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Abstract

This paper considers the optimization of the base-stock level for the classical periodic review lost-sales inventory

system. The optimal policy for this system is not fully understood and computationally expensive to obtain.

Base-stock policies for this system are asymptotically optimal as lost-sales costs approach infinity, easy to

implement and prevalent in practice. Unfortunately, the state space needed to evaluate a base-stock policy

exactly grows exponentially in both the lead time and the base-stock level. We show that the dynamics

of this system can be aggregated into a one-dimensional state space description that grows linearly in the

base-stock level only by taking a non-traditional view of the dynamics. We provide asymptotics for the

transition probabilities within this single dimensional state space and show that these asymptotics have good

convergence properties that are independent of the lead time under mild conditions on the demand distribution.

Furthermore, we show that these asymptotics satisfy a certain flow conservation property. These results lead

to a new and computationally efficient heuristic to set base-stock levels in lost-sales systems. In a numerical

study we demonstrate that this approach performs better than existing heuristics with an average gap with

the best base-stock policy of 0.01% across a large test-bed.

Keywords: Lost sales, base-stock policies, asymptotic results

1. Introduction

This paper studies base-stock policies for the classical lost-sales inventory problem that has been studied

by Karlin and Scarf (1958), Morton (1969, 1971), van Donselaar et al. (1996), Johansen (2001), Janaki-

raman et al. (2007), Zipkin (2008a,b), Levi et al. (2008), Huh et al. (2009b), Goldberg et al. (2012),

Bijvank et al. (2014) and Xin and Goldberg (2014). This system consists of a periodically reviewed stock

point which faces stochastic i.i.d. demand. When demand in a period exceeds the on hand inventory,

∗corresponding author, e-mail: j.j.arts@tue.nl
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the excess is lost. Replenishment orders arrive after a lead time τ . At the end of each period, costs for

lost-sales and holding inventory are charged. For such systems, we are interested in minimizing the long

run average cost per period.

The structure of the optimal policy for lost-sales inventory systems with a positive replenishment lead

time is still not completely understood, and the computation of optimal policies suffers from the curse of

dimensionality as the state space is τ -dimensional. Goldberg et al. (2012) show that the policy to order

the same quantity each period is asymptotically optimal as τ approaches infinity and Xin and Goldberg

(2014) extend this result by showing that the optimality gap decays exponentially in τ . However, for

moderate values of τ as encountered in practice, it is difficult to find a good policy. The only policy with

a strict performance bound is the dual balancing policy proposed by Levi et al. (2008). This policy has a

cost of no more than twice the optimal costs. In a numerical study, Zipkin (2008a) shows that the dual

balancing policy is effective for low per unit lost-sales penalty costs, but that base-stock policies perform

better in general, especially for high penalty costs. Huh et al. (2009b) show that in fact, base-stock

policies are asymptotically optimal as the lost-sales penalty costs approach infinity. In fact, Bijvank et al.

(2014) show that a wide range of base-stock policies is asymptotically optimal as τ approaches infinity.

However, computing the best base-stock policy for a lost-sales inventory problem efficiently remains a

challenge. Huh et al. (2009a), p. 398, observe that: “Although base-stock policies have been shown

to perform reasonably well in lost-sales systems, finding the best base-stock policy, in general, cannot

be accomplished analytically and involves simulation optimization techniques”. Although the burden of

optimization is alleviated by the fact that the average cost under a base-stock policy is convex in the

base-stock level (Downs et al., 2001; Janakiraman and Roundy, 2004), evaluating the performance of any

given base-stock policy requires either value iteration or simulation.

This paper presents asymptotic results for lost-sales systems, as do Huh et al. (2009b) and Goldberg

et al. (2012), but contrary to their results, we do not focus on bounding the performance of a heuristic

policy with respect to an optimal policy (although we also include such results). In-stead, we study the

asymptotic dynamics of the base-stock policy for the classical lost-sales system.

We study these dynamics from a different perspective than has been done before. Our perspective

is based on a relation between lost-sales and dual sourcing inventory systems that has been shown by

Sheopuri et al. (2010), and results for dual sourcing inventory systems of Arts et al. (2011). Somewhat

counter-intuitively, our approach involves moving from a τ -dimensional state space description to a (τ+1)-

dimensional state space description, where τ is the order replenishment lead time. This (τ+1)-dimensional

state space is the pipeline of all outstanding orders, but not the on-hand inventory. The next key idea

to this approach is to aggregate this pipeline of outstanding orders into a single state variable. This is

essential to lending tractability as the size of the original state space grows exponentially in both the lead

time and the base-stock level. By contrast, the aggregated state space grows linearly in the base-stock

level only.

From the distribution of this single aggregated state variable, all relevant performance measures can
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be computed. The distribution of this single state variable can be studied via a Markov chain. For

the transition probabilities of this Markov chain, we derive asymptotic results and show that the rate of

convergence for these asymptotics is at least exponential regardless of the lead time under mild conditions

on the demand distribution. These mild conditions relate to the limiting behavior of the failure rate of

the demand distribution. To show that the rate of convergence is independent of the lead time, we prove

a new result on the limiting behavior of discrete failure rates of sums of random variables. We believe this

result can be useful outside the present context in problems where sums of independent random variables

and the failure rate play a role. Such is the case in many pricing, risk and reliability, and inventory

problems.

We also show that these limiting results satisfy a type of flow conservation property. This flow

conservation property relates the average size of an order entering or leaving the pipeline to the total

number of items in the pipeline.

Based on all these results, we propose a simple approximation for the performance of a base-stock

policy for lost-sales systems. This approximation requires the solution of S+1 linear equations, where S is

the base-stock level. Our numerical work indicates that this approximation is very accurate. Optimization

based on this approximation outperforms competing heuristics and has a cost difference with the best

base-stock policy of at most 1.3% and 0.01% on average across a wide test-bed.

This paper is organized as follows. The model and notation are described in §2. In §3, we analyze the

model by aggregating the state space, providing asymptotics for this aggregation. In 5 we study the rate of

convergence of these asymptotics, and shows that the heuristic we suggest is asymptotically optimal as the

lost sales penalty cost parameter approaches infinity under some mild distributional assumptions. In §6,

we define and study flow conservation properties of approximations and verify that our approximation has

this property. We consider a few small extensions in §7 and give numerical results for our approximation

in §8. Concluding remarks are provided in §9.

2. Model

We consider a periodic review single stage inventory system with a replenishment lead time of τ periods

(τ ∈ N0 = N ∪ {0}). Periods are numbered forward in time and demand in period t is denoted Dt and

{Dt}∞t=0 is a sequence of non-negative i.i.d. discrete random variables with 0 < E[Dt] < ∞. We let D

denote the generic single period demand random variable and we let D(k) denote demand over k periods.

We denote the order placed in period t by Qt and note that this order arrives in period t+τ . The pipeline

of orders is denoted Qt = (Qt, Qt−1, . . . , Qt−τ ). We let It denote the on-hand inventory at the beginning

of period t before Qt−τ arrives. The lost sales in period t are denoted by Lt = (Dt − It +Qt−τ )+, where

x+ = max(0, x). In each period, a holding cost of h per unit on-hand inventory before the arrival of an

order is incurred. Lost sales are penalized with p per lost sale. The system is operated by a base-stock

policy with base-stock level S ∈ N0. Thus, at the beginning of period t, an order is placed to raise the
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inventory position Yt (on-hand inventory plus all outstanding orders) up to the base-stock level S:

Qt = S − Yt, (1)

where

Yt = It +

t−1∑
k=t−τ

Qk, t ≥ 0. (2)

We assume without loss of generality that I0 ≤ S and Qt = 0 for t = −τ, . . . ,−1, so that Qt ≥ 0 for all

t ∈ N0. The random variable Qt depends on S; to stress this, we will sometimes use the notation Qt(S).

For each of the variables described, we use the subscript ∞ to denote a random variable in steady state;

for instance P(I∞ = x) = limt→∞ P(It = x). Some care needs to be taken to ensure steady state variables

do exist; Huh et al. (2009a, Theorem 3) prove that a sufficient condition for these steady state random

variables to be well defined is P(D ≤ S/(τ + 1)) > 0. Most discrete distributions commonly used, such

as Poisson, geometric, and (negative) binomial all satisfy this condition. Also any demand distribution

with P(D = 0) > 0 verifies this condition. Our objective will be to minimize the long run average cost

per period C(S) over the base-stock level S:

C(S) = pE[L∞] + hE[I∞]. (3)

We note that this description of the problem is slightly different from most descriptions in that we account

for holding costs at the beginning of a period before the order that is due in that period arrives, whereas

we account for lost sales at the end of a period. Obviously this convention does not change the long run

expected cost per period, but in the analysis, it will make the equations more transparent.

3. State space aggregation

The dynamics of It, Lt and Qt are given by

It+1 = (It +Qt−τ −Dt)
+, (4)

Lt = (Dt − It −Qt−τ )+, (5)

Qt+1 = Dt − Lt, (6)

where (x)+ = max{0, x}. Define the pipeline sum, At, as the sum of all outstanding orders at time t,

including the order that arrives in period t and the order that was placed in period t:

At =

t∑
k=t−τ

Qk = Qte
T, (7)

where e is the vector of all ones of length τ + 1. For the pipeline sum, we have the following result.

Lemma 3.1. The following equations hold for all t ≥ 0
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(a) At + It = S

(b) At+1 = min(S,At −Qt−τ +Dt)

Proof. For (a), we can simply write using (1) and (2)

At + It = Qt +
t−1∑

k=t−τ
Qk + It = S − Yt + Yt = S.

For (b), we have

At+1 = S − It+1 = S − (It +Qt−τ −Dt)
+ = S − (S −At +Qt−τ −Dt)

+ = min(S,At −Qt−τ +Dt),

where the first equality follows from part (a), the second by substituting Equation (4), the third applying

(a) again, and the final equality is easily verified by distinguishing the case (S − At + Qt−τ −Dt)
+ = 0

and (S −At +Qt−τ −Dt)
+ = S −At +Qt−τ −Dt.

Finding E[A∞] gives us all the information we need to evaluate C(S) because

E[I∞] = S − E[A∞] (8)

by Lemma 3.1 (a), and

E[L∞] = E[D∞]− E[Q∞] = E[D∞]− E[A∞]/(τ + 1) (9)

by using equations (7) and (5), and so

C(S) = −(h+ p/(τ + 1))E[A∞] + hS + pE[D∞]. (10)

Finally, we note that Lemma 3.1 (b) gives us the basis for a one-dimensional Markov chain for At from

which we can determine the distribution and mean of A∞. This Markov chain has transition probabilities

pij = P(At+1 = j|At = i) that can be found by conditioning:

pij =

{
limt→∞

∑j
k=0 P(Qt−τ = i+ k − j|At = i)P(Dt = k), if 0 ≤ j < S;

limt→∞
∑i

k=0 P(Qt−τ = k|At = i)P(Dt ≥ S + k − i), if j = S.
(11)

Unfortunately, to evaluate limt→∞ P(Qt−τ = i|At = j), we need to evaluate the (τ + 1)-dimensional

Markov chain Qt. That is,

lim
t→∞

P (Qt−τ = x|At = y) = lim
t→∞

∑
q|qτ+1=x∩qeT=y P(Qt = q)∑

q|qeT=y P(Qt = q)
. (12)

Thus, in this view of the problem, the dimension of the system just increased from τ -dimensional space

to (τ + 1)-dimensional space and so this task suffers from the curse of dimensionality even more than

finding optimal policies does. In fact, it can be shown that the state space of Qt grows exponentially in

both S and τ as
(
S+τ+1
S

)
. (For a derivation of this result, see §A.5.) However, in the limit that S →∞,

and S = 1, 0 we can characterize P(Qt−τ = i|At = j) and we pursue this in the next section.
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4. Asymptotics

In this section, we show that as S approaches infinity and all other parameters stay constant, that

P(Qt−τ = i|At = j)→ P
(
Dt−τ−1 = i

∣∣∣∑t−1
k=t−τ−1Dk = j

)
. (13)

Furthermore, for S = 0, 1, (13) holds with equality in the limit that t→∞. We use these results to find

an asymptotic approximation for C(S). To state our results, we need some additional notation. We let
P−→ denote convergence in probability.1

Theorem 4.1. The following holds for all t ≥ τ when everything is held constant except S:

(a) As S →∞, Qt+1
P−→ Dt

(b) As S →∞, P (Qt+1 = i)→ P (Dt = i).

(c) As S →∞, P (Qt−τ = i|At = j)→ P
(
Dt−τ−1 = i

∣∣∣∑t−1
k=t−τ−1Dk = j

)
.

(d) For S = 0 and S = 1 and i ≤ j ≤ S,

lim
t→∞

P(Qt−τ = i|At = j) = P
(
Dt−τ−1 = i

∣∣∣∑t−1
k=t−τ−1Dk = j

)
.

Proof. First note that, by Equation (6), Qt+1 ≤ Dt with probability 1 for all t ≥ 0. This implies in

particular that Qt+1 ≤st Dt, i.e., P(Qt+1 ≤ x) ≥ P(Dt ≤ x) (see Shaked and Shantikumar, 2007) and so

also

P(At ≤ x) ≥ P
(∑t−1

k=t−τ−1Dk ≤ x
)
. (14)

Second, we observe that Qt+1 = Dt if and only if Lt = 0 which, by Equations (5) and Lemma 3.1 (a), is

equivalent to the inequality

Dt ≤ S −At +Qt−τ . (15)

With this set up, we will now show that as S → ∞, Qt+1
P−→ Dt. Let δ ∈ (0, 1) and let Sδ satisfy

P(D(τ+2) ≤ Sδ) > 1− δ. (Such an Sδ <∞ exists because E[D] <∞ and so limx→∞ P
(
D(τ+2) ≤ x

)
= 1.)

Now for S ≥ Sδ, we have

P(|Dt −Qt+1| > 0) = P(Dt −Qt+1 > 0)

= 1− P(Dt = Qt+1)

= 1− P(Dt ≤ S −At +Qt−τ )

≤ 1− P(Dt +At ≤ S)

≤ 1− P
(
D(τ+2) ≤ S

)
< 1− (1− δ) = δ. (16)

1A sequence of random variables Xn is said to converge in probability to X (notation Xn
P−→ X) if limn→∞ P(|Xn−X| ≥

ε) = 0 for all ε > 0.
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The first equality holds because Dt ≥ Qt+1 with probability one. The second equality holds because Dt

and Qt+1 are discrete random variables. The third equality holds because, as observed above, Qt+1 = Dt

if and only if (15) holds. The second inequality follows by substituting (14), and the final inequality

follows from the fact that S > Sδ. This convergence in probability implies also the convergence in

distribution asserted in part (b): In the limit that S approaches infinity, Qt+1
d
=Dt for all t > τ where

d
= denotes equality in distribution.

Part (c) now follows from part (b).

For part (d), the case S = 0 is trivial. Consider the case S = 1. For the condition At = 0, the result

is again trivial. For the condition At = 1, we know that at time t, Qk = 1 for exactly one k ∈ {t− τ, ..., t}
and 0 otherwise, because At ≤ S. Thus, the state space of the pipeline Qt, consists of the zero vector 0

and the unit vectors ei, for i = 1, · · · , τ , where ei corresponds to the state that Qt+1−i = 1 and Qk = 0

if k 6= t+ 1− i and 0 corresponds to an empty pipeline. The transition probabilities of Qt are given by:

P(Qt+1 = x|Q = y) =


P(D = 0), if x = 0 and y ∈ {0, eτ+1};
P(D > 0), if x = e1 and y ∈ {0, eτ+1};
1, if x = ei+1 and y = ei for i ∈ {1, . . . , τ};
0, otherwise.

(17)

It is easily verified that the stationary distribution of Qt exists and satisfies P(Q∞ = ei) = P(Q∞ = ei+1)

for i = 1, . . . , τ . From this, it follows using (12) that limt→∞ P(Qt−τ = 1|At = j) = 1
τ+1 , and P(Qt−τ =

0|At = j) = τ
τ+1 . Now, we find

P
(
Dt−τ−1 = 1

∣∣∣∑t−1
k=t−τ−1Dk = 1

)
=

P (D = 1)P
(
D(τ) = 0

)
P
(
D(τ+1) = 1

) =
P (D = 1)P (D = 0)τ

(τ + 1)P(D = 1)P (D = 0)τ
= 1/(τ + 1).

The complement then equals τ/(τ + 1).

To state our next result, we let Ã∞ denote the random variable that results from approximating

P(At+1 = j|At = i) with limiting results in Theorem 4.1, i.e., P
(
Ã∞ = x

)
= π̃(x) where π̃(x) solves the

set of linear equations

π̃(j) =
S∑
i=0

π̃(i)p̃ij , j = 0, . . . , S − 1,
S∑
i=0

π̃(i) = 1, (18)

with

p̃ij =


∑j

k=0 P
(
Dt−τ−1 = i+ k − j

∣∣∣∑t−1
k=t−τ−1Dk = i

)
P(Dt = k), if j < S;∑i

k=0 P
(
Dt−τ−1 = k

∣∣∣∑t−1
k=t−τ−1Dk = i

)
P(Dt ≥ S + k − i), if j = S.

(19)

Furthermore, we let

C̃(S) = −(h+ p/(τ + 1))E[Ã∞] + hS + pE [D∞] ,

and Ĩ∞ = S − Ã∞ so that P(Ĩ∞ = x) = π̃(S − x) (by Lemma 3.1 (a)).
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Theorem 4.2. If P(D ≤ S/(τ + 1)) > 0, then as S →∞,

(a) p̃ij −→ pij,

(b) π̃(x) −→ P(A∞ = x),

(c) E
[
Ã∞

]
−→ E [A∞] ,

(d) C̃(S)− C(S) −→ 0.

Furthermore we have that C̃(1) = C(1) and if τ = 0, then C̃(S) = C(S) for all S ∈ N0.

Proof. Part (a) follows directly from Theorem 4.1 (c). From Huh et al. (2009a) Theorem 3, we know

that under the condition P(D ≤ S/(τ + 1)) > 0, A∞ is well defined. Consequently, P(A∞ = x), E[A∞]

and C(S) can all be computed using only O(S3) algebraic manipulations on limt→∞ P(Qt−τ = i|At = j).

Since limits are preserved under such manipulations, we obtain (b)-(d). That C̃(1) = C(1) follows from

Theorem 4.1 (d), and C̃(S) = C(S) if τ = 0 follows from observing that At is one-dimensional in this

case and so Ãt = At with probability one.

Even for rather small S, the distributions of I∞ and A∞ are very well approximated by the distri-

butions of Ĩ∞ and Ã∞. Figure 1 illustrates this for I∞ by showing the distribution of I∞ as determined

by simulation in conjunction with the distribution of Ĩ∞. The same also holds for C̃(S) compared with

C(S) as shown in Figure 2. In §8, we report a more elaborate numerical study that shows that the

approximations obtained are indeed very good across a much wider range of instances.

We conclude this section by remarking that the results above can be used to efficiently find good

base-stock levels for lost-sales systems. From Downs et al. (2001), we know that C(S) is convex in S, so a

simple heuristic to find a good base-stock level is simply to perform a golden section search (or any other

algorithm of choice) on C̃(S) with the upper bound SUB and lower bound SLB on S given by Theorem

4 of of Huh et al. (2009b):

SUB = inf

{
y : P

(
D(τ+1) ≤ y

)
≥ p+ hτ

p+ h(τ + 1)

}
, (20)

SLB = inf

{
y : P

(
D(τ+1) ≤ y

)
≥ p− h(τ + 1)

p+ h(τ + 1)

}
.

We call this heuristic the ASYMP-heuristic because it is based on asymptotic results. In the numerical

section, we explore this and find that this heuristic is both accurate and fast.

5. Rates of convergence

In this section, we show that the asymptotics of the previous section have very good convergence properties

under mild conditions on the demand distribution. To state our results, we introduce the hazard rate of
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Figure 1: The distributions I∞ as determined by simulation and of Ĩ∞ as determined by solving (18) for a lost-sales system with

lead time τ = 4 facing Geometric demand with mean 5 and base-stock levels of 10, 20, 30 and 40 in (a)-(d) respectively.
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demand over k periods as

H(k)(x) = P
(
D(k) = x

∣∣∣D(k) ≥ x
)

=
P
(
D(k) = x

)
P
(
D(k) ≥ x

) .
We start by presenting the following lemma and proposition that relates the limit of hazard rates of

sums of random variables to the limits of the hazard rates of individual random variables. We believe

this proposition can be useful in different applications.

Lemma 5.1. Let X be a non-negative discrete random variable on the integers. Then

H(n) = P(X = n|X ≥ n)→ r

as n→∞ if and only if for any m ∈ N0

P(X > n+m)

P(X > n)
→ (1− r)m

as n→∞.

The proof of this Lemma is in the appendix.

Proposition 5.2. Let X and Y be independent discrete random variables on the integers such that

P(X = n|X ≥ n)→ r and P(Y = n|Y ≥ n)→ s as n→∞. Then P(X +Y = n|X +Y ≥ n)→ min{r, s}
as n→∞.

Proof. Without loss of generality, assume r ≤ s. We distinguish the following three cases: r = 1, r < s ≤ 1

and r = s < 1. For the proof of the last two cases we use an approach similar to that of Embrechts and

Goldie (1980) for a closely related property of continuous random variables.

Case r = 1: Pick ε > 0 and let M be such that P(X = i) ≥ (1 − ε)P(X ≥ i) for i ≥ M and let

n > 2M . (Such an M exists because r = 1.) Then we have

P(X + Y = n) ≥ P(X + Y = n ∩X ≥M) =
∑n

i=M P(X = i)P(Y = n− i)
≥ (1− ε)∑n

i=M P(X ≥ i)P(Y = n− i)
= (1− ε)P(X + Y ≥ n ∩ Y ≤ n−M)

= (1− ε) [P(X + Y ≥ n)− P(X + Y ≥ n ∩ Y > n−M)]

≥ (1− ε) [P(X + Y ≥ n)− P(Y > n−M)] .

The second inequality follows from our choice of M . Dividing the last result by P(X + Y ≥ n) yields

1 ≥ P(X + Y = n)

P(X + Y ≥ n)
≥ (1− ε)

[
1− P(Y > n−M)

P(X + Y ≥ n)

]
. (21)

Therefore it suffices to show that P(Y > n−M)/P(X + Y ≥ n)→ 0 as n→∞. Observe that

P(X + Y ≥ n) ≥ P(X + Y ≥ n ∩X ≤M + 1) ≥ P(Y ≥ n−M − 1)P(X ≤M + 1). (22)
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Therefore

P(Y > n−M)

P(X + Y ≥ n)
≤ P(Y > n−M)

P(Y ≥ n−M − 1)P(X ≤M + 1)
=

1− P(Y = n−M − 1|Y ≥ n−M − 1)

P(X ≤M + 1)
→ 0.

(23)

The last term converges to 0 because P(Y = n−M − 1|Y ≥ n−M − 1)→ s = 1 by assumption.

Case r < s ≤ 1: By Lemma 5.1 we know that

P(X > n+m)

P(X > n)
→ (1− r)m, P(Y > n+m)

P(Y > n)
→ (1− s)m,

as n → ∞ along the integers, for every m ∈ N. This should be compared with the class of distributions

called L(γ), for γ ≥ 0. A random variable U is a member of L(γ) if

P(U > x+ y)

P(U > x)
→ e−γy

as x→∞ (not necessarily along the integers) for all y > 0. Theorem 3 of Embrechts and Goldie (1980)

essentially states that if U ∈ L(γ) and V ∈ L(δ), then U + V ∈ L(min{γ, δ}). Since we consider discrete

random variables, X is not a member of the class L(− ln(1− r)), so Theorem 3 of Embrechts and Goldie

(1980) does not apply directly. However, we pursue a similar line of proof for this and the next case.

Observe that

0 ≤ P(X + Y > n ∩ Y > n−m)

P(X + Y > n ∩ Y ≤ n−m)

≤ P(Y > n−m)

P(X > n ∩ Y ≤ n−m)

=
P(Y > n−m)

P(X > n−m)
· P(X > n−m)

P(X > n)
· P(X > n)

P(X > n)P(Y ≤ n−m)
→ 0 · (1− r)−m · 1 = 0. (24)

The last step follows from the following three observations: (1) P(Y >n−m)
P(X>n−m) → 0 because r < s by as-

sumption; (2) P(X>n−m)
P(X>n) → (1− r)−m by an application of Lemma 5.1; (3) P(X>n)

P(X>n)P(Y≤n−m) = 1/P(Y ≤
n−m)→ 1. The above implies that

P(X + Y > n)

P(X + Y > n ∩ Y ≤ n−m)
=

P(X + Y > n ∩ Y ≥ n−m) + P(X + Y > n ∩ Y > n−m)

P(X + Y > n ∩ Y ≤ n−m)
→ 1. (25)

Let f(n) ∼ g(n) denote limn→∞ f(n)/g(n) = 1. Then (25) can be rewritten as

P(X + Y > n) ∼
n−m∑
k=0

P(X > n− k)P(Y = k), (26)

by observing that P(X + Y > n ∩ Y ≤ n−m) =
∑n−m

k=0 P(X > n− k)P(Y = k). Replacing m by m− l
and n by n− l in (26) we also have that

P(X + Y > n− l) ∼
n−m∑
k=0

P(X > n− k − l)
P(X > n− k)

P(X > n− k)P(Y = k). (27)
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Now define MX(j, l) = supn≥j{P(X > n− l)/P(X > n)} and mX(j, l) = infn≥j{P(X > n− l)/P(X > n)}.
Then the right hand side of (27) is bounded as follows:

mX(n, l)
n−m∑
k=0

P(X > n− k)P(Y = k) ≤
n−m∑
k=0

P(X > n− k − l)
P(X > n− k)

P(X > n− k)P(Y = k)

≤MX(n, l)
n−m∑
k=0

P(X > n− k)P(Y = k). (28)

Now since limn→∞mX(n, l) = limn→∞MX(n, l) = (1− r)−l by Lemma 5.1, we obtain from (27) and (26)

respectively that

P(X + Y > n− l) ∼ (1− r)−l
n−m∑
k=0

P(X > n− k)P(Y = k) ∼ (1− r)−lP(X + Y > n). (29)

A last application of Lemma 5.1 completes the proof for this case.

Case r = s < 1: Observe first that for any k > 0 we have that

P(X + Y > n) = P(X + Y > n ∩ Y ≤ n− k) + P(X + Y > n ∩X ≤ k) + P(X > k)P(Y > n− k). (30)

Define mY and MY similarly as mX and MX . Now for any k > 0

P(X + Y > n− l) =
n−k∑
i=0

P(X > n− i− l)
P(X > n− i) P(X > n− i)P(Y = i)+

k−l∑
i=0

P(Y > n− i− l)
P(Y > n− i) P(Y > n− i)P(X = i)+

P(X > k − l)
P(X > k)

P(X > k)P(Y > n− k)

≤MX(k, l)
n−k∑
i=0

P(X > n− i)P(Y = i)+

MY (n− k + l, l)
k−l∑
i=0

P(Y > n− i)P(X = i) +MX(k, l)P(X > k)P(Y > n− k)

= MX(k, l)P(X + Y > n ∩ Y ≤ n− k)+

MY (n− k + l, l)P(X + Y > n ∩X ≤ k − l)+
MX(k, l)P(X + Y > n ∩X > k ∩ Y > n− k)

≤ max{MX(k, l),MY (n− k + l, l)}P(X + Y > n). (31)

Thus we have that

lim sup
n→∞

P(X + Y > n− l)
P(X + Y > n)

≤ lim sup
n→∞

max{MX(k, l),MY (n− k + l, l)} = max{MX(k, l), (1− r)−l}
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for every k ∈ N0. Now let k →∞ to conclude that

lim sup
n→∞

P(X + Y > n− l)
P(X + Y > n)

≤ (1− r)−l. (32)

For a lower bound on P(X + Y > n− l) we can write similarly

P(X + Y ) =

n−k∑
i=0

P(X > n− i− l)
P(X > n− i) P(X > n− i)P(Y = i)

+
k−l∑
i=0

P(Y > n− i− l)
P(Y > n− i) P)Y > n− i)P(X = i)

+
P (X > k − l)
P(X > k)

P(X > k)P(Y > n− k)

≥ mX(k, l)

n−k∑
i=0

P(X > n− i)P(Y = i)+

mY (n− k + l, l)

k−l∑
i=0

P(Y > n− i)P(X = i) +mX(k, l)P(X > k)P(Y > n− k)

≥ max{mX(k, l),mY (n− k + l, l)}P(X + Y > n).

Now similarly we have that

lim inf
n→∞

P(X + Y > n− l)
P(X + Y > n)

≥ lim inf
n→∞

max{mX(k, l),mY (n− k + l, l)} = max{mX(k, l), (1− r)−l}

for all k ∈ N. Let k →∞ to conclude that

lim inf
n→∞

P(X + Y > n− l)
P(X + Y > n)

≥ (1− r)−l. (33)

Combining (32) and (33) and applying Lemma 5.1 completes the proof.

Oddly, the hazard rate properties of common discrete random variables are not found in standard lit-

erature. For the most commonly used demand models, namely Poisson, geometric, and negative binomial,

we summarize results in Proposition 5.3.

Proposition 5.3. If D is a Poisson distributed random variable, then P(D = n|D ≥ n) → 1 as n →
∞. Furthermore, if D is a negative binomially (geometrically) distributed random variable with success

probability p and r required successes, then P(D = n|D ≥ n)→ p as n→∞.

The proof of this proposition is in the appendix. With these results, we now turn to the rate of

convergence of the limits in §4.

Theorem 5.4. If limn→∞ P(D = n|D ≥ n) = 1− θ ∈ (0, 1), then Qt+1 converges to Dt in probability at

least exponentially in S for any lead time τ , i.e., for any ε ∈ (0, 1− θ),

P(Dt −Qt+1(S) > 0) ≤ O
(
(θ + ε)S

)
.
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Furthermore, if limn→∞ P(D = n|n ≥ n) = 1, Qt+1 converges to Dt in probability super-exponentially in

S, i.e., for any ε ∈ (0, 1),

P(Dt −Qt+1(S) > 0) ≤ O
(
εS
)
.

Proof. From (16), we know that P(Dt − Qt+1(S) > 0) ≤ P(D(τ+2) > S). Suppose that limn→∞ P(D =

n|D ≥ n) = 1 − θ ∈ (0, 1). By Proposition 5.2, we have that limx→∞H
(τ+2)(x) = 1 − θ ∈ (0, 1). This

implies that for any ε ∈ (0, θ), we can choose an N ∈ N such that for all x > N , Hτ+2(x) > 1 − θ − ε.
Now fix C > 0 such that

P(D(τ+2) > S) ≤ C(θ + ε)S (34)

for all S ≤ N . Next observe that for S ≥ N

P
(
D(τ+2) > S + 1

)
P
(
D(τ+2) > S

) =
P
(
D(τ+2) > S

)
− P

(
D(τ+2) = S + 1

)
P
(
D(τ+2) > S

) = 1−H(τ+2)(S + 1) ≤ θ + ε. (35)

Now we proceed by induction to show that P(D(τ+2) > S) ≤ C(θ + ε)S for all S ∈ N. We have already

verified the induction hypothesis that P(Dτ+2 > S) ≤ C(θ+ε)S for all S ≤ N . Suppose it holds for some

S ≥ N and consider S + 1:

P
(
D(τ+2) > S + 1

)
=

P
(
D(τ+2) > S + 1

)
P
(
D(τ+2) > S

) P
(
D(τ+2) > S

)
≤ (θ + ε)P

(
D(τ+2) > S

)
≤ (θ + ε)C(θ + ε)S = C(θ + ε)S+1.

The first inequality holds by using (35) and the second follows from the induction hypothesis.

The second part of the proof follows an analogous argument where θ = 0, and so we omit it.

The results in Theorem 5.4 carry over to the rate of convergence for the limits in Theorem 4.1.

Theorem 5.5. If limn→∞ P(D = n|D ≥ n) = 1− θ ∈ (0, 1], Ã∞ converges in distribution to A∞ at least

exponentially fast in S regardless of the lead time τ , i.e. for any ε > 0 the following hold:

P(A∞ = x) = π̃(x) +O
(
(θ + ε)S

)
,

E [A∞] = E[Ã∞] +O
(
(θ + ε)S

)
,

C(S) = C̃(S) +O
(
(θ + ε)S

)
.

The proof of Theorem 5.5 is in §A.3.

Corollary 5.6. If D has a Poisson distribution, then for any ε > 0, it holds that P(A∞ = x) =

π̃(x) + O
(
εS
)
, E [A∞] = E[Ã∞] + O

(
εS
)
, and C(S) = C̃(S) + O

(
εS
)
. If D has a negative binomial

distribution with success probability p, then for any ε > 0, it holds that P(A∞ = x) = π̃(x)+O
(
(p+ ε)S

)
,

E [A∞] = E[Ã∞] +O
(
(p+ ε)S

)
, and C(S) = C̃(S) +O

(
(p+ ε)S

)
.
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Since the random variable D is heavy-tailed if and only if, limn→∞ P(D = n|D ≥ n) = 0 (Foss et al.,

2011), we have no results on the rate of convergence for heavy-tailed demand distributions. However, in

the numerical section we also test our approximation for the heavy-tailed generalized Pareto distribution

and find that also here the approximation performs very well.

We close this Section with an asymptotic optimality result of the heuristic we proposed in §4. We

defined the ASYMP heuristic as the heuristic whose base-stock level is given by

SASYMP = argminS∈{SLB ,...,SUB} C̃(S), (36)

with SLB and SUB given by 54. The optimal base-stock level is denoted S∗ = argminS∈{SLB ,...,SUB}C(S).

Theorem 5.7. If limn→∞ P(D = n | D ≥ n) = 1− θ ∈ (0, 1), then

lim
p→∞

C(SLB)

C(S∗)
= lim

p→∞

C(SUB)

C(S∗)
= lim

p→∞

C(SASYMP )

C(S∗)
= 1.

The proof of this theorem is in the appendix.

6. Internal consistency: flow conservation

Our approximation relies on aggregating a pipeline of orders into a single state variable. Because At is

originally a pipeline of orders, everything that goes in has to come out. Furthermore, everything that

goes in, stays there for τ + 1 periods. Thus by Little’s law, we must have that

(τ + 1)E[Q∞] = E[A∞]. (37)

Alternatively, we might observe that At =
∑t

k=t−τ Qk also directly implies (37). In this light, we may

think of (37) as expressing flow conservation: Since At contains τ + 1 order quantities, on average the

outgoing order should equal the total number of items in the pipeline divided by the length of the

pipeline. Thus, an attractive property of any approximation of At is that it also satisfies (37) in some

way. Let us make this more precise. Via (11), an approximation of limt→∞ P(Qt−τ = x|At = y) induces

an approximate Markov chain for At. Let us denote the Markov chain induced by such an approximation

Ât, and let us denote the approximation for limt→∞ P(Qt−τ = x|At = y) by P(Q̂t−τ = x|Ât = y). Now

under this approximation, the outgoing order has long run mean

E
[
Q̂∞

]
=

S∑
y=0

E
[
Q̂t−τ

∣∣∣Ât = y
]
P
(
Â∞ = y

)
.

The next Proposition identifies a large class of approximations P(Q̂t−τ = x|Â = y) that leads to an

approximate chain Ât that satisfies (τ + 1)E
[
Q̂∞

]
= E

[
Â∞

]
.

Definition 1. A Markov chain Ât induced by replacing limt→∞ P(Qt−τ = x|At = y) with some approxi-

mation P(Q̂t−τ = x|Ât = y) in the transition probabilities (11) is called internally consistent if it satisfies

(τ + 1)E
[
Q̂∞

]
= E

[
Â∞

]
.
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With Definition 1 in place, we can state the main result of this Section.

Proposition 6.1. Any Markov chain Ât on 0, . . . , S with transition probabilities p̂ij = P(Ât+1 = j|Ât = i)

such that

p̂ij =


∑j

k=0 P
(
Q̂t−τ = i+ k − j

∣∣∣Ât = i
)
P(Dt = k), if 0 ≤ j < S;∑i

k=0 P
(
Q̂t−τ = k

∣∣∣Ât = i
)
P(Dt ≥ S + k − i), if j = S;

(38)

is internally consistent if

P
(
Q̂ = x

∣∣∣Â = y
)

= P
(
Xt−τ = x

∣∣∑t
k=t−τ Xk = y

)
for some integer valued non-negative i.i.d. sequence of random variables Xt.

Proof. First observe that
∑y

x=0 P
(
Xt−τ = x

∣∣∑t
k=t−τ Xk = y

)
= 1 and so Ât is a Markov chain indeed.

Now we establish that (τ + 1)E
[
Q̂∞

]
= E

[
Â∞

]
. Because

E
[
Xn

∣∣∑t
k=t−τ Xk = y

]
= E

[
Xn+1

∣∣∑t
k=t−τ Xk = y

]
for any n ∈ {t− τ, . . . , t− 1} and

t∑
n=t−τ

E
[
Xn

∣∣∑t
k=t−τ Xk = y

]
= y,

we have that

E
[
Xn

∣∣∑t
k=t−τ Xk = y

]
= y/(τ + 1). (39)

Now for E
[
Q̂∞

]
we find

E
[
Q̂∞

]
=

S∑
y=0

E
[
Xt−τ

∣∣∑t
k=t−τ Xk = y

]
P
(
Â∞ = y

)
=

S∑
y=0

y/(τ + 1)P
(
Â∞ = y

)
= E

[
Â∞

]
/(τ + 1).

The second equality holds by substituting (39).

Of all possible choices for Xt in Proposition 6.1, Dt is of course the most obvious because of Theorems

4.1 and 4.2.

Corollary 6.2. Ãt is internally consistent.

Proof. This follows from Proposition 6.1 and the assumption that Dt is a series of i.i.d. discrete non-

negative random variables.

7. Extensions

The results in the previous sections can be used for several variations of lost-sales inventory models.

Below we discuss two such extensions.
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7.1 General single period cost functions

Our results give approximations, not only for the moments of I∞ and L∞, but also for their entire

distribution. Thus, a cost function that is not necessarily linear in It and Lt can also be accommodated.

To see how the distribution of L∞ and I∞ can be approximated by the given results, note that by

Lemma 3.1 P(I∞ = x) = P(A∞ = S − x) and using Theorem 4.2, this can be approximated by π̃(S − x).

Furthermore, for the distribution of Lt we have for x > 0

P(Lt = x) = P
(
(Dt − It −Qt−τ )+ = x

)
=

S∑
y=0

P (Dt = x+ y +Qt−τ |At = S − y)P(It = y)

=

S∑
y=0

S−y∑
z=0

P(Dt = x+ y + z)P(It = y)P (Qt−τ = z|At = S − y) . (40)

Now letting t → ∞ in (40) and using the limit results in Theorems 4.1 and 4.2 to approximate, we find

(again for x > 0):

P(L∞ = x) =

S∑
y=0

S−y∑
z=0

P(Dt = x+ y + z)π̃(S − y)P
(
Dt−τ−1 = z

∣∣∣∑t−1
k=t−τ−1Dk = S − y

)
.

7.2 Service level constraints

Suppose that we would like to minimize inventory holding cost while retaining the fillrate (fraction of

demand not lost) above a target level β ∈ [0, 1). If we choose to control this system by a base-stock

policy, the objective now becomes to minimize S such that βE[D] ≤ E[A∞]/(τ + 1). An approximate

solution to this problem can be found by approximating E[A∞] by E
[
Ã∞

]
.

The out-of-stock probability at the end of period, P(I∞ = 0) can be approximated by P(Ĩinfty = 0).

Again, under a base-stock policy, this can be used to minimize inventory holding costs subject to an

out-of-stock probability constraint.

8. Numerical results

In this section, we test the ASYMP-heuristic numerically by comparing it to the performance of the best

base-stock policy and several other heuristics for setting base-stock levels in lost-sales inventory systems.

We describe our sets of test instances and set-up in §8.1 and several heuristics in 8.2. In §8.3 we report

our numerical results.

8.1 Test instances and set-up

We use and extend the test bed of Huh et al. (2009b) which is an extension of the test bed of Zipkin

(2008a). (Note that the papers of Zipkin (2008a) and Huh et al. (2009b) also report the performance of the
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globally optimal replenishment policy.) The first and second set of instances in this test bed have Poisson

and Geometric demand distributions respectively, both with mean 5 and lead times τ ∈ {1, 2, 3, 4}. The

holding cost is kept constant at h = 1 while the penalty costs p ∈ {1, 4, 9, 19, 49, 99, 199}.
The third set of test instances have Poisson demand with means ranging from 1 to 10. Holding cost

is kept constant at h = 1, p ∈ {1, 4, 9, 14, 49, 99, 199} and τ ∈ {2, 4}. This set extends the set of Huh

et al. (2009b) by including τ = 4.

The fourth set of instances has negative binomial demand with r ∈ {1, 2} required successes and

success probability q ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. The other parameters are as in the third set. (So here too,

we add instances with τ = 4.)

Finally we added a fifth set of instances with heavy-tailed discretized generalized Pareto demand.

Appendix B provides some details of the discretized generalized Pareto distribution. We use two distri-

bution settings, one with shape parameter k = 0.1 and scale parameter σ = 5 and another with shape

parameter k = 0.4 and scale parameter σ = 10. We again fix h = 1, let p ∈ {1, 4, 9, 19, 49, 99, 199} and

let τ ∈ {1, 2, 3, 4}.
We compute the best base-stock levels via simulation with common random number across different

base-stock levels. The results of Janakiraman and Roundy (2004) ensure that the cost function under

this procedure is convex. The runlength of the simulations was set such that the halfwidth of a 99%

confidence interval was less than 1% of the point estimate of the total costs. The actual performance of

different heuristics is also evaluated using simulation with the same (common) random numbers.

8.2 Heuristics

The first heuristic we consider has been suggested by Huh et al. (2009b) and is asymptotically optimal

as p → ∞ under mild conditions on the demand distribution. The heuristic is to select the base-stock

level that minimizes cost for an analogous backorder system with p + τh as the cost per backorder per

period. The resulting base-stock level is denoted SHS and is the solution to a news vendor problem:

SHS = inf

{
y : P

(
D(τ+1) ≤ y

)
≥ p+ τh

p+ (τ + 1)h

}
.

We call this heuristic the HS-heuristic. (HS stands for Huh et al. (2009b) Simple heuristic.)

Huh et al. (2009b) observe that the HS-heuristic performs quite poorly and so they suggest an im-

proved heuristic that is also asymptotically optimal (as p → ∞) and based on solving news vendor

problems. This improved heuristic has base-stock level SHA that satisfies

SHA =
p

p+ h
inf

{
y : P

(
D(τ+1) ≤ y

)
≥ p

p+ h

}
+

h

p+ h
inf

{
y : P (D ≤ y) ≥ p

p+ h

}
.

We call this heuristic the HA-heuristic. (HA stands for Huh et al. (2009b) Advanced heuristic.)

Finally we will consider an adaptation of a heuristic suggested by Bijvank and Johansen (2012), which

we will denote ABJ-heuristic. The original heuristic was designed for a setting with fractional lead times,
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Table 1: Average and maximum gaps with the best base-stock policy and hitrates for different heuristics for setting base-stock

levels.

Average GAP (%) Maximum GAP (%) Hitrate (%)

Demand distribution HS HA ABJ ASYMP HS HA ABJ ASYMP HS HA ABJ ASYMP

Poisson mean 5 19.99 1.14 0.39 0.04 156.72 5.59 1.88 1.01 14 46 57 89

Geometric mean 5 30.67 4.61 0.00 0.00 232.25 11.22 0.02 0.00 0 0 86 100

Negative Binomial 35.71 5.28 0.01 0.00 278.13 28.21 0.13 0.17 0 0 85 92

Poisson mean 1-10 24.83 2.57 0.37 0.02 181.45 25.40 2.12 1.30 5 24 53 94

Generalized Pareto 39.23 9.05 0.00 0.00 304.58 23.32 0.07 0.04 0 0 66 73

Lead time (τ)

1 8.87 1.71 0.11 0.04 48.17 4.38 1.88 1.01 11 25 79 89

2 19.95 3.02 0.14 0.02 125.17 18.99 2.03 1.30 4 18 73 93

3 40.06 7.47 0.06 0.00 208.70 17.55 1.13 0.04 4 4 75 75

4 43.86 5.96 0.21 0.00 304.58 28.21 2.12 0.15 0 5 62 91

Penalty cost (p)

1 138.56 6.64 0.12 0.00 304.58 28.21 1.21 0.11 0 7 71 95

4 37.44 5.03 0.03 0.00 90.81 19.93 0.45 0.24 0 23 84 93

9 18.00 4.92 0.11 0.02 52.28 23.32 1.61 1.01 0 16 75 91

19 9.68 4.67 0.17 0.04 35.67 23.18 1.33 1.30 0 14 70 86

49 5.57 4.08 0.28 0.00 27.15 22.88 2.03 0.15 4 7 57 95

99 3.74 3.40 0.28 0.00 24.72 22.68 1.88 0.08 7 7 59 88

199 2.90 2.81 0.15 0.00 23.82 22.94 2.12 0.06 9 9 66 88

Total

30.84 4.51 0.16 0.01 304.58 28.21 2.12 1.30 3 12 69 91

compound Poisson demand and holding costs that are accrued continuously over time rather than at the

end of a period. However, the ideas behind their heuristic can be adapted to the present setting. The idea

is to apply a correction factor to an analogous backlogging system to satisfy a property that resembles

flow conservation. We provide a complete derivation for the present setting in Appendix C. In short, the

ABJ-heuristic chooses the base-stock level SABJ as

SABJ = argminS∈N0

hc(S)E
[(
S −D(τ+1)

)+]
+ p

E[D]−
S − c(S)E

[(
S −D(τ+1)

)+]
τ + 1

 , (41)

where c(S) is a function of S given by:

c =
S

(τ + 1)
(
E
[(
S −D(τ)

)+]− E
[(
S −D(τ+1)

)+])
+ E

[(
S −D(τ+1)

)+] .
Finally of course, there is the ASYMP-heuristic that we developed in §4. The ASYMP-heuristic has

base-stock level SASYMP = argminS∈{SLB ,...,SUB} C̃(S).
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8.3 Results

In this section, we present aggregated results about the gap with the best base-stock level and the

hitrate: the percentage of instances in which a heuristic finds the best base-stock level. Arts (2013)

provides details per instance in a style similar to that of Zipkin (2008a) and Huh et al. (2009b). Here we

provide aggregate results in Table 1 for the average and maximum gap with the best base-stock policy

and the hitrate. These results have been aggregated over the different types of demand distributions,

lead times and lost-sales penalty costs.

First of all, the results show that the ASYMP-heuristic is very effective and outperforms all the other

heuristics with a considerable margin. The average and maximum gap with the best base-stock level are

0.01% and 1.30% respectively and in 91% of instances, the ASYMP-heuristic found the best base-stock

level. The worst case performance is for the instance with τ = 2, p = 19 and Poisson demand with a

mean of 2 per period. This is evidence that the impression given by Figures 1 and 2 holds across a very

wide range of instances.

The performance of the other heuristics all degrade with lead time and improve with the penalty

costs. All these heuristics are based on somehow adapting results for systems with backorders to systems

with lost-sales, which explains why this happens. By contrast, the ASYMP-heuristic is not based on

somehow correcting a backlogging model and so it does not suffer from the same drawbacks.

It is perhaps striking that the ASYMP-heuristic performs better for negative binomial (geometric

included) and generalized Pareto demand than it does for Poisson demand, even though the theoretical

convergence properties are stronger for Poisson demand; see Proposition 5.3 and Theorem 5.4. A plausible

explanation for this is that for finite S, internal consistency as outlined in §6 is more instrumental in

the quality of our approximation than the asymptotic results in §4. Since the ABJ-heuristic is based on

correcting a backlogging model to satisfy a property that closely resembles flow conservation, this also

explains why the ABJ-heuristic performs better than the HS and HA-heuristics.

We do see that the hitrate deteriorates significantly as p increases for all heuristics. This is because

the best base-stock level increases with p and so the exact optimum is easier to miss.

In closing, we comment on computation times. Evaluating the best base-stock policy using value

iteration is almost as difficult as determining the optimal policy. Bijvank and Johansen (2012) use a

value iteration algorithm in a very similar setting and report computation times of several minutes op

to several hours. We already observed that the state space required to evaluate the performance of a

base-stock policy grows exponentially in both S and τ . By contrast, the state space of needed to evaluate

C̃(S) is linear in S only.

We determined the optimal base-stock levels with simulation and found computation times of several

minutes to be the norm on a machine with 2.4 GHz Intel processor and 4GB of RAM. By contrast, all

the heuristics have computation times of less than 0.01 second for all instances on the same machine.
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9. Conclusion

We have presented a different view on the dynamics of a lost-sales system under a base-stock policy by

focussing on the pipeline of outstanding orders. This alternate view led us to single dimensional state

space description. We studied the transition probabilities within this state space using asymptotics and

found that these asymptotics satisfy a type of flow conservation property. To show that the convergence

of our asymptotic results is independent of the lead time, we proved a new property of the asymptotic

behavior of the failure rate of discrete random variables under convolution. Based on these theoretical

results, we proposed a heuristic to set base-stock levels and found that it outperforms existing heuristics

and has an average and maximum gap with the best base-stock policy of 0.01% and 1.30% across a wide

test-bed. Furthermore, our heuristic is computationally very efficient, the most demanding algorithmic

requirement being the solution of linear equations.
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A. Proofs

A.1 Proof of Lemma 5.1

Proof. (If clause) This follows by taking m = 1 and observing that

P(X > n+ 1)

P(X > n)
= P(X > n+ 1|X > n) = 1− P(X = n+ 1|X ≥ n+ 1)→ 1− r.

(Only if) Let Ak = {x ∈ {1, · · · , k − 1}|P(X = x) > 0}. The probability mass function of X can be

written in terms of its hazard rate as follows:

P(X = n) = H(n)
∏
k∈An

(1−H(k)). (42)

Because P(X = n|X ≥ n) → r, P(X = n) > 0 for all sufficiently large x. Using (42), we have for

sufficiently large n that

P(X = n+ 1)

P(X = n)
=
H(n+ 1)(1−H(n))

∏
k∈An(1−H(k))

H(n)
∏
k∈An(1−H(k))

=
H(n+ 1)

H(n)
−H(n+ 1)→ 1− r. (43)

Using this we find

P(X > n+m)

P(X > n)
= P(X > n+m|X > n) = 1− P(X ≤ n+m|X > n) (44)

= 1− P(n < X ≤ n+m)

P(X > n)
= 1−

n+m∑
k=n+1

P(X = k)

P(X > n)
(45)

= 1− P(X = n+ 1)

P(X ≥ n+ 1)
−
(
H(n+ 2)

H(n+ 1)
−H(n+ 2)

)
P(X = n+ 1)

P(X ≥ n+ 1)
− · · · (46)

−
(

H(n+m)

H(n+m− 1)
−H(n+m)

)
P(X = n+ 1)

P(X ≥ n+ 1)
.

The fourth equality holds by substituting (43). Now as n→∞, we have by combining (46) and (43) and

using that H(n)→ r that

P(X > n+m)

P(X > n)
→ 1− r

m−1∑
k=0

(1− r)k = 1− r1− (1− r)m
r

= (1− r)m. (47)

A.2 Proof of Proposition 5.3

Proof. Let µ denote the mean of the Poisson distributed random variable D. Then we have for H(n) =

P(D = n|D ≥ n)

H(n) =
e−µ µ

n

n!∑∞
k=n e

−µ µk
k!

=
µn

n!
µn

n! +
∑∞

k=n+1
µk

k!

=
1

1 + n!
µn
∑∞

k=n+1
µk

k!

=
1

1 +
∑∞

k=1
µk∏k

j=1(n+j)

≥ 1

1 +
∑∞

k=1(µ/n)k
. (48)
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Now using that lima→0
∑∞

k=1 a
k = lima→0 a/(1−a) = 0, we observe that (48) implies that limn→∞H(n) ≥

limn→∞
1

1+
∑∞
k=1(µ/n)

k = 1. Noting that P(D = n|D ≥ n) < 1 for all n ∈ N0, we have by the squeeze

theorem that limn→∞H(n) = 1.

If D is a negative binomial random variable, then D is the sum of several geometric random variables

(for which the hazard rate is p everywhere) and so the result follows from Proposition 5.2.

A.3 Proof of Theorem 5.5

Proof. We prove that the exponential convergence in probability of Qt+1 to Dt implies exponential con-

vergence in distribution. The entire theorem then follows, as from then on, only algebraic manipulations

are involved. Recall that Qt+1 ≤ Dt with probability one and so for any a ∈ N0

P(Dt ≤ a) ≤ P(Qt+1 ≤ a). (49)

Now for this same a, we have:

P(Qt+1 ≤ a) = P(Qt+1 ≤ a ∩Dt ≤ a) + P(Qt+1 ≤ a ∩Dt > a)

≤ P(Dt ≤ a) + P(Qt+1 −Dt ≤ a−Dt ∩ a−Dt < 0)

≤ P(Dt ≤ a) + P(Dt −Qt+1 > 0)

= P(Dt ≤ a) +O
(
(θ + ε)S

)
, (50)

where (50) follows from applying Theorem 5.4. Combining (49) and (50) yields the desired result.

A.4 Proof of Theorem 5.7

We will first present some lemma’s that will facilitate our proof.

Lemma A.1. When limn→∞H(n) = limn→∞ P(D = n | D ≥ n) = 1 − θ ∈ (0, 1), then for any

ε ∈ (0,min(θ, 1− θ)) there exists an N ∈ N and C = P(D > N) > 0 such that

C(θ − ε)n−N ≤ P(D > n) ≤ C(θ + ε)n−N (51)

for all n ≥ N .

Proof. Let ε ∈ (0,min(θ, 1 − θ)). Pick N such that |H(n) − 1 + θ| < ε for all n ≥ N . (Such a finite N

exists by the assumption limn→∞H(n) = 1−θ.) Let C = P(D > N) > 0. We will use induction. Observe

that (51) holds with equality for n = N by construction. Now suppose (51) holds for some n ≥ N . We

will show that it holds for n+ 1. The upper bound holds because

P(D > n+ 1) =
P(D > n+ 1)

P(D > n)
P(D > n) ≤ (θ + ε)P(D > n) = C(θ + ε)n+1−N , (52)

where the second inequality follows from (35) and the choice of N . The lower bound is completely

analogous.
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Lemma A.2. If limn→∞ P(D = n | D ≥ n) = 1− θ ∈ (0, 1), then

lim
p→∞

SLB
− logθ p

= lim
p→∞

SUB
− logθ p

= lim
p→∞

SASYMP

− logθ p
= 1

Proof. Let ε ∈ (0,min(θ, 1 − θ)). Applying Lemma A.1 and Proposition 5.2 yields C(θ − ε)SLB−N ≤
P(D(τ+1) > SLB) ≤ C(θ+ ε)SLB−N for appropriately chosen constants N and C. Using (20), this implies

that for sufficiently large p

SLB ≤ N + log(θ−ε)

(
2C−1h(τ + 1)

p+ h(τ + 1)

)
= N + log(θ−ε)(2C

−1h(τ + 1))− log(θ−ε)(p+ h(τ + 1)) (53)

and

SLB ≥ N + log(θ+ε)(2C
−1h(τ + 1))− log(θ+ε)(p+ h(τ + 1)). (54)

Therefore, using (53), we find that

lim
p→∞

SLB
− logθ p

≤ lim
p→∞

N + log(θ−ε)(2C
−1h(τ + 1))− log(θ−ε)(p+ h(τ + 1))

− logθ p
= lim

p→∞

log(θ−ε)(p+ h(τ + 1))

logθ p
.

(55)

But since loga x is continuous in a, and ε can be chosen arbitrarily in (0,max(θ, 1− θ)) we must have (by

letting ε ↓ 0):

lim
p→∞

SLB
− logθ p

≤ lim
p→∞

logθ(p+ h(τ + 1))

logθ(p)
= 1. (56)

Analogous arguments starting with (54) yield

lim
p→∞

SLB
− logθ p

≥ 1. (57)

Combining (56) and (57) yields limp→∞
SLB
− logθ p

= 1.

The argument to establish limp→∞
SUB
− logθ p

= 1 is almost identical so we omit it. The final equality

follows because SLB ≤ SASYMP ≤ SUB.

Lemma A.3. If limn→∞ P(D = n | D ≥ n) = 1− θ ∈ (0, 1), then

lim
p→∞

C(SLB)

SLB
= lim

p→∞

C(SUB)

SUB
= h

Proof. By Lemma 5 of Huh et al. (2009b) we have the upper bound

C(SLB)

SLB
≥
hE[(SLB −D(τ+1))+] + p

τ+1E[(D(τ+1) − SLB)+]

SLB
(58)

=
1 + p/(τ+1)E[(D(τ+1)−SLB)+]

hE[(SLB−D(τ+1))+]

SLB
hE[(SLB−D(τ+1))+]

(59)
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Now we will proceed to analyse limp→∞
SLB

hE[(SLB−D(τ+1))+]
and p/(τ+1)E[(D(τ+1)−SLB)+]

hE[(SLB−D(τ+1))+]
. Observe that SLB ≤

E[(SLB −D(τ+1))+] ≤ SLB − E[D(τ+1)], so that by the squeeze theorem

lim
p→∞

SLB
hE[(SLB −D(τ+1))+]

=
1

h
, (60)

because SLB →∞ as p→∞ by Lemma A.2. Next we have

p/(τ + 1)E[(D(τ+1) − SLB)+]

hE[(SLB −D(τ+1))+]
=

p
τ+1P(D(τ+1) > SLB)E[D(τ+1) − SLB | D(τ+1) > SLB]

hP(D(τ+1) ≤ SLB)E[SLB −D(τ+1) | D(τ+1) ≤ SLB]

≤
p

τ+1
2h(τ+1)
p+h(τ+1)E[D(τ+1) − SLB | D(τ+1) > SLB]

hp−h(τ+1)
p+h(τ+1)E[SLB −D(τ+1) | D(τ+1) ≤ SLB]

=
2h(τ + 1)p2 + 2h2(τ + 1)2p

h(τ + 1)p2 − h3(τ + 1)3
· E[D(τ+1) − SLB | D(τ+1) > SLB]

E[SLB −D(τ+1) | D(τ+1) ≤ SLB]

→ 2 · 0 = 0 (61)

as p→∞. The first inequality follows from (54). The final limit follows from observing that by Lemma

A.1 and Proposition 5.2, there exists an ε ∈ (0, θ) such that for sufficiently large SLB

E[D(τ+1) − SLB | D(τ+1) > SLB] =
∞∑
x=0

P(D(τ+1) = SLB + x)

P(D(τ+1) > SLB)

≤
∑∞

x=0 P(D(τ+1) > SLB)(θ + ε)x

P(D(τ+1) > SLB)

=
1

1− θ − ε <∞, (62)

and E[SLB − D(τ+1) | D(τ+1) ≤ SLB] ≥ SLB − E[D(τ+1)] → ∞ as p → ∞. Combining (59), (60), and

(61), we conclude that limp→∞
C(SLB)
SLB

≥ h.

Now using the lower bound from Lemma 5 of Huh et al. (2009b) and analogous arguments we obtain

C(SLB)

SLB
≤ hE[(SLB −D(τ+1))+] + (p+ τh)E[(D(τ+1) − SLB)+]

SLB
→ h, (63)

as p→∞, so that limp→∞
C(SLB)
SLB

= h. The proof for limp→∞C(SUB)/SUB = 1 is analogous so we omit

it.

Now we can present the proof of Theorem 5.7.

Proof. limp→∞C(SUB)/C(S∗) is asserted in Theorem 5 of Huh et al. (2009b). Using Lemmas A.2 and A.3

this implies limp→∞
C(SLB)/−logθ p
C(S∗)/−logθ p

= 1, so that limp→∞C(S∗)/− logθ p = h. Using Lemmas A.2 and A.3

again this implies limp→∞C(SLB)/C(S∗) = limp→∞
C(SLB)/−logθ p
C(S∗)/−logθ p

= 1. Since C(S) is convex (Theorem

11 of Janakiraman and Roundy (2004)), and SLB ≤ SASYMP ≤ SUB, we have that C(SASYMP ) ≤
max(C(SLB), C(SUB)) so that also limp→∞C(SASYMP )/C(S∗) = 1.
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Corollary A.4. Consider any heuristic that finds a base-stock level SHEUR such that SLB ≤ SHEUR ≤
SUB. If limn→∞ P(D = n | D ≥ n) = 1 − θ ∈ (0, 1), then this heuristic is asymptotically optimal as

p→∞, in particular

lim
p→∞

C(SHEUR)/C(S∗) = 1.

Proof. Same as proof of Theorem 5.7 with SASYMP replaced by SHEUR.

A.5 Derivation of the state space size of Qt

The size of the state space of the vector Markov chain Qt is

S(S, τ) =
∣∣{x ∈ Nτ+1

0 |xeT ≤ S
}∣∣ .

Now observe that S(S, τ) can be expressed recursively in τ . We have for τ = 0

S(S, 0) =
S∑
k=0

1 = S + 1. (64)

For τ = 1 we have similarly

S(S, 1) =
S∑

k1=0

S−k1∑
k2=0

1 =
1

2
(S + 1)(S + 2), (65)

where the second equality follows from substituting (64). We can continue such back substitution to

obtain

S(S, 2) =
S∑

k1=0

S−k1∑
k2=0

S−k1−k2∑
k3=0

1 =
1

6
(S + 1)(S + 2)(S + 3) (66)

S(S, 3) =
S∑

k1=0

S−k1∑
k2=0

S−k1−k2∑
k3=0

S−k1−k2−k3∑
k4=0

1 =
1

24
(S + 1)(S + 2)(S + 3)(S + 4). (67)

It is now easy to see that

S(S, τ) =
1

(τ + 1)!

τ+1∏
k=1

(S + k) =
(S + τ + 1)!

S!(τ + 1)!
=

(
S + τ + 1

S

)
. (68)

Thus, S grows exponentially in both τ and S.

B. The generalized Pareto distribution

A non-negative continuous random variable X is said to have a generalized Pareto distribution if

P(X < x) = F (x) = 1− (1 + kx/σ)−1/k
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for some k > 0 (shape parameter), σ > 0 (scale parameter) and all x > 02. If k < 1, X has finite mean

E[X] = σ/(1− k),

and if k < 1/2, it also has finite variance

Var[X] =
σ2

(1− k)2(1− 2k)
.

It is easily verified that X has a heavy-tail. If Y = bX + 1/2c, then Y is said to have a discretized

generalized Pareto distribution and

P(Y = y) = F (y + 1/2)− F (y − 1/2)

for y ∈ N.

C. Adapted Bijvank and Johansen Heuristic

The adapted Bijvank and Johansen (2012) heuristic (ABP-heuristic for short) is constructed as follows.

The random variable Îb(S) should approximate the on-hand inventory at the beginning of a review period

after order receipt, before demand occurs. The approximation is to apply a correction factor c to the

equivalent random variable in the analogous backordering system as follows:

P(Ĩb(S) = x) =

{
cP(D(τ) = S − x), 0 < x ≤ S;

1− cP(D(τ) < S), x = 0.

Similarly, we let the random variable Îe(S) approximate the on-hand inventory at the ending of a period

after demand occurs. Using the same correction factor applied to the analogous backordering system we

have

P(Ĩe(S) = x) =

{
cP(D(τ+1) = S − x), 0 < x ≤ S;

1− cP(D(τ+1) < S), x = 0.

The question now becomes how the correction factor c should be determined. Since we know that

Îb(S)− Îe(S) is the order quantity under a base-stock policy, it seems reasonable to choose c to verify

E[Îb(S)]− E[Îe(S)] =
S − E[Îe(S)]

τ + 1
≈ S − E[I∞]

τ + 1
=

E[A∞]

τ + 1
= E[Q∞]. (69)

Note that (69) expresses something that resembles the notion of internal consistency as defined in defi-

nition 1. Solving (69) (left of the approximate equality) for c yields

c =
S

(τ + 1)
(
E
[(
S −D(τ)

)+]− E
[(
S −D(τ+1)

)+])
+ E

[(
S −D(τ+1)

)+] . (70)

2The generalized Pareto distribution can, and sometimes is, generalized further by introducing a location parameter and

also allowing k ≤ 0.
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An approximation for the cost under a given base-stock level S is now given by:

Ĉ(S) = hE
[
Îe(S)

]
+ p

E[D]−
S − E

[
Îe(S)

]
τ + 1

 (71)

= hcE
[(
S −D(τ+1)

)+]
+ p

E[D]−
S − cE

[(
S −D(τ+1)

)+]
τ + 1

 ,

where c as a function of S is given by (70). The ABJ-heuristic consists in choosing S to minimize (71).
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