ1, λ1, τ2) {0.023, 0.416, 0.562, 0.871} {0.0000.000− 0.001,−1.0%}
(A2, σ1, λ1, τ3) {0.061, 0.279, 0.660, 0.908} {0.003,−0.005, 0.002,−0.8%}
(A2, σ1, λ2, τ1) {0.022, 0.447, 0.531, 0.864} {−0.001, 0.004,−0.003,−0.5%}
(A2, σ1, λ2, τ2) {0.041, 0.395, 0.564, 0.871} {−0.003, 0.0000.003,−0.9%}
(A2, σ1, λ2, τ3) {0.111, 0.249, 0.640, 0.902} {0.005,−0.002,−0.003,−0.9%}
(A2, σ1, λ3, τ1) {0.035, 0.435, 0.529, 0.857} {0.001, 0.003,−0.004,−1.4%}
(A2, σ1, λ3, τ2) {0.062, 0.377, 0.561, 0.873} {−0.002, 0.0000.002,−0.7%}
(A2, σ1, λ3, τ3) {0.138, 0.219, 0.643, 0.894} {−0.008,−0.004, 0.011,−1.3%}
(A2, σ2, λ1, τ1) {0.011, 0.431, 0.558, 0.804} {−0.001, 0.002,−0.001,−0.7%}
(A2, σ2, λ1, τ2) {0.023, 0.397, 0.580, 0.813} {0.001,−0.002, 0.002,−1.0%}
(A2, σ2, λ1, τ3) {0.061, 0.291, 0.648, 0.849} {0.003,−0.008, 0.005,−0.9%}
(A2, σ2, λ2, τ1) {0.022, 0.420, 0.557, 0.806} {−0.001, 0.002,−0.001,−0.6%}
(A2, σ2, λ2, τ2) {0.043, 0.377, 0.580, 0.812} {0.000− 0.003, 0.003,−1.0%}
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Table 10: (continued) A full factorial test bed including {P̂1, P̂2, P̂3, L̂} from the simulation and the deviation
[
δ1, δ2, δ3, δ4

]
from the approximation

Simulation Deviation{
P̂1, P̂2, P̂3, L̂

} {
δ1, δ2, δ3, δ4

}
(A2, σ2, λ2, τ3) {0.110, 0.264, 0.626, 0.849} {0.004, 0.002,−0.007,−0.3%}
(A2, σ2, λ3, τ1) {0.035, 0.408, 0.557, 0.800} {0.002, 0.000,−0.002,−1.2%}
(A2, σ2, λ3, τ2) {0.062, 0.366, 0.572, 0.811} {−0.002, 0.006,−0.004,−1.1%}
(A2, σ2, λ3, τ3) {0.146, 0.225, 0.629, 0.830} {0.001,−0.006, 0.004,−2%}
(A2, σ3, λ1, τ1) {0.011, 0.408, 0.581, 0.762} {0.000,−0.002, 0.002,−0.8%}
(A2, σ3, λ1, τ2) {0.023, 0.382, 0.595, 0.771} {0.001,−0.001, 0.000,−1.0%}
(A2, σ3, λ1, τ3) {0.058, 0.296, 0.646, 0.809} {0.001,−0.001, 0.000,−0.5%}
(A2, σ3, λ2, τ1) {0.022, 0.390, 0.588, 0.758} {0.000,−0.009, 0.009,−1.2%}
(A2, σ3, λ2, τ2) {0.039, 0.365, 0.596, 0.762} {−0.004, 0.002, 0.002,−2.0%}
(A2, σ3, λ2, τ3) {0.108, 0.256, 0.635, 0.800} {0.006,−0.003,−0.003,−0.9%}
(A2, σ3, λ3, τ1) {0.034, 0.389, 0.577, 0.749} {0.001, 0.001,−0.001,−2.5%}
(A2, σ3, λ3, τ2) {0.059, 0.343, 0.598, 0.764} {−0.004,−0.001, 0.005,−1.7%}
(A2, σ3, λ3, τ3) {0.144, 0.226, 0.630, 0.799} {0.003,−0.003,−0.001,−0.5%}
(A3, σ1, λ1, τ1) {0.004, 0.068, 0.929, 0.982} {0.000, 0.003,−0.004,−0.8%}
(A3, σ1, λ1, τ2) {0.005, 0.049, 0.946, 0.983} {−0.001, 0.001,−0.001,−0.9%}
(A3, σ1, λ1, τ3) {0.007, 0.043, 0.950, 0.991} {0.000, 0.003,−0.004,−0.2%}
(A3, σ1, λ2, τ1) {0.005, 0.057, 0.938, 0.979} {−0.001,−0.004, 0.005,−1.0%}
(A3, σ1, λ2, τ2) {0.011, 0.042, 0.947, 0.980} {0.001,−0.003, 0.002,−1.2%}
(A3, σ1, λ2, τ3) {0.014, 0.035, 0.951, 0.982} {0.001,−0.001, 0.000,−1.0%}
(A3, σ1, λ3, τ1) {0.008, 0.053, 0.938, 0.974} {−0.001,−0.006, 0.007,−1.5%}
(A3, σ1, λ3, τ2) {0.015, 0.038, 0.947, 0.981} {0.000,−0.004, 0.004,−1.1%}
(A3, σ1, λ3, τ3) {0.020, 0.032, 0.949, 0.990} {0.002,−0.002, 0.000,−0.2%}
(A3, σ2, λ1, τ1) {0.005, 0.138, 0.857, 0.948} {−0.001,−0.004, 0.005,−0.5%}
(A3, σ2, λ1, τ2) {0.013, 0.114, 0.873, 0.945} {0.000,−0.003, 0.003,−1.6%}
(A3, σ2, λ1, τ3) {0.015, 0.111, 0.873, 0.940} {0.000, 0.004,−0.004,−2.4%}
(A3, σ2, λ2, τ1) {0.013, 0.136, 0.851, 0.954} {0.001, 0.001,−0.002, 0.1%}
(A3, σ2, λ2, τ2) {0.023, 0.102, 0.874, 0.941} {0.000,−0.005, 0.006,−2.0%}
(A3, σ2, λ2, τ3) {0.027, 0.094, 0.879, 0.948} {−0.001,−0.003, 0.004,−1.4%}
(A3, σ2, λ3, τ1) {0.018, 0.133, 0.849, 0.940} {0.001, 0.002,−0.003,−1.3%}
(A3, σ2, λ3, τ2) {0.036, 0.092, 0.872, 0.954} {0.003,−0.008, 0.005,−0.5%}
(A3, σ2, λ3, τ3) {0.042, 0.085, 0.873, 0.947} {0.003,−0.003, 0.000,−1.4%}
(A3, σ3, λ1, τ1) {0.007, 0.175, 0.818, 0.905} {0.000,−0.001, 0.001,−1.2%}
(A3, σ3, λ1, τ2) {0.016, 0.150, 0.834, 0.917} {0.001, 0.000,−0.001,−0.9%}
(A3, σ3, λ1, τ3) {0.021, 0.146, 0.833, 0.924} {0.003, 0.004,−0.007,−0.4%}
(A3, σ3, λ2, τ1) {0.013, 0.167, 0.820, 0.910} {0.000,−0.002, 0.003,−0.7%}
(A3, σ3, λ2, τ2) {0.032, 0.137, 0.831, 0.899} {0.002, 0.000,−0.002,−2.8%}
(A3, σ3, λ2, τ3) {0.035, 0.124, 0.842, 0.915} {0.000,−0.004, 0.004,−1.3%}
(A3, σ3, λ3, τ1) {0.020, 0.170, 0.810, 0.915} {0.000, 0.007,−0.007,−0.1%}
(A3, σ3, λ3, τ2) {0.043, 0.121, 0.836, 0.902} {0.001,−0.006, 0.005,−2.4%}
(A3, σ3, λ3, τ3) {0.052, 0.117, 0.831, 0.916} {0.004, 0.001,−0.005,−1.0%}
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Table 11: The simulation results and the approximation results for Gap 1, Gap 2 and (Â∗ −A∗)/Â∗

Ω {(Â∗ −A∗)/Â∗, Gap1, Gap2}
(σ1, λ1, τ1) {5.00%, 2.07%, 2.63%}
(σ1, λ1, τ2) {2.50%, 0.51%, 0.33%}
(σ1, λ1, τ3) {6.67%, 1.40%, 1.34%}
(σ1, λ2, τ1) {2.50%, 0.10%, 0.30%}
(σ1, λ2, τ2) {2.50%, 2.75%, 3.04%}
(σ1, λ2, τ3) {3.33%, 2.41%, 2.27%}
(σ1, λ3, τ1) {2.50%, 3.21%, 2.17%}
(σ1, λ3, τ2) {5.00%, 2.29%, 1.46%}
(σ1, λ3, τ3) {6.67%, 1.76%, 1.12%}
(σ2, λ1, τ1) {2.50%, 1.96%, 2.54%}
(σ2, λ1, τ2) {2.50%, 1.61%, 1.67%}
(σ2, λ1, τ3) {6.67%, 1.83%, 3.01%}
(σ2, λ2, τ1) {5.00%, 2.81%, 2.14%}
(σ2, λ2, τ2) {5.00%, 1.89%, 1.96%}
(σ2, λ2, τ3) {6.67%, 2.74%, 2.83%}
(σ2, λ3, τ1) {2.50%, 2.24%, 0.93%}
(σ2, λ3, τ2) {5.00%, 3.13%, 2.94%}
(σ2, λ3, τ3) {3.33%, 2.54%, 2.47%}
(σ3, λ1, τ1) {−25.0%, 2.74%, 1.27%}
(σ3, λ1, τ2) {5.00%, 4.38%, 5.21%}
(σ3, λ1, τ3) {3.33%, 1.42%, 1.69%}
(σ3, λ2, τ1) {−25.00%, 2.12%, 0.76%}
(σ3, λ2, τ2) {2.50%, 3.84%, 3.00%}
(σ3, λ2, τ3) {3.33%, 3.82%, 3.10%}
(σ3, λ3, τ1) {−25.0%, 2.21%, 1.61%}
(σ3, λ3, τ2) {2.50%, 4.79%, 4.82%}
(σ3, λ3, τ3) {3.33%, 3.40%, 2.56%}
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Table 12: The cost saving potential of including opportunities at USDs and SDs: 4A, 4B and 4C .

Ω

4A 4B 4C
(σ1, λ1, τ1) 65.4% 60.3% 19.6%

(σ1, λ1, τ2) 65.2% 60.2% 19.6%

(σ1, λ1, τ3) 61.4% 55.9% 19.6%

(σ1, λ2, τ1) 65.3% 60.3% 30.4%

(σ1, λ2, τ2) 64.9% 60.2% 30.4%

(σ1, λ2, τ3) 61.0% 55.9% 30.4%

(σ1, λ3, τ1) 65.2% 60.3% 36.1%

(σ1, λ3, τ2) 64.8% 60.2% 36.1%

(σ1, λ3, τ3) 60.5% 55.9% 36.1%

(σ2, λ1, τ1) 48.9% 41.7% 14.1%

(σ2, λ1, τ2) 48.5% 41.4% 14.1%

(σ2, λ1, τ3) 47.1% 39.7% 14.1%

(σ2, λ2, τ1) 48.7% 41.7% 20.8%

(σ2, λ2, τ2) 48.1% 41.3% 20.8%

(σ2, λ2, τ3) 46.4% 39.7% 20.8%

(σ2, λ3, τ1) 48.5% 41.7% 24.3%

(σ2, λ3, τ2) 47.7% 41.4% 24.3%

(σ2, λ3, τ3) 45.9% 39.7% 24.3%

(σ3, λ1, τ1) 33.9% 25.0% 9.1%

(σ3, λ1, τ2) 33.6% 24.7% 9.1%

(σ3, λ1, τ3) 32.2% 23.0% 9.1%

(σ3, λ2, τ1) 33.7% 25.0% 12.9%

(σ3, λ2, τ2) 33.1% 24.7% 12.9%

(σ3, λ2, τ3) 31.4% 23.0% 12.9%

(σ3, λ3, τ1) 33.4% 25.0% 14.6%

(σ3, λ3, τ2) 32.6% 24.7% 14.6%

(σ3, λ3, τ3) 30.7% 23.0% 14.6%

[7] R Dekker, R.E. Wildeman, and F.A. van der Schouten. A review of multi-component maintenance

models with economic dependence. Mathematical Methods of Operations Research, 45(3):411–435, Jan

1997.

[8] A. Haurie and P. L’ecuyer. A stochastic-control approach to group preventive replacement in a multi-

component system. IEEE Transactions on Automatic Control, 27(2):387–393, Apr 1982.

[9] R. Laggoune, A. Chateauneuf, and D. Aissani. Opportunistic policy for optimal preventive mainte-

nance of a multi-component system in continuous operating units. Computers & Chemical Engineering,

33(9):1499–1510, Sep 2009.

[10] R.P. Nicolai and R. Dekker. A review of multi-component maintenance models. In Aven, T. and

Vinnem, J.E., editor, Risk, Reliability And Societal Safety, Vols 1-3: Vol 1: Specialisation Topics; Vol

2: Thematic Topics; Vol 3: Applications Topics, Proceedings and Monographs in Engineering, Water

and Earth Sciences, pages 289–296, 2007.

[11] S. Ozekici. Optimal periodic replacement of multicomponent reliability systems. Operations Research,

36(4):542–552, Jul 1988.

[12] H. Pham and H.Z. Wang. Optimal (τ, T ) opportunistic maintenance of a k-out-of-n : G system with

imperfect PM and partial failure. Naval Research Logistics, 47(3):223–239, Apr 2000.

25



[13] E. Popova and J.G. Wilson. Group replacement policies for parallel systems whose components have

phase distributed failure times. Annals of Operations Research, 91:163–189, 1999.

[14] R. Radner and D.W. Jorgenson. Opportunistic replacement of a single part in the presence of several

monitored parts. Management Science, 10(1):70–84, Oct 1963.

[15] S.M. Ross. Stochastic Processes. Wiley series in probability and mathematical statistics. New York :

Wiley, 1983.

[16] S.H. Sheu and J.P. Jhang. A generalized group maintenance policy. European Journal of Operational

Research, 96(2):232–247, Jan 1997.

[17] S. Taghipour and D. Banjevic. Optimal inspection of a complex system subject to periodic and oppor-

tunistic inspections and preventive replacements. European Journal of Operational Research, 220(3):649–

660, Aug 2012.

[18] L.C. Thomas. A survey of maintenance and replacement models for maintainability and reliability of

multi-item systems. Reliability Engineering, 16(4):297–309, May 1986.

[19] F.A. van der Schouten and S.G. Vanneste. Two simple control policies for a multicomponent maintenance

system. Operations Research, 41(6):1125–1136, Nov 1993.

[20] G. van Dijkhuizen and A. van Harten. Optimal clustering of frequency-constrained maintenance jobs

with shared set-ups. European Journal of Operational Research, 99(3):552–564, Jun 1997.

[21] R.C. Vergin and M. Scriabin. Maintenance scheduling for multicomponent equipment. AIIE Transac-

tions, (9):297–305, Jul 1977.

[22] H.Z. Wang. A survey of maintenance policies of deteriorating systems. European Journal of Operational

Research, 139(3):469–489, Jun 2002.

[23] R.E. Wildeman, R. Dekker, and A.C.J.M. Smit. A dynamic policy for grouping maintenance activities.

European Journal of Operational Research, 99(3):530–551, Jun 1997.

[24] X.T. Zheng. All opportunity-triggered replacement policy for multiple-unit systems. IEEE Transactions

on Reliability, 44(4):648–652, Dec 1995.

[25] Q. Zhu, H. Peng, and G.J. Van Houtum. A Condition-based Maintenance Policy for Multi-component

Systems with a High Setup Cost of Maintenance. OR Spectrum, 37(4):1007–1035, Oct 2015.

26


	Voorblad WP 498
	Beta_wp498
	Working papers Beta overzicht vanaf 2009
	Sheet1


