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Abstract

In this paper we consider a multi-item, single-location inventory control problem. We propose
an approach on how to design a generalized ABC classification scheme to minimize the inventory
investment costs while satisfying an aggregate fill rate constraint by considering four different
aspects of a classification: the classification criteria, the number of classes, the class sizes,
and the target fill rate per class. Using multiple alternatives per aspect and considering all
combinations, we determine the best classification. The results are measured against the optimal
solution, which allows a separate target fill rate for each SKU and therefore is more difficult to
manage. By applying our approach, we are able to find near-optimal results for all three data
sets, consisting of spare parts data from three different companies. The most important insight
that we generate is that the best class sizes - which need to be carefully decided - depend on
the target aggregate fill rate whereas the common used rule of thumb to determine class sizes
may lead to solutions far from optimal.

Keywords: Inventory control, classification, SKUs, system-oriented service constraints, greedy heuristics

1. Introduction

A proper management of the inventory is of great importance for many companies as they have

service contracts or want to provide a certain service to their customers, often measured by the

aggregate fill rate (see Thonemann et al., 2002). For many practical cases, the number of stock

keeping units (SKUs) is too large to apply SKU-specific inventory control methods (Buxey, 2006).

Although some companies implement SKU-specific inventory control methods, there are many com-

panies for which this is not possible due to a lack of knowledge about this topic within the company,

the preference to implement simple inventory control policies, or due to limited functionality of their

ERP systems (if any at all). As a practical solution, many companies resort to the use of ABC

classifications (see e.g. Ramanathan, 2006; Hatefi and Torabi, 2015; Flores and Whybark, 1987;

Chu et al., 2008; Eilon and Mallya, 1985; Liu et al., 2015). When applying an ABC classification,

companies categorize their inventory into three, the so called ‘A’, ’B’, and ‘C’ classes, and manage

each SKU within a class in the same way, where class A represents the most important category

receiving the closest attention and class C being the least important one. In this way companies are
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basically able to differentiate between different SKUs while still having a simple inventory control

policy. However, the classification of SKUs is typically made using rules of thumb: E.g. 20% of

SKUs that have the highest annual dollar volume are grouped under Class A. Such oversimplifica-

tion is prone to significant suboptimization. In this paper we emphasize that this can be improved

by a -still simple- ”generalized” ABC classification approach, in which the classification is made

more carefully. In particular, we attempt to provide an answer to our main research question by

making use of three data sets, stemming from three different companies: How should one design

a generalized ABC classification in order to obtain the lowest inventory investment costs while

ensuring a target aggregate fill rate?

When considering to use an ABC classifications, there are four aspects that together determine

the performance. First of all, as different SKUs have different characteristics, and can be of different

importance to the company, SKUs can be ranked based on one or more criteria. There have been

many authors that propose different criteria to rank the SKUs. The most common criterion is

the annual dollar volume (see e.g. Silver et al., 1998; Stevenson, 2007; Nahmias, 1997). However,

this criterion does not set the relation with the resulting inventory costs. As inventory costs can

be a large fraction of the total costs, there is a shift in the focus of ABC classifications where

inventory costs are taken into consideration when deciding how to rank the SKUs (Ramanathan

(2006), Bacchetti and Saccani (2012), Bacchetti et al. (2013), Zhou and Fan (2007), Teunter et al.

(2010), Ng (2005), Babai et al. (2015), Hollier and Vrat (1978), Zhang et al. (2001) and Ernst

and Cohen (1990)). Multicriteria classifications, where SKUs are classified into three classes based

on multiple criteria, have also been proposed (see e.g. Flores et al., 1992). Moreover, in practice

we commonly observe two-dimensional classifications where each SKU is classified twice based on

each criterion and the final classification is obtained by taking the combination of the previous two

classifications. In this way, often nine classes are being used (see e.g. Duchessi et al., 1988; Flores

and Whybark, 1987). See Figure 1 for an example of a two-dimensional classification. Although

these classifications are applied in practice, they have not been compared with respect to their

resulting inventory costs before.

Figure 1: Example of Price and Demand classification
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The second aspect we consider is the number of classes used to classify the SKUs. Although

most of the previously mentioned literature considers three classes only, it is possible to extend this

to a larger number of classes. A larger number of classes would lead to a reduction of inventory

investment costs and increase in performance as three classes may not capture the differences

between SKUs sufficiently well (Lee, 2002). However, an increase of the number of classes also

makes it more difficult to manage the SKUs. Based on our data, we show that increasing the

number of classes results in lower inventory costs, and that six classes are sufficient to obtain

near-optimal results for the data sets we examined.

Thirdly, one needs to decide on the class sizes and thus how many SKUs should be put in

each class. For ABC classifications with three classes, a common rule of thumb is to have about

20% of the SKUs in class A, 30% in class B and 50% in class C, considering three classes (see e.g.

Jacobs et al., 2009; Slack et al., 2007; Stevenson, 2007; Nahmias, 1997). However, when classes are

managed by setting different service levels per class, there are no clear guidelines on how to manage

each class of SKUs. Van Kampen et al. (2012) state that it is likely to obtain a better performance

with more classes, which does bring a higher complexity, but that is still unclear how to manage

the class sizes in combination with the number of classes. There are authors that argue that class

A SKUs should have the highest service target to avoid frequent backlogs (see e.g. Armstrong,

1985; Stock and Lambert, 2001), whereas other authors claim that class C SKUs should have the

highest service as dealing with stockouts is not worth the effort (see e.g. Knod and Schonberger,

2001). Moreover, these suggestions are not considering the relative size of each class together with

the desired service or classification criteria used. To the best of our knowledge, besides this rule of

thumb, which is also used by Teunter et al. (2010), there is no literature on this topic in relation

with inventory costs and service measures. In this paper we show that this rule of thumb can give

far from optimal results and that the class size should depend on the aggregate fill rate target.

Finally, one needs to decide on how to manage each class of parts. In this paper this is done by

setting a target fill rate for each class. Although most literature only considers the classification

criteria used to classify the SKUs and does not relate to the resulting inventory costs, there are

a few authors that do consider the resulting inventory costs (see e.g. Teunter et al., 2010; Babai

et al., 2015). The first authors to combine target setting with a classification are Teunter et al.

(2010). However, they assume that each SKU is put on stock as they only consider strictly positive

target fill rates, which is common in some fields, but not common for spare parts. As our focus

is solely on the overall performance from an inventory cost perspective, and because we make use

of spare parts data, stocking all SKUs may lead to additional costs, and thus suboptimal results.

Especially when there are large cost differences between the SKUs it is not desirable to stock all

SKUs (Sherbrooke, 1968).

As these four aspects cannot be considered independently of the others (e.g. the target service

level of a class depends on how many classes there are), we examine each combination of all four

aspects together, which to the best of our knowledge has not been done before. We consider

three possible classification criteria, including two-dimensional classifications which have not been

compared before, vary the number of classes, use enumeration over possible class sizes, and set the
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optimal target fill rate per class. This approach is applied on three different data sets consisting of

real life spare parts data of three different companies, with different characteristics. We compare

the outcome of the classification with the optimal solution, which stands for having a separate class

for each SKU (see e.g Sherbrooke, 1968; Van Houtum and Kranenburg, 2015).

The main contribution of this paper is our approach to obtain a generalized and simple ABC

classification that takes the above four aspects jointly into account. Using a structured scheme,

we are able to design a classification which minimizes inventory investment costs while meeting

the aggregate fill rate constraint. Using real life spare parts data and by comparing multiple

classification criteria, we show that when these four aspects are combined, the resulting inventory

investment costs can be within one percent of the optimal results, which brings the expense of more

complicated inventory control. Our approach is not restricted to the chosen criteria and classes, but

can be widely applied to other criteria, demand distributions, and even inventory policies. Beside

our approach, we show the importance of having the right class sizes, which in relation with the

inventory costs is to the best of our knowledge not studied before. Using the wrong class sizes

can have a big impact on the performance and result in far from optimal solutions. We compared

the best class sizes with class sizes determined using the common rule of thumb where about 20%

of the SKUs are in class A, 30% in class B and 50% in class C (cf. Teunter et al., 2010). Cost

differences up to 290% are possible and more likely to occur for higher aggregate fill rate targets.

Because we use enumeration to determine the optimal target per class, our approach can become

time consuming when the number of classes increases. For testing and sensitivity analysis it may

be of interest to have a faster solution and therefore we also propose an algorithm that significantly

decreases the calculation time for our classification scheme, whereas the cost increase on average is

below 2%.

The remainder of the paper is organized as follows: In Section 2 we introduce the model de-

scription. In Section 3 we give our approach on how to design a generalized ABC classification

scheme that considers all of the four aspects jointly. In Section 4 we first explain our real life data

set of spare parts, which we use for our numerical experiment. We then present the optimality gap

of the alternatives that we consider and we conduct some analysis to obtain more insights regarding

how to set the right class sizes and propose an algorithm to set the target fill rates per class in

a fast way. We conclude our paper and give some recommendations for future research in Section 5.

2. Model

We consider a single warehouse in which several SKUs are kept on stock. Whenever a SKU is

requested, it is immediately delivered from stock on hand, and backordered and delivered as soon

as possible when there is no stock on hand. The set of SKUs is denoted by I; the number of SKUs

is |I| ∈ N := {1, 2, . . .}. For notational convenience, the SKUs are numbered as 1, . . . , |I|. For

each SKU the stock is controlled by a continuous-review basestock policy, with basestock level Si

for SKU i. For each SKU i ∈ I, we assume that demand follows an independent Poisson process
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with a constant rate λi (≥ 0), which is particularly plausible in the maintenance and spare parts

environment, but also in some retail environments. The total demand rate for all SKUs is denoted

by Λ =
∑

i∈I λi. The replenishment lead time Li (> 0) is assumed to be constant. Each SKU has

a price of ci, and the total inventory investment costs are given by

C(S) =
∑
i∈I

ciSi, (1)

where S = (S1, . . . , S|I|) denote the vector consisting of all basestock levels. The fill rate for item

i, in steady state, is denoted by βi(Si). The (aggregate) fill rate in steady state is as follows:

β(S) =
∑
i∈I

λi
Λ
βi(Si). (2)

Note that the calculation for the fill rate is as follows (see also Van Houtum and Kranenburg, 2015)

βi(Si) =

Si−1∑
x=0

P {Xi = x} ,

P {Xi = x} =
(λiLi)

x

x!
e−λiLi , x ∈ N0.

The target aggregate fill rate for β(S) is given by βo. The objective is to minimize the total costs

subject to an aggregate fill rate constraint. In mathematical terms the optimization problem is as

follows:
(P) min C(S)

subject to β (S) ≥ βo

Si ∈ N0, ∀ i ∈ I
As managing each SKU individually can be very complex, especially for a large number of

SKUs, companies often resort to the use of ABC classifications. In the next section, we show how

we design a generalized ABC classification to obtain minimum inventory investment costs against

the aggregate fill rate target.

Although we made some assumptions on the demand process and the inventory control policy

our approach can be easily applied with other demand processes and/or inventory control policies

as this merely changes the evaluation of the fill rate and costs. The same steps of our approach

can still be applied to design the ABC classification.

3. Design aspects of a generalized ABC classification

In this section we propose a design of a generalized ABC classification scheme. As the four different

aspects cannot be considered separately, we consider each combination and their resulting inventory

investment costs. We describe the four aspects in the same order as we apply our scheme. We

first describe the different classification criteria we consider in this research. Then we explain the

number of classes we consider for each of the four different classification criteria. Thirdly, we explain

how we set the class sizes. Finally, we describe how we set the target service level for each class.
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3.1 Classification criteria

When considering a classification for SKUs, we first need to define the classification criteria that

enable us to rank the SKUs. Once we have ranked the SKUs we can take the other three aspects

into consideration. There has been extensive studies on how to classify SKUs, and recently there

were also authors that relate the classification with the inventory control (see e.g. Babai et al.,

2015; Teunter et al., 2010; Ng, 2005). The annual dollar volume - i.e. annual demand times price

- (ADV) criterion, is the traditional criterion for ABC classifications and found in many textbooks

(see e.g. Silver et al., 1998; Nahmias, 1997). However, if we follow the idea of a system approach

(Sherbrooke, 1986), parts with a high price end up with a lower service level, whereas parts with a

high demand end up with a higher service level. Therefore, ADV is a poor construction in terms

of inventory investment costs as demand and price work in opposite directions as under the system

approach. This was also observed by Teunter et al. (2010) and they proposed a classification based

on Demand/Price (D/P), which captures the idea of a higher service for cheap and fast moving

SKUs. They found that this classification criterion was the best performing criterion among the

criteria they considered.

In practice, two-dimensional classifications based on price and demand are often seen to manage

the inventory (see e.g Duchessi et al., 1988; Flores and Whybark, 1987), but they have not been

compared before. This two-dimensional classification classifies SKUs based on both price and

demand. We compare this two-dimensional classification to the previous mentioned methods. Note

that we also compared some other classification criteria; leadtime demand, price, and leadtime

and price. We omit them in our exposition as they did not give better results or further insights.

Therefore, we present the results and findings of the following three criteria:

1. Annual Dollar volume (ADV) (one-dimensional)

This single criterion classification is the most common criterion. The demand rate of each

SKU is multiplied with the price of each SKU and then ordered based on this annual dollar

volume. The SKUs are ranked in descending order, where SKUs with the largest ADV are

considered class A SKUs.

2. Demand/Price (D/P) (one-dimensional)

This classification is proposed by Teunter et al. (2010), and shown to give the best performance

related to inventory costs. The SKUs are classified based on their demand rate divided by their

price. They are then ranked in descending order, where the top group of SKUs, consisting

of fast moving and cheap SKUs, are considered class A SKUs which should get the highest

service level.

3. Price and Demand (P&D) (two-dimensional)

This classification is often found in practice: Each SKU is classified based on both price and

demand. See Figure 1 for an example of this classification.
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3.2 Number of classes

When considering ABC classifications, often three classes per dimension are considered: Class A,

class B, and class C. However, it is also possible to consider different numbers of classes when

classifying SKUs. As less classes will most likely end up with higher investment costs, it makes the

problem less complex. Increasing the number will most likely give better results because there are

more options available, but this will increase the complexity of the problem. Therefore, there is a

trade-off between performance and manageability. Graham (1987) and Silver et al. (1998) mention

that up to six classes can be used as more classes increases the complexity. Using six classes,

Teunter et al. (2010) showed that good results can already be obtained. For the two-dimensional

classification, a matrix approach is common with 9 classes Duchessi et al. (1988). Having a 4 by 4

matrix would lead to 16 classes which becomes too difficult and costly to manage.

In our numerical experiment we vary the number of classes between 2 and 6 for the one-

dimensional classifications. For the two-dimensional classification we consider a 2 by 2 matrix and

a 3 by 3 matrix. Moreover, we add the results of using only a single class to mange all SKUs, thus

not applying any differentiation between the SKUs at all. By considering these different class sizes,

we obtain in total 13 combinations of ABC classification criteria and number of classes. Given the

number of classes, we introduce a set of classes K where classes are numbered (1, . . . , |K|).

3.3 Class sizes

For each of the above mentioned combinations, we need to decide on the size of each class, which

in turn determines the class each SKU will be placed in. There has not been any research about

the best class sizes for ABC classifications, when considering inventory costs. Typically a rule of

thumb for the ADV classification is used (see e.g. Jacobs et al., 2009), in which 20% of the SKUs

are class A, 30% class B, and 50% class C. Teunter et al. (2010) also use this rule of thumb for

their D/P classification. One of our goals in this paper is to find out whether different class sizes

have an impact on the inventory investment costs.

Therefore, we use threshold values to determine which class each SKU is placed into. For

example, in the case we have three classes and SKUs are ranked based on their price and the price

of a SKU is larger than all threshold values, it will be placed in class C (unlike the logic of the ADV

classification). If the price is smaller than the smallest threshold value it will be placed in class

A. When there are more than three classes, or multiple dimensions, there are also more threshold

values but the logic remains the same.

We then use enumeration over the threshold values, which we set equal to the x−th percentile.

With x ∈ {∆, 2∆, . . . , d100/∆e∆}, for each threshold value, where ∆ is chosen sufficiently small.

Based on the threshold values, we determine ki, i ∈ I, representing the class to which SKU i

belongs.

Note that the threshold values are sorted in ascending order as they must be increasing in size,

and that if two threshold values are equal, this is the same as having fewer classes.
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3.4 Target setting

Given the set of classes K and the class to which each SKU i ∈ I belongs, noted by ki, , we need

to decide on how to manage each class of SKUs. It is common to set different service targets for

each class, θk, to manage each class (Teunter et al., 2010). Although there are also other ways to

manage the inventory of each SKU in a class, for instance by choosing Si such that the distance to

the service level target of that SKU’s class, θki , is minimized, we follow the more common approach

of Teunter et al. (2010), where the fill rate has to be greater than or equal to the target for each

SKU in that class. We thus need to decide on θk, k ∈ K, the target fill rate per class. We set the

value of Si, i ∈ I, equal to the lowest integer that satisfies this fill rate target, θki , for SKU i.

The corresponding problem (C) is then as follows:

(C) min C(S)

subject to β (S) ≥ βo

Si = min{x|βi (x) ≥ θki , x ∈ N0}, ∀ i ∈ I
θk ∈ [0, 1) , ∀ k ∈ K

Different than what Teunter et al. (2010) does, we allow to have zero stock of SKUs. Sherbrooke

(1968) already showed that when we are mainly concerned with the overall performance it is

sometimes better to take more risk for the very expensive SKUs because their inventory investment

costs are very high, and reduce the risk on many other cheap SKUs.

To obtain the solution that minimizes the inventory investment costs of problem (C), we first

look at each class separately, as the classes are independent due to the fact that the class to which

each SKU belongs is known at this stage. Let

Sk = {Si}i∈I, ki=k,

be the vector of basestock levels for each SKU i in class k, and

Λk =
∑

i∈I, ki=k
λi,

be the total demand rate for class k. The aggregate fill rate for class k, βk(S), and the inventory

investment costs for class k, Ck(Sk), are calculated as follows:

βk(Sk) =
∑

i∈I, ki=k

λiβi(Si)

Λk

Ck(Sk) =
∑

i∈I, ki=k
ciSi.

The following is applied for each class k ∈ K, with ε being a small positive value close to zero:

1. Set θk := 0

Si = 0 ∀ ki = k, i ∈ I
Sk = {Si}i∈I, ki=k
Compute Ck(Sk) and βk(Sk)

Ek :=
{(

Sk, Ck(Sk), βk(Sk), θk
)}
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2. θk :=min(βi(Si) : i ∈ I, ki = k)

For all i ∈ I, ki = k : If βi(Si) = θk, then Si := Si + 1

Sk = {Si}i∈I, ki=k

3. Compute Ck(Sk) and βk(Sk);

Ek = Ek ∪
{(

Sk, Ck(Sk), βk(Sk), θk
)}

4. If βk(Sk) ≥ 1− ε, then stop, else go to 2

After this procedure, we have a solution vector per class, Ek, consisting of the base-stock levels,

costs, fill rate, and target fill rate. We then enumerate over all different combinations of solutions

per class, θk, and look for the combination that gives the lowest inventory investment costs while

satisfying the aggregate fill rate target.

4. Numerical experiment

In order to find which classification gives the best result for problem (P), we apply our approach

and perform a numerical experiment using empirical data. In Section 4.1 we give an overview of

the data we use for our numerical experiment. We show that the D/P classifications gives near-

optimal results with only a few classes in Section 4.2. Then in Section 4.3 we show the impact of

the class sizes on the performance. Finally we introduce a greedy ABC algorithm that reduces the

calculation time significantly in Section 4.4.

4.1 Data

To apply our approach to design a generalized ABC classification we use three spare parts data

sets from three different companies. Data set 1 consists of spare parts usage for the maintenance

of Ground Support Equipment (GSE) at an airport. The GSE consists of a wide range of vehicles

consisting of passenger cars up to specialised equipment such as de-icing vehicles used to remove ice

off the wings of airplanes. Although there are many expensive parts that are not frequently used,

the data also contains fast moving spare parts that are not expensive. The largest majority of parts

can be delivered within 3 weeks. Data set 2 consists of spare parts usage for a company involved

in producing and maintaining lithography machines. Compared to the other two companies, the

demand for the spare parts are much lower. Moreover, many parts are expensive, with costs up to

over a million euro. Besides these high costs and low demand rates, the time it takes to obtain the

part from the supplier are relatively high compared to the other two companies, with an average

leadtime of 110 days. Data set 3 consists of spare parts used for the maintenance of professional

printing machines. The average leadtime and price of spare parts are in between the company 1

and 2. These parts have the highest usage of the three different companies on average, there are

also many parts that are both expensive, as well as fast moving. See Figure 2, of the price and

demand relationship of company 2 and 3. From this figure, we clearly see that company 3 has parts
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(a) (b)

Figure 2: Relation between price and demand for data set 2 (a) and 3 (b)

that are both expensive, as well as fast moving (the parts within the red circle), whereas this is not

the case for company 2, which has much more slower moving parts, which can be very expensive.

An overview of the characteristics of the data of all three companies is presented in Table 1.

Table 1: Data characteristics

Data set 1 Data set 2 Data set 3

Demand Price (e ) Leadtime Demand Price (e ) Leadtime Demand Price (e ) Leadtime

per year (days) per year (days) per year (days)

Min 0.10 0.01 1.00 0.0003 0.01 5.18 1 0.01 14.02

Average 8.53 78.61 5.97 0.4329 4,819.89 106.84 26.82 142.51 28.18

Max 610.50 10,950 111.00 110.29 1,068,444 320.29 297 4,381.59 42.01

4.2 Choosing the best classification criteria

In this section we present our findings regarding the inventory investment costs for the different

classifications. For our numerical study, we choose to look at service level targets of 80%, 90%,

and 97%, representing a low, medium and high service. We have also looked at different targets

in between, but the results were similar and therefore we only present the results for these three

different service level targets. Note that our methodology is not restricted with a certain service

level or measure. In Table 2 we present our findings regarding the inventory investment costs for

the different classifications of all three data sets. We represent the costs as a percentage of the

system approach, which is considered the optimal solution. To apply the system approach, we use

the algorithm as described in Section 2.4.2 of Van Houtum and Kranenburg (2015). The results

regarding the ADV are in line with the results of Teunter et al. (2010): we clearly see that the ADV

classification gives very poor results. We did not show the findings for the ADV classification for

5 and 6 classes as they only give slightly better results, but still far from optimal. An explanation

for this is that both fast moving SKUs as well as expensive SKUs can be put in the same class

of SKUs according to this criterion. However, from the inventory investment cost perspective, we

prefer to stock less expensive SKUs over expensive SKUs, because expensive SKUs bring higher

inventory investment costs. Moreover, it is more interesting to stock fast moving SKUs over slow
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(a) (b)

Figure 3: Base stock levels for data set 2 (a) and 3 (b) for optimal solution

moving SKUs because the contribution to the the aggregate fill rate of fast moving SKUs is larger.

The classification that leads to the lowest inventory investment costs is the D/P classification.

The D/P classification captures the trade-off between the contribution to the aggregate fill rate

and costs very well, therefore the SKUs in the same class will end up with similar fill rate targets

as if we apply a system approach. Figure 3 shows the inventory levels for each SKU for data set

2 and 3 for the optimal solution and confirms this thought. We find that by applying the D/P

classification with six classes, and setting the best class sizes and target fill rates, the resulting

inventory investment costs are within a few percent of the optimal solution for all three data sets.

The P&D classification is also able to capture this trade-off, although it does not directly capture

this trade-off for each SKU. Although we see that the costs for the Price and Demand classification

are higher compared to the D/P classification, the resulting costs are still very reasonable, especially

compared to using no classification or the ADV classification. For data set 3 it even gets within 6

percent of the optimal solution. This is mainly due to the fact that this data set has parts that are

both fast moving as well as expensive. Using the Price and Demand classification, these parts can

be handled separately, thereby providing more flexibility in this region.

Table 2: Inventory investment costs compared to optimal solution

Inventory investment costs (% over optimal) Data set 1 Data set 2 Data set 3

Classification Number of classes 80% 90% 97% 80% 90% 97% 80% 90% 97%

Annual Dollar Volume

2 3,098 1,278 330 1,595 670 229 87 79 38

3 2,753 1,217 329 1,595 665 224 79 70 35

4 2,749 1,216 327 1,595 665 223 77 69 34

Demand/Price

2 19 38 47 44 43 53 7 42 17

3 12 4 6 9 15 6 2 6 12

4 9 2 3 4 10 2 1 4 10

5 9 1 1 4 7 1 1 3 5

6 7 1 1 2 7 0 1 2 2

Price and Demand
4 (2x2) 40 26 26 74 50 25 5 25 21

9 (3x3) 23 12 22 23 16 14 2 6 6

One class 3,300 1,294 342 1,628 711 328 132 120 61
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When we look at the number of classes used for the D/P classifications, we clearly see that

when only three classes are considered, already a significant gain with respect to two classes can be

obtained. Whenever the number of classes is increased further, the performance can only increase

as the same solution as with less classes is always possible. As an increase in the number of classes

makes it more difficult and costly to control the inventory policy, a company should make the

trade-off between costs and complexity.

4.3 The impact of class sizes on performance

When considering the size of each class, we would like to see how sensitive the results are with

respect to the class sizes. As the D/P criterion gives the best overall results, we consider the

impact of the class sizes for this criterion only from now on. There has not been much literature

about the proper class sizes, besides the common proposal to have around 20% of the SKUs in class

A, 30% in class B and 50% in class C (Teunter et al., 2010). However, this rule of thumb makes use

of the pareto rule and does not take into consideration the impact on the resulting inventory costs.

Based on our numerical experiment, a key observation is that there are large inventory investment

cost differences by only changing the class sizes. We also noticed that for the best solutions found,

there is always at least one class for which SKUs are not stocked. This is always the class for

which the value of D/P is the smallest, thus consisting of the expensive and/or slow moving SKUs.

Because we consider spare parts data these SKUs have very high individual costs, and thus a very

large impact on the total inventory costs as soon as the company chooses to stock these SKUs.

Taking this into consideration, and given the aggregate fill rate target, we know the fraction of

demand that does not have to be satisfied directly from stock on hand. Whenever the fraction

of total demand in the class of expensive SKUs is larger than the fraction of total demand that

does not have to be satisfied from stock on hand directly, it is impossible to find a feasible solution

without stocking all SKUs in that class. We call this a “forced presence” of stock for these SKUs.

Whenever a forced presence of stock occurs, the inventory costs are significantly larger than the

best solution possible. This impact will be smaller if the cost differences are also smaller. Still we

expect that using our approach instead of the commonly used rule of thumb, where the fraction

of demand of this class of SKUs is set to 50% (see e.g. Teunter et al., 2010), leads to a better

solution in terms of costs. Figure 4 shows the fraction of total demand in this class using the best

target setting for different aggregate fill rate targets when there are three classes. We find that the

fraction of demand in this class is always close to the maximum allowed fraction of demand that

does not result in a forced presence of the SKUs. We clearly observe the jump in inventory costs

due to the forced presence of stock. Thus, for higher aggregate fill rate targets, the total fraction

of demand in this class should be smaller than for lower targets.

In Table 3 we present our findings when we would use the commonly used rule of thumb, as

suggested by Teunter et al. (2010), to divide the SKUs over the classes. We compare these findings

with the findings when we set the best class sizes. Based on our data, even if the target fill rates

are set optimally, but class sizes are not considered properly, huge cost differences are found, with
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Figure 4: Impact of different class sizes on investment costs for data set 1

costs over 300% higher than the optimal solution. This difference is mainly explained by the forced

presence of class C SKUs. However, we should note that the cost differences between SKUs play

an important role in the magnitude of the impact, which is common in the case of spare parts. If

there would be no cost difference, it would make less benefit to optimize the class size, but at the

same time there would be less benefit to differentiate parts as well. Moreover, if it is required to

have strictly positive basestock levels (so that all SKUs are really kept on stock), we do always

have forced presence of stock and thus setting the best class size would have less impact, although

gains should still be possible.

4.4 ABC classification target setting

In order to apply our approach, we make use of enumeration to determine the optimal target setting

for each class, as described in Section 3.4. Unfortunately, when the number of classes is increasing,

the run time is increasing exponentially; for the D/P classification with five classes and an aggre-
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Table 3: Inventory investment costs over optimal for data set 1 based on D/P classification

Number of classes
Target aggregate fill rate

80% 90% 97%

3 best 12 4 6

3 rule of thumb 180 22 302

4 best 9 2 3

4 rule of thumb 14 60 301

gate fill rate target of 90% the run times are around 45 minutes. Although these calculations are

not done on a regular basis, and thus may not have a big impact, companies may be interested

in sensitivity analysis to see how the total inventory investment costs change with respect to the

aggregate fill rate in order to set their goals. Therefore, we propose the greedy ABC algorithm to

set the target fill rates for each class based on getting the “biggest bang for the buck”. We increase

θk with a small step size, θstep, for the class where we get the biggest increase in aggregate fill rate

per euro invested. This ratio, Γk, is defined as the difference in aggregate fill rate after increasing

θk, divided by the difference in inventory investment costs. Because we do not have to calculate all

solutions for each class and use enumeration, this results in significantly reduced run times. The

greedy ABC algorithm is as follows:

The run-times using this algorithm are around 0.15 seconds when there are two classes and up

to around 980 seconds for six classes on a Pentium Intel(R) Core(TM) i5-2520M CPU with 4GB

memory. We find that savings in calculation time of around factor 20 are obtained for five classes,

and increasing for larger numbers of classes. The increase in costs compared to the optimal target

setting, over all different targets per class with more than three classes, is less than two percent

on average. Thus for a larger number of classes or a larger number of SKUs, the greedy ABC

algorithm can significantly speed up the calculation time of our approach whereas the cost increase

is limited.

5. Conclusions and suggestions for further research

In this paper we propose an approach on how to design a generalized ABC classification to minimize

the inventory investment costs by combining four different key aspects: Classification criteria,

number of classes, class sizes, target fill rates per class.

Using our structured approach on empirical data we show that it is possible to obtain a solution

within a few percent of the optimal solution by using D/P as classification criterion. We show that

this classification criteria captures the idea of the system approach very well, and that even though

the Demand and Price classification is commonly used in practice and gives decent results, especially

for one of the data sets, it is still outperformed by the D/P classification.

Another key insight is that it is of great importance to have the proper class sizes, as using

14



Algorithm 1 Greedy ABC algorithm

1. Set θk := 0 for all k ∈ K
Si = 0 for all i ∈ I
S = (S1, S2, . . . , S|I|)

Compute C(S) and β(S)

2. For all k ∈ K:

(a) For all i ∈ I:

If ki = k: vi = min
{
x|βi (x) ≥ θki + θstep, x ∈ N0

}
− Si

else, vi = 0

(b) vk = (v1, v2, . . . , v|I|)

Γk := (β(S + vk))− β(Sk))/(C(S + vk)− C(S))

3. m :=arg max{Γk : k ∈ K}
S := S + vk

θk :=min{βi(S) : i ∈ I, ki = k} for all k ∈ K

4. Compute C(S) and β(S);

If βk(S) ≥ βo, then stop, else go to 2

a rule of thumb as proposed by Teunter et al. (2010) leads to costs that are far from optimal,

with costs differences of over 280% compared to the optimal costs. This large difference is mainly

explained by the forced presence of stock of expensive and slow moving SKUs, although there are

also significant gains when there is no forced presence of stock. When using a simple rule of thumb,

it is important that the target aggregate fill rate is taken into consideration when determining the

class sizes.

We also propose a greedy ABC algorithm which significantly reduces run times, whereas the

cost increase of using this algorithm is only limited to a few percent on average. Although the

design of a classification is not something done often in practice, it does allow for fast sensitivity

analysis to support decision making using our approach.

For further research it may be interesting to find simple rules to determine proper class sizes

instead of enumeration, which may further reduce the run time of our approach. Moreover, we used

a basestock policy for each class to manage the inventory, whereas it might be interesting to apply

different policies for different classes. Especially if transport costs are involved for each order. By

including these costs and batching for one or more of the classes, it would be interesting to see

whether the D/P classification would still perform best. Note that although we did not investigate

this problem, our methodology can still be applied as the difference lies only in the evaluation of

the performance and costs. Another interesting point for further research is the target setting.

We assumed that each SKU at least has to meet the target for its class. However, it might be
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interesting to see how the performance of the different classifications would change if we would set

the basestock levels such that the difference with the target is minimized instead. This may also

reduce the impact of forced presence of stock as not all parts have to be stocked at once in this

case.
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