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In this paper we present the time-dependent profitable pickup and delivery traveling salesman problem with

time windows (TDPPDTSPTW). The problem consists of determining a tour with a departure time at a

depot which maximizes the difference between the collected profit and the total tour duration. Travel times

are considered to be time-dependent, i.e. the travel time between two nodes depends on the time the tour

starts. This enables to deal with real life challenges such as road congestion. A tailored labeling algorithm

with time windows and pickup and delivery (TLTWPD) is developed to find the optimal tour. In the labeling

algorithm, new dominance criteria are introduced to discard unpromising labels. Our computational results

demonstrate that the algorithm is capable of solving instances with up to 40 locations and 20 pickup and

delivery requests to optimality given a pre-set maximum memory allowance. Furthermore, we present a

restricted dynamic programming heuristic algorithm to improve the computation time. This heuristic does

not guarantee optimality since it restricts the considered solution space. However, the results of the relatively

fast heuristic demonstrate that the solution found is close to optimal (with an average gap of 0.01%).

Key words : Traveling salesman problem, pickup and delivery, tailored labeling algorithm, time windows,

profits

History :

1. Introduction.

In this paper, we introduce the time-dependent profitable pickup and delivery traveling salesman

problem with time windows (TDPPDTSPTW). This problem consists of a single vehicle without

capacity limit and a set of requests which have a pick-up and a delivery node. Both pickup and

delivery nodes have a time window in which they should be served. Moreover, a delivery node can

only be served after the pickup node of the same request is visited. For each served request a profit

is collected. Moreover, a time-dependent travel time is assigned to each edge linking two nodes to
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Figure 1 An Illustration of a Solution in the TDPPDTSPTW Network.

capture travel speed variation during a day. The objective is to determine a tour for the vehicle

that starts and ends at the depot and that maximizes the difference between the total collected

profits and total tour duration. In Figure 1 an example of such an route is given, in which NPi and

NDi represent the pickup node and delivery node of request i respectively.

This problem is NP-hard because it is an extension of the traveling salesman problem with

pickup and delivery (TSPPD), which itself is an extension of traveling salesman problem (TSP).

In contrast to the TSPPD and TSP, in the TDPPDTSPTW, it is not necessary to visit all the

requests (See figure 1).

The TDPPDTSPTW has practical applications in many routing and scheduling problems. For

instance, the parcel and post industry is nowadays faceing a number of challenges, as they are

forced to improve services without increasing prices. Global competition forces them to extend

their business far from their traditional service area. On the one hand, serving a customer may be

attractive because it generates profits for the providers, or it increases the capacity utilization of the

vehicle. On the other hand, the additional cost for serving the customer may not be economically

beneficial. The problem becomes to decide which of these potential customers to serve and how to

construct the vehicle route in such a way that an appropriate objective function is optimized.

Another example is the Share-a-Ride problem (SARP) introduced by Li et al. (2014), in which

passengers and parcels are simultaneously handled within the same transportation network. This

problem allows rejections of both people and freight requests (e.g., if the capacity is not large

enough). The time-dependent travel times are used to capture the crowded urban traffic situation.

In real life, travel time depends on the departure time and the traveling speed of a route is nomally

slower at peak hours. Moreover, events as extreme weather or road construction activities might

also significantly increase the travel times.

The main contributions of this paper are summarized as follows. First, we introduce a new

class of models by extending the classical TSPPD to the time-dependent profitable pickup and
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delivery traveling salesman problem with time windows (TDPPDTSPTW). Secondly, we propose

a tailored labeling algorithm with time windows and pickup and delivery to solve this problem.

For this labeling algorithm, new dominance criteria are introduced. Lastly, a restricted dynamic

programming heuristic is introduced with a high solution quality and lower computation times

than the labeling algorithm.

The remainder of the paper is structured as follows. Section 2 provides a brief review of the

existing work that is related to this paper. Section 3 defines the TDPPDTSPTW and introduces

mathematical formulation of the problem. In Section 4, we present the tailored labeling algorithm

with time windows and pickup and delivery (TLTWPD). Section 5 describes the restricted dynamic

programming heuristic algorithm. Finally, computational results are reported in Section 6, followed

by conclusions in Section 7.

2. Literature review

There are three classes of problems closely related to the problem studied in this paper: the traveling

salesman problem with pickup and delivery (TSPPD); the time-dependent vehicle routing problem

(TDVRP); and the traveling salesman problem with profits (TSP with profits).

2.1. The traveling salesman problem with pickup and delivery (TSPPD)

Our problem extends the TSPPD by considering time-dependent travel time. The TSPPD is firstly

introduced by Ruland and Rodin (1997) which also has many applications (e.g., dial-a-ride systems

and courier services). However, only limited research can be found about it. Moreover, the TSPPD

appears as a subproblem in the pickup and delivery problem (PDP) which is much better studied

in the literature.

Currently, the most popular methodology for solving the TSPPD is branch-and-cut. Ruland

(1994) and Ruland and Rodin (1997) consider the undirected case and develop four classes of

valid inequalities that are embedded in a branch-and-cut algorithm to solve at most 15 pickup and

delivery requests. Recently, Dumitrescu et al. (2010) study the same problem, the authors analyze

its polyhedral structure and propose new valid inequalities that are shown to be facets for the

TSPPD polytope. Their algorithm is capable of solving instances involving up to 35 pickup and

delivery requests to optimality.

The TSPPD appeared as pricing problem for the PDP that is usually named the elementary

shortest path problem with time windows, capacity and pickup and delivery (ESPPTWCPD). Sol

(1994), Sigurd and Pisinger (2004) and Ropke et al. (2009) presented a labeling algorithm with

several different dominance rules to solve this problem to optimality.
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2.2. The time-dependent vehicle routing problem (TDVRP)

Another related problem is TDVRP. Although the TDVRP has attracted the attention of many

researchers, literature on this subject remains scarce. The pioneering work is done by Malandraki

and Daskin (1992) and Malandraki and Dial (1996). They both proposed a mixed integer linear

program and several heuristics to solve the problem are provided. The First-In-First-Out (FIFO)

property, which implies that for every arc a later departure time results in a later (or equal) arrival

time, is an intuituive and desirable property for time dependent problems. Ichoua et al. (2003)

and Dabia et al. (2013) consider the TDVRP with travel time variability using ”constant speed”

time periods which do not allow passing. The idea of constant speed time periods is adopted in

our problem as well.

Moreover, due to the complexity of the time-dependent problem, most of the existing algorithms

are based on heuristics. In van Woensel et al. (2008) a tabu search heuristic is used to solve the

capacitated vehicle routing problem with time dependent travel times. An approximation based on

queuing theory and on the volumes of vehicles in a link is used to determine travel speed. Donati

et al. (2008) developed a multi ant colony system for the TDVRP and Ibaraki et al. (2008) proposed

an iterated local search heuristic for the the time-dependent vehicle routing problem with time

windows (TDVRPTW). Recently, Dabia et al. (2013) developed a branch-and-price algorithm for

TDVRPTW, where a tailored labeling algorithm is presented to solve the time-dependent shortest

path problem with resource constraint (TDSPPRC), which is the pricing problem in the algorithm.

2.3. The traveling salesman problem with profits (TSP with profits)

The proposed problem also extends the traveling salesman problem with profits (TSP with profits),

in which profits are associated with each request and the overall goal is to find a shortest path

with maximal collected profits. This also means that in contrast to the original TSP, not all nodes

have to be visited. In comparison with our study, it does not include time dependency and requests

with pickup and delivery.

According to Feillet et al. (2005), TSPs with profits consist of three generic problems, depending

on the way the two terms profits and travel time are adressed in the objective function and con-

straints. They can be summarized in the following categories: the profitable tour problem (PTP);

the prize-collecting traveling salesman problem (PCTSP); and the orienteering problem (OP).

The profitable tour problem (PTP): Dell’ Amico et al. (1995) studied the profitable tour

problem (PTP) where both the profits and the travel time are combined in the objective function.

Our study builds on the PTP by having the the profits and the travel time in the objective as well.
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The prize-collecting traveling salesman problem (PCTSP): In the prize-collecting TSP

(PCTSP) the objective is similar to PTP but a constraint is added to ensure that a minimum

amount of profits must be collected on the tour. The original definition of PCTSP by Balas (1989)

also adds penalty terms for unvisited vertices into the objective function.

The orienteering problem (OP): An abundant number of publications are devoted to the

orienteering problem (OP), which gives the travel cost term as a constraint and aims to maximize

the collected profits subject to a constraint for the maximum allowed tour length. This problem is

also known as the selective traveling salesman problem (Laporte and Martello (1990)).

A variant of the OP is the time-dependent orienteering problem (TDOP) with time-dependent

travel times . Fomin and Lingas (2002) provide a (2 + ε)−approximation algorithm for the TDOP

which runs in polynomial time if the ratio between the minimum and maximum travel time between

any two sites is constant. Li (2011) designed a novel dynamic labeling algorithm for the TDOP

in which time is is measured in discrete units. Therefore, the FIFO property may not be satisfied

in their model. Verbeeck et al. (2014) recently devised a fast solution method for the TDOP with

time windows based on the ant colony optimization algorithm. For more details about the OP and

its variants, readers are referred to Vansteenwegen et al. (2011).

3. Problem description and mathematical formulation

In this section, we introduce the notation that is used throughout the paper. We then present a

mathematic formulation for the problem.

3.1. Problem definition

The Time-Dependent Profitable Pickup and Delivery Traveling Salesman Problems with Time

windows (TDPPDTSPTW) is defined as follows. We consider a set of n requests R1, ...,Rn, where

Ri (i= 1, ..., n) is associated with a pickup node i and a delivery node n+ i. Let G= (N,A) be an

undirected graph, where N = {0,1, ...,2n+1} is the set of all nodes. 0 and 2n+1 are the origin and

destination depots of the vehicle. We define the subsets NP = {1, ..., n} and ND = {n+ 1, ...,2n} as

the pickup and delivery nodes, respectively. Each pickup node i∈NP is associated with a profit ri.

Moreover, a time window [ej, lj] is associated with each node j ∈NP ∪ND, where ej and lj represent

the earliest and latest time respectively at which service may start at node j. The vehicle needs to

wait until time ej, if arriving at j before ej; and arriving later than lj is not allowed. We denote

[e0, l0], [e2n+1, l2n+1] as the time windows of the origin and the destination depot, respectively. Let

si be the service time of node i ∈ N . Without loss of generality, we assume s0 = s2n+1 = e0 = 0.

Let τij(ti) denote the travel time from node i to node j, which depends on the departure time ti

at node i. We consider only one vehicle without capacity limit and define the set of feasible arcs
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as A= {(i, j) ∈N ×N : i 6= j and ei + si + τij(ei + si)≤ lj}. This means that an arc from node i

to node j is only included if it is possible to traverse from node i to j while respecting the time

windows of both node i and node j.

The planning horizon is divided into several time zones. Each arc (i, j) ∈A has a speed profile

associated to it, which consists of a constant speed within each time zone. By using those stepwise

speed functions, the FIFO property holds for every arc in the graph G (i.e. a later departure always

leads to a later arrival and therefore overtakings will not occur). The speed profiles can be different

for each arc.

Figure 2 depicts a speed profile and the corresponding travel time function for some arc (i, j).

We denote the points a, b, c, d, and e where the speed changes as speed breakpoints. There are

also travel time breakpoints in the travel time function. These are defined as the departure times

which ensure to arrive at node j exactly at a speed breakpoint (e.g., a
′

is the departure time at

node i to arrive at node j at time a) using the method as described in Ichoua et al. (2003).

The travel time function is piecewise linear and can be represented by the breakpoint values.

Note that in case of time-dependent travel times, the triangle inequality does not necessarily hold.

Intuitively, when the direct link between node h and l is heavily congested, we may reach destination

node l earlier by taking a diverted routed (i.e., via one or several other nodes) than by the direct

route from node h.

Because of the FIFO property of the travel time functions, a later departure at the depot 0

always results in a later arrival time at node i. Therefore, if a path is infeasible with a certain

departure time t0 at the origin depot(i.e., at least one node’s time window in the path is violated),

it will also be infeasible for any departure time t
′ ≥ t0 at the origin depot.

Given a path p= (v0, v1, ..., vk) with v0 = 0, we define δpvi(t) as the ready time function at node

vi given a departure time t at node 0. This ready time function is nondecreasing in t and can be

recursively calculated for each node in the path as follows:

δpvi(t) =

{
t if i= 0,

max{evi + svi , δ
p
vi−1

(t) + τvi−1,vi(δ
p
vi−1

(t)) + svi} otherwise.
(1)

In case i 6= 0, the calculation includes two piecewise linear functions. This means that we can

represent the ready time function by using the ready time function breakpoints. These are either

breakpoints of the predecessor node’s ready time function, breakpoints of the travel time function,

or due to the time window of node vi.

The duration of the path given a departure time t at node 0 can be calculated as δpvk(t)− t, which

is also a piecewise linear function. In this problem we aim to minimize the total duration of the

used tour in the solution instead of minimizing the sum of the arc cost. Therefore, the minimum

duration can be computed by considering the breakpoints of the ready time function.
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Figure 2 Speed and Travel Time Functions.

3.2. Mathematical formulation of the TDPPDTSPTW

For every arc (i, j) ∈ A, we denote Tij as the set of time zones of the corresponding travel time

function τij(ti). The number of time zones in set Tij can be described as | Tij |. A time zone Tm ⊂ Tij,

is defined by two consecutive travel time breakpoints, Tm = [wm,wm+1]. As τij(ti) is linear in each

time zone. Using wm, wm+1, τij(wm) and τij(wm+1) we can easily calculate the corresponding slope

θm and its intersection ηm with the y-axis. Therefore

τij(ti) = θmti + ηm. ∀ti ∈ Tm (2)

Furthermore, let xm
ij be a binary variable that takes value 1 if and only if the vehicle traveres the

arc (i, j)∈A and its departure time is in time zone m, and let yi be a binary variable that equals

1 if and only if node i∈NP ∪ND is visited. We also denote tmij as the departure time in time zone

Tm when traveling from i to j. tmij is such that

tmij =

{
ti if xm

ij = 1,

0 otherwise.
(3)

Consequently, when traveling from i to j, we have that:

ti =
∑

j∈N\{0}

|Tij |∑
m=0

tmij . (4)
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This means that the travel time function τij(ti) of arc (i, j) at node i can be expressed as:

τij(ti) =

|Tij |∑
m=0

(θmt
m
ij + ηmx

m
ij ). (5)

The Mixed Integer Programming formulation for the TDPPDTSPTW is described as follows:

max
∑
j∈NP

rjyj − (t2n+1− t0) (6)

subject to

∑
j∈NP

|T0j |∑
m=0

xm
0j = 1 (7)

∑
i∈ND

|Ti,2n+1|∑
m=0

xm
i,2n+1 = 1 (8)

∑
i∈N\{2n+1}

|Tij |∑
m=0

xm
ij = yj ∀j ∈N \{0} (9)

∑
i∈N\{2n+1}

|Tik|∑
m=0

xm
ik−

∑
j∈N\{0}

|Tkj |∑
m=0

xm
kj = 0 ∀k ∈N \{0,2n+ 1} (10)

∑
j∈N\{0}

|Tij |∑
m=0

xm
ij −

∑
j∈N\{0}

|Tn+i,j |∑
m=0

xm
n+i,j = 0 ∀i∈NP (11)

tj ≥ (1 + θm)tmij + ηmx
m
ij + sjx

m
ij ∀i∈N \{2n+ 1}, j ∈N \{0} (12)

tn+i ≥ ti ∀i∈NP (13)

ti =
∑

j∈N\{0}

|Tij |∑
m=0

tmij ∀i∈N \{2n+ 1} (14)

wmx
m
ij ≤ tmij ≤wm+1x

m
ij ∀i, j ∈N ,∀m,m+ 1∈| Tij | (15)

eiyi ≤ ti ≤ liyi ∀i∈NP ∪ND (16)

xm
ij , yi ∈ {0,1} ∀i, j ∈N ,∀m∈| Tij | (17)

The objective function (6) aims to find a tour that maximizes the collected profits minus the

total traveling cost. Constraints (7)-(8) guarantee that the path starts in the origin depot 0 and

ends in the destination depot 2n+ 1. Constraints (9) guarantee that every node, except the nodes

representing the start and end depots, is visited at most once. Constraints (10) keeps the flow

conservation. Constraints (11) ensure that it is not possible to visit only the pickup node or only

the delivery node of a certain request. Constraints (12) guarantee that the departure time of a

succeeding node in the route is large or equal to the sum of the departure time of the previous node

together with the travel time between these two nodes and the required service time. Precedence
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constraints (13) ensure that for each request i, the pickup node is visited before the delivery

node. Constraints (14) is formulated as mentioned before in (4). Constraints (15)-(16) force the

departure time of each request to be in the given time zone and the given time window. Due to

the computational inefficiency in solving large-scale instances with a commercial ILP solver, we

develop a tailored labeling algorithm with time windows and pickup and delivery to solve this

problem.

4. A tailored labeling algorithm with time windows and pickup and
delivery (TLTWPD)

In order to solve the TDPPDTSPTW, we introduce a new exact dynamic programming algo-

rithm, that is named as the tailored labeling algorithm with time windows and pickup and delivery

(TLTWPD). Ropke et al. (2009) developed a labeling algorithm to solve the pickup and delivery

problems with time windows (PDPTW). However, this time-independent algorithm is only efficient

if the triangle inequality holds. More recently, Dabia et al. (2013) proposed a tailored labeling

algorithm for the time-dependent vehicle routing problem with time windows. Their algorithm has

great potential for the time-dependent routing problem without precedence constraints. However,

in contrast, we have to deal with the precedence constraints. Furthermore, note that our pro-

posed algorithm for the TDPPDTSPTW can be generalized to solve other time-dependent routing

problems with precedence constraints.

The algorithm starts from the depot 0 and progressively extends all feasible paths untill their

reach the end depot 2n + 1. Moreover, to speed up our tailored labeling algorithm, instead of

starting the label extension only from the origin depot 0, we simulaneously generate labels both

from the origin depot to its successors and from the destination depot to its predecessors. Whereas

both forward labels and backward labels are extended until some fixed time tm(e.g., the middle of

the planning horizon) is reached but not further. At the end, the complete paths are generated by

merging forward labels and backward labels. This approach has shown great potential for improving

the running time of related resource constrained shortest path problems (see, e.g. Righini and

Salani (2006) and Dabia et al. (2013)). The forward TLTWPD algorithm is introduced in Section

4.1, followed by backward TLTWPD algorithm in section 4.2. Finally, we discuss the way to merge

forward and backward labels in Section 4.3.

4.1. The Forward TLTWPD Algorithm

For each forward label Lf of partial we denote p(Lf ) as the partial path and store the following

data:

• v(Lf ) the last node visited on the partial path p(Lf ).

• O(Lf ) the set of incomplete requests, i.e., the pickup node served but not the delivery node.
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• U(Lf ) the set of requests for which the pickup nodes are already visited along the partial path

p(Lf ). It contains both the incomplete requests and the complete requests. Therefore, O(Lf ) ⊆

U(Lf ).

• δLf
(t) the ready time at v(Lf ) when departed at the origin depot at t and reached v(Lf )

through the partial path p(Lf ).

• r(Lf ) the overall profits collected with the requests visited on the partial path p(Lf ).

We extend a label L
′
f along an arc (v(L

′
f ), j), only when the extension is feasible:

δ
L
′
f
(0) + τ

v(L
′
f
),j

(δ
L
′
f
(0)) + sj ≤min{tm, lj + sj} ∀j ∈N/{0} (18)

Inequality (18) ensures time window feasibility and guarantees the extention is stopped when tm

is reached. Furthermore, L
′
f and j must satisfy one of the following three conditions:

1≤ j ≤ n ∧ j /∈U(L
′

f ) (19)

n+ 1≤ j ≤ 2n ∧ j−n∈O(L
′

f ) (20)

j = 2n+ 1 ∧ O(L
′

f ) = ∅ (21)

Condition (19) states that j is not visited before, if it is a pickup node. Condition (20) assure that

if j is a delivery node, the corresponding pickup node should have already been visited. Condition

(21) states that if j is the end depot then all visited requests should have been completed. In

the presence of those conditions, only elementary paths that satisfy pairing constraint (11) are

generated. If the extension along the arc (v(L
′
f ), j) is feasible, then a new label Lf is created. The

information in label Lf is updated as follows:

v(Lf ) = j (22)

δLf
(t) = max{ej + sj, δL′

f
(t) + τ

L
′
f
,j

(δ
L
′
f
(t)) + sj} (23)

r(Lf ) =

{
r(L

′
f ) + rj if j ∈NP ,

r(L
′
f ) otherwise.

(24)

O(Lf ) =

{
O(L

′
f )∪{j} if j ∈NP ,

O(L
′
f ) \ {j−n} if j ∈ND.

(25)

U(Lf ) =

{
U(L

′
f )∪{j} if j /∈NP ,

U(L
′
f ) otherwise.

(26)

Equations (22)-(24) set the current node, the ready time function and the collected profits of the

new label, respectively. Equation (25) updates the set of incomplete requests O(Lf ). Equation (26)

updates the set of requests U(Lf ). Here, let dom(Lf ) and img(Lf ) be the domain and image of the
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ready time function δLf
(t) respectively. If the partial path is feasible, departure at time 0 from the

origin depot is always feasible. Therefore, dom(Lf ) always takes the form of [0, t] for some t≥ 0.

When v(Lf ) = 2n+ 1, the objective of the path corresponding to Lf is:

obj(Lf ) = r(Lf )− min
t∈Dom(Lf )

{δLf
(t)− t} (27)

In the labeling algorithm, all possible extentions are processed and stored for each label. However,

the number of labels that can be processed is typically very large and computationly expensive.

Therefore, a dominance test is established between pairs of labels ending in the same node to reduce

the number of labels, so that the algorithm records only non-dominated labels. The dominance

test is the following. Let E(Lf ) denote the set of feasible extentions of the label Lf to the end

depot. More specifically, E(Lf ) is the set of all partial paths that can depart at node v(Lf ) at time

δLf
(0) or later and reach the destination depot without violating precedence constraints and time

windows at pickup and delivery nodes. If L∈E(Lf ), we define Lf

⊕
L as the label resulting from

extending Lf by L. Therefore, in Proposition 1, the sufficient conditions (1)− (6) are introduced.

Proposition 1. Label L2
f is dominated by label L1

f if

1. v(L1
f ) = v(L2

f )

2. O(L1
f ) =O(L2

f )

3. U(L1
f )⊆U(L2

f )

4. dom(L2
f )⊆ dom(L1

f )

5. δL1
f
(t)≤ δL2

f
(t),∀t∈ dom(L2

f )

6. r(L1
f )≥ r(L2

f )

The proof of this proposition is given in the appendix. Dominance as introduced in Proposition 1

has several weaknesses and may not be able to eliminate too many unpromising labels. On the one

hand, O(L1
f ) = O(L2

f ) and U(L1
f ) ⊆ U(L2

f ) typically implies r(L1
f ) ≤ r(L2

f ) because the collected

profit increase when visiting more pickup nodes. Hence conditions 2,3 and 6 are all true only in

case of equality. On the other hand, labels corresponding to paths with a very long duration will

typically end up in an unattractive route if the collected profit is high enough to compensate the

traveling cost. Such labels can be hard to dominate. In Figure 3, the numbers associated with the

arcs represent travel times and the numbers associated with the nodes represent profits, and both

partial paths P1 and P2 end at the same pickup node S3. Futhermore, a path’s objective value is

equal to the sum of the collected profits corresponding to the request nodes visited along that path

reduced by the total travel time duration cost. It shows that, compare to P1, P2 collects 20 units

extra profits with the expense of 200 units extra traveling cost. Therefore, extending P1 clearly

results in a better solution. Because of condition 6, the label representing partial path P2 will not
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Figure 3 Example of Dominance Test.

be dominated by the one representing partial path P1. Based on the above mentioned issue, we

introduce a new dominance criterion to allow a label L1
f to dominate another label L2

f , if label L1
f

is ”much better” than L2
f either the profit dimension or in the ready time function. We define the

interval

I ⊆ (−∞,max(dom(L1
f ))−max(dom(L2

f ))) (28)

Based on I, we also define a real number φ(L1
f ,L

2
f ),

φ(L1
f ,L

2
f ) = max{x∈ I : δL1

f
(max{0, t+x})≤ δL2

f
(t),∀t∈ dom(L2

f )} (29)

When φ(L1
f ,L

2
f ) is positive, the value describes how much the departure time of the partial path

represented by label L1
f can be postponed, compare to path p(L2

f ), and still reach node v(L1
f ) at the

same time or earlier than path p(L2
f ). if φ(L1

f ,L
2
f ) is negative, it measures how much earlier path

p(L1
f ) need to depart at the origin depot, compared to path p(L1

f ), to ensure that node v(L1
f ) is

reached at the same time or earlier than path p(L2
f ). In Figure 4, we depict several simple example:

If there is no intersection between label L1
f and L2

f , φ(L1
f ,L

2
f ) is positive when max(dom(L1

f ))>

max(dom(L2
f )) (see Figure 4(a)), or negative when max(dom(L1

f )) < max(dom(L2
f )) (see Figure

4(b)). Otherwise, φ(L1
f ,L

2
f ) can only be negative (see Figure 4(c)). Note that, we use φ(L1

f ,L
2
f ) to

relax condition 4 and 5 of Proposition 1.

Another improvement is, that for every Lf , we extend U(Lf ) to the set Ũ(Lf ) by adding requests

that their pickup nodes are unreachable from v(Lf ). Time-dependent travel times cannot guarantee

the triangle inequality. Therefore, a node that cannot be directly reached from node v(Lf ) might

be indirectly reached via a diverted route. However, a lower bound of the earliest ready time at

any pickup or delivery node following node v(Lf ) in the partial path by te = minj∈NP∪ND
{δLf

(0) +

τv(Lf )j(δLf
(0))}. Any node j with bj < te will be unreachable from v(Lf ). Especially, when j ∈ND,

the partial path corresponding to Lf can be removed, because it will lead to an unfeasible solution.

This test can be done quickly, although we might fail to find all unreachable requests. Finally, we

state the improved dominance test in Proposition 2 as follows:
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Figure 4 Illustration of φ(L1
f ,L

2
f).

Proposition 2. Label L2
f is dominated by label L1

f if

1. v(L1
f ) = v(L2

f )

2. U(L1
f )⊆ Ũ(L2

f )

3. O(L1
f ) =O(L2

f )

4. δL1
f
(0)≤ δL2

f
(0)

5. r(L1
f )≥ r(L2

f )−φ(L1
f ,L

2
f )

PROOF OF PROPOSITION 4.2. Consider two labels L1
f and L2

f that satisfy the five conditions

in proposition 2. For any L ∈E(L2
f ), we need to show that (1) L ∈E(L1

f ) and (2) obj(L1
f

⊕
L)≥

obj(L2
f

⊕
L).

As to the first point, the path (p(L1
f

⊕
L) is elementary because of condition 2 and 3, and it is

not violate time windows because of the FIFO assumption along with Condition 4 that ensure us

to reach node v(L1
f ) at the same time or earlier by using path p(L1

f ) than by using path p(L2
f ),

given that we depart at the depot early enough.

To show the second point, let L1∗
f = L1

f

⊕
L and L2∗

f = L2
f

⊕
L. We also denote t20 =

argmint∈dom(L2∗
f

){δL2∗
f

(t)− t} as the optimal departure time from the depot for path p(L2∗
f ). The

objective value of the path is:

obj(L2∗
f ) = r(L2∗

f )− (δL2∗
f

(t20)− t20)

= r(L2
f ) + r(L)− (δL2∗

f
(t20)− t20)

(30)

Now consider the path p(L1∗
f ) resulting from extending L1

f by L. We denote r(L) as the sum of

the profits associated with the nodes visited along path p(L). Moreover, consider a departure time
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at the depot of this path t10 = max{0, t20 + Φ(L1
f ,L

2
f )}. This departure time ensures that we reach

node v(L1
f ) at time t∗0 = δL2

f
(t20) or earlier, meaning δL1

f
(t10)≤ δL2

f
(t20). t

2
0. Due to the definition of

Φ(L1
f ,L

2
f ), t20 is also a feasible departure time for label L1∗

f . Moreover, t10 provides an lower bound

on obj(L1∗
f ):

obj(L1∗
f )≥ r(L1∗

f )− (δL1∗
f

(t10)− t10) (31)

Furthermore:

r(L1∗
f )− (δL1∗

f
(t10)− t10)

≥ (r(L1
f ) + r(L))− (δL2∗

f
(t20)−max{0, t20 + Φ(L1

f ,L
2
f )})

≥ (r(L1
f ) + r(L))− (δL2∗

f
(t20)− t20−Φ(L1

f ,L
2
f ))

≥ (r(L2
f )−Φ(L1

f ,L
2
f ) + r(L))− (δL2∗

f
(t20)− t20−Φ(L1

f ,L
2
f ))

= (r(L2∗
f ) + r(L))− (δL2∗

f
(t20)− t20) = obj(L2∗

f )

(32)

Note that the first inequality uses δL1
f
(t10) ≤ δL2

f
(t20) and the FIFO property together with the

definition of t10. The second inequality is derived by the simple fact that ∀x∈R :−max{0, x} ≤−x,

and the third inequality uses condition 5 of Proposition 2. �

4.2. The Backward TLTWPD Algorithm

In the backward TLTWPD algorithm, labels are extended from the end depot 2n+ 1 to its prede-

cessors. For a label Lb, we associate the following components:

• v(Lb) the first node visited on the partial path p(Lb).

• O(Lb) the set of incomplete requests, i.e., the delivery has been served but not the pickup

node.

• U(Lb) the set of requests that their delivery nodes have already been visited along the partial

path p(Lb). It contains both the incomplete requests and the complete requests. Therefore, O(Lb)⊆

U(Lb).

• δLb
(t) the arrival time at the end node 2n+ 1 through the partial path represented by Lb and

when leaving node v(Lb) at time t.

• r(Lb) the overall profits collected with the requests completed on the partial path p(Lb).

Let dom(Lb) be the domain of the function δLb
(t) and define t(Lb) = max(dom(Lb)). Thus, We

extend a label L
′
b along an arc (j, v(L

′
b)) to create a new label Lb. The extension is legal only if

t(Lb)≥max{tm, ej + sj} if j ∈NP ∪ND (33)
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Inequality (33) ensure time window feasibility for the request node and the extension will be

stopped when tm is reached. Furthermore, L
′
b and j must satisfy one of the following three condi-

tions:

1≤ j ≤ n ∧ j+n∈O(L
′

b) (34)

n+ 1≤ j ≤ 2n ∧ j /∈U(L
′

b) (35)

j = 0 ∧ O(L
′

f ) = ∅ (36)

If the extension along the arc (j,L
′
b) is feasible, the information in label Lb is set as follows:

v(Lb) = j (37)

δLb
(t) = δ

L
′
b
(max{e

v(L
′
b
)
, t+ τ

jv(L
′
b
)
(t)}+ s

v(L
′
b
)
) (38)

r(Lb) =

{
r(L

′
b) + rj if j ∈NP ,

r(L
′
b) otherwise.

(39)

O(Lb) =

{
O(L

′
b) \ {j} if j ∈NP ,

O(L
′
b)∪{j−n} if j ∈ND.

(40)

U(Lb) =

{
U(L

′
b)∪{j−n} if j ∈ND,

U(L
′
b) otherwise.

(41)

Dominance of the backward algorithm can be constructed in the same way as in the case of

the forward algorithm, because the arrival time functions are nondecreasing and linear stepwise

as before. Furthermore, similar to forward algorithm, in Proposition 3, we denote Ũ(Lb) as the

set of requests of which either the delivery has already been visited or the pickup or delivery are

unreachable from v(Lb). Since travel times do not necessarily satisfy the triangle inequality, we

define tl = {max{t : t+ τjv(Lb)(t) = t(Lb)}}. Any pickup and delivery node j with aj + sj > tl will

be unreachable from the partial path p(Lb).

We define φ(L1
b ,L

2
b) (see figure 5) as

φ(L1
b ,L

2
b) = max{x∈R : δL1

b
(t) +x≤ δL2

b
(t), ∀t∈ dom(L2

b)} (42)

Proposition 3. Label L2
b is dominated by label L1

b if

1. v(L1
b) = v(L2

b)

2. U(L1
b)⊆ Ũ(L2

b)

3. O(L1
b) =O(L2

b)

4. t(L1
b)≥ t(L2

b)

5. r(L1
b)≥ r(L2

b)−φ(L1
b ,L

2
b)

The proof of proposition 3 is given in the appendix.
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Figure 5 Illustration of φ(L1
f ,L

2
f).

4.3. Merging forward and backward labels

When all forward and backward labels are generated, they are merged to construct feasible

profitable tours. A forward label Lf and a backward label Lb can be merged if the following

conditions are satisfied:

1. v(Lf ) = v(Lb)

2. O(Lf )∩O(Lb) = {v(Lf )}

3. U(Lf ) =U(Lb)

4. Img(Lf )∩ dom(Lb) 6= ∅

The resulting path p(L) = (p(Lf )
⊕
p(Lb)) has the following attributes:

1. v(L) = 2n+ 1

2. r(L) = r(Lf ) + r(Lb)− rv(Lf )

3. O(L) = ∅

4. U(L) =U(Lf )

5. δL(t) = δLb
(δLf

(t)),∀t∈ dom(Lf ) such that δLf
(t)∈ dom(Lb)

However, this bidirectional labeling algorithm can generate duplicate solutions. Consider a fea-

sible solution p∗ including nodes i, j and k in this order. Each node x ∈ p∗ associated with a

forward label Lf (x) and a backward label Lb(x)(v(Lf (x)) = v(Lb(x) = x). Therefore, the path p∗

can be obtained by merging Lf (i) with Lb(i) as well as merging Lf (j) with Lb(j). To overcome

this drawback, we devised an additional test: we accept a solution only when an further extension

of the forward label is impossible. In our example, assume that the extension from Lf (i) to node
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j is feasible and extention from Lf (j) to node k is infeasible, because of the predefined fixed time

tm. We generate solution p∗ by merging Lf (j) and Lb(j) instead of Lf (i) and Lb(i). The test is

performed constantly for each candidate pair of Labels, since this extention feasibility is detected

by directly comparing fixed time with the sum of earliest departure time and travel time. Moreover,

this test guarantees that each path is generated only once.

5. Restricted dynamic programming heuristic algorithm

In order to avoid the exponential computation time and to save limited memory storage, Malandraki

and Dial (1996) proposed a restricted dynamic programming heuristic algorithm for the TSP. The

main concept is to limit the number of partial paths for further extension in every stage by a given

parameter B. Moreover, in each stage all partial paths have the same number of visited nodes.

Therefore, partial paths with low costs are more likely to become part of the solution than one

with higher costs.

Malandraki and Dial (1996) show that increasing the value of B results in better solutions, but

also in substantial higher computation times. Note that the setting B = 1 results in a nearest

neighborhood heuristic and setting B =∞ makes it an exact dynamic programming algorithm.

Gromicho et al. (2012) propose a restricted dynamic programming algorithm for solving realistic

VRPs and restrict the state space even further, by using a form of beam search (Bisiani. (1987)),

which means that each partial path is only expanded to a number of its nearest feasible nodes by

a given parameter E.

The same principle with some minor changes can also be applied to the TLTWPD for the

TDPPDTSPTW. To restrict the state space for the TDPPDTSPTW, we also select the best B

partial paths in each stage. Expanding a partial path to a pickup node may improve or deteriorate

the objective function depending on the profits and traveling cost of visiting that node. However,

expanding to a delivery node can only increase the traveling cost. Therefore, for every expansion

of a partial path the E/2 best expanded partial paths ended in pickup node and the E/2 best

expanded partial paths ended in delivery node are selected. Furthermore, in each stage we select

the best B/2 partial paths that expand to a pickup node and the best B/2 partial paths that

expand to a delivery node for further expansion.

Note that there is no optimality guarantee anymore with such a restricted dynamic programming

heuristic algorithm.

6. Computational Experiments

The algorithms are coded in JAVA and all computations are carried out on a server with four

CPU’s (2.4 GHz/6 cores) and 32 GB RAM with time limit of 120 hours (5 days). For our numerical
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Figure 6 An Illustration of a TDPPDTSPTW Instance with Different Speed Profiles.

study, we created new data sets based on the ones available for related problems (Ropke et al.

(2009), Dumitrescu et al. (2010) and Verbeeck et al. (2014)).

In all instances, a profit varying form 40 to 100 is randomly assigned to each pickup node of the

request, and the coordinates of each pickup and delivery location are randomly selected from the

instances used by Ropke et al. (2009), that follow a uniform distribution over the [0,50]2 square.

Furthermore, the planning horizon covers 14 working hours (840 minutes, from 7 am to 9 pm) and

a minute is set to be one unit of time. Furthermore, in each instance, the time windows of all the

pickup and delivery nodes have the same width and there are 3 types of widths considered in our

data sets (i.e., 30 minutes, 60 minutes and 90 minutes). The instances follow a naming convention

of prob-nx-T in which n denotes the number of requests to be served which varies from 8 to 20.

For each number of requests five instances are generated . The x denotes one of the letters a, b, c, d

and e that is used to distinguish between instances with the same size. At last T represents the

type of time windows that are used: 1 for instances with 30 minutes time windows, 2 for instances

with 60 minutes time windows and 3 for instances with 90 minutes time windows.

Road congestion is handled by a so-called speed model which consists of different speed profiles.

It is used to determine the travel time between two nodes on a specific departure time. This speed
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model for the TDPPDTSPTW is based on the speed model of Verbeeck et al. (2014) for the TDOP

and Dabia et al. (2013) for the TDVRPTW. Furthermore, without loss of generality, we assume

that breakpoints are the same for all speed profiles as congestion tends to happen around the same

time regardless of the speed profiles’ type. Moreover, the links are not randomly assigned to a

speed profile during the construction of the problem instance. More specifically, the pickup and

delivery of each request is randomly assigned to one of the three perdefined areas: morning and

evening commuting area, city center and highways. Then, the speed profile is assigned according

to the type of the tail node and head node of each link (e.g. depot or request node) and areas of

those two nodes located.

In this speed model each speed profile has four non-overlapping time periods with constant

speed, reflecting two congested periods and two periods with normal traffic conditions. Five speed

profiles are included (see Figure 6 and Table 1):

• Slow speed (SS): these links represent a busy central business district (CBD) with a lot of

traffic during the whole day.

• Normal speed with morning peak (NSMP): these links represent roads leading from a residen-

tial area to the CBD. These roads are in most cases congested in the morning.

• Normal speed with evening peak (NSEP): these links represent roads leading from a CBD to

a residential zone. The roads typically encounter evening congestion.

• Fast speed with two peaks (FSTP): these links represent roads near the highway with a

morning and evening peak in both directions.

• High speed (HS): these links represent the links connected to the request nodes and the depot.

Table 1 Speed Profiles

Congestion Morning Normal Evening Normal
description peak peak
Time periods 7 am-9 am 9 am-5 pm 5 pm-7 pm 7 pm-9 pm

1.SS 0.5 0.81 0.5 0.81
2.NSMP 0.67 1.33 0.88 1.33
3.NSEP 0.88 1.33 0.67 1.33
4.FSTP 0.85 1.5 0.85 1.5
5.HS 1.0 2.0 1.0 2.0

6.1. TLTWPD without dominance versus TLTWPD with dominance

In Table 2 and Table 3, we illustrate the strength of the TLTWPD with dominance over the labeling

algorithm without dominance. In Table 2, it shows that a significant number of undesired labels

are removed by using our dominance rules (columns 7-11). The comparison of the processing time

of the TLTWPD with dominance and its corresponding algorithm without dominance is described
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in Table 3. We report the optimal solution in row ”Optimal value”. Moreover, we report the time

(in seconds) needed to solve an instance for both versions of the algorithm (rows 2-3). Clearly,

in some cases (see instance Prob 8a-2), the performance of the TLTWPD with dominance is far

better than the version without dominance. In other cases (see instances Prob 8a-3 and Prob 8e-3),

only the TLTWPD with dominance can solve it to optimality within the available system memory.

Note that ”-” means the instances can not be solved because the memory of the system is exceeded

during the procedure.

Table 2 The Effect of Dominance (on Number of Generated Labels)

Forward TLTWPD without Dominance Forward TLTWPD with Dominance
Last node v(Lf ) Prob Prob Prob Prob Prob Prob Prob Prob Prob Prob

visited on the Partial Path 8a-2 8b-2 8c-2 8d-2 8e-2 8a-2 8b-2 8c-2 8d-2 8e-2

0 1 1 1 1 1 1 1 1 1 1
1 8 324 21384 207 10374 8 200 2637 123 869
2 13200 9 48 6 546 1909 9 27 6 101
3 36 36 648 3933 31122 26 27 102 959 2527
4 14509 3 48 2 8 2043 3 34 2 8
5 748 3564 1944 15732 546 331 1662 291 2869 131
6 1 1 1 207 3458 1 1 1 134 292
7 2 2376 39 13 14 2 1158 27 13 14
8 12 108 7128 1311 17 12 67 879 338 14
9 24 432 21384 414 31122 18 243 2637 193 2502
10 37444 12 183 21 1092 2187 11 59 21 200
11 48 36 1296 5244 41496 35 27 188 956 3283
12 37818 9 171 2 42 2046 9 53 2 32
13 704 7128 2592 15732 1092 215 2131 290 2869 198
14 462 1 1 414 3458 216 1 1 184 292
15 22583 4752 156 24 39 2349 2074 55 24 27
16 528 216 7128 3933 61 155 126 879 948 35
17 9660 840 3320 2160 6588 281 113 349 196 348

Average 7655 1103 3320 3748 7282 658 437 473 547 604

Table 3 The Effect of Dominance (on Processing Time)

Instance
Bi-directional Prob Prob Prob Prob Prob Prob Prob Prob Prob Prob
TLTWPD 8a-2 8b-2 8c-2 8d-2 8e-2 8a-3 8b-3 8c-3 8d-3 8e-3

Optimal value 145.63 125.18 197.64 67.59 222.99 165.01 138.08 227.64 92.48 245.74
CPU time(s) without dominance 6.33 0.81 1.63 0.39 3.74 - 1.75 3.17 1.28 -
CPU time(s) with dominance 0.67 0.27 1.14 0.3 1.09 2.9 0.48 1.15 0.74 3.1

6.2. Bidirectional versus Monodirectional TLTWPD algorithm

In Table 4, we report the gains of using a bidirection search (column 5) over the monodirectional

search (column 3-4). Since all algorithms lead to the optimal value it is presented only once (column

2). However, the bidirectional search show greater potential power in terms of computation time

to solve the instances. The monodirectional version is hardly able to solve instances with more

than 9 requests and wide time windows within three minutes. This is mainly because of the fact
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that the number of labels that need to be processed in the bidirectional version is considerably less

compared to the monodirectional TLTWPD algorithm.

Table 4 Monodirectional Algorithm vs. Bidirectional Algorithm

Processing Time (s)
Instance Optimal Monodirectional Monodirectional Bidirectional

Value Forward Backward

Prob8a-1 120.72 3.83 5.34 0.47
Prob8b-1 76.41 1.12 0.8 0.21
Prob8c-1 134.18 2.51 1.96 0.46
Prob8d-1 30.78 0.9 1.43 0.18
Prob8e-1 192.84 5.05 3.02 0.7
Prob8a-2 145.63 8.36 8.89 0.67
Prob8b-2 125.18 5.26 4.86 0.27
Prob8c-2 197.64 4.44 3.47 1.14
Prob8d-2 67.59 2.22 1.1 0.3
Prob8e-2 222.99 6.57 3.44 1.09
Prob8a-3 165 65.45 46.97 2.9
Prob8b-3 138.08 13.2 6.48 0.48
Prob8c-3 227.64 5.3 4.64 1.15
Prob8d-3 92.48 6.85 3.23 0.74
Prob8e-3 245.74 21.81 121.2 3.1
Prob9a-1 47.53 0.73 0.67 0.28
Prob9b-1 129.82 11.21 7.01 0.68
Prob9c-1 212.41 59.3 14.69 1.09
Prob9d-1 125.34 14.78 16.14 0.33
Prob9e-1 124.22 59.89 34.56 0.56
Prob9a-2 92.44 7.54 13 2.25
Prob9b-2 159.82 115.92 117.56 3.33
Prob9c-2 276.76 319.32 159.42 4.9
Prob9d-2 137.98 92.13 73.13 0.68
Prob9e-2 124.22 254.17 109.36 0.79
Prob9a-3 152.26 316.32 467.78 79.64
Prob9b-3 189.82 191.46 252 5.89
Prob9c-3 299.16 587.99 824.32 24.74
Prob9d-3 151.51 164.56 196.07 1.14
Prob9e-3 139.59 571.54 538.02 2.08

6.3. Performance of the bidirectional TLTWPD algorithm

We now evaluate the performance of the bidirectional TLTWPD algorithm. Each instance with 10

requests is solved once with the proposed TLTWPD algorithm and once with MIP model described

in section 3 by using Gurobi 5.6.1 with its default settings. Table 5 indicates that Gurobi is able

to find the optimal solution, but in a substantially larger amount of time than the TLTWPD

algorithm. The average CPU time required by Gurobi is approximately 165.04 seconds where the

same statistic for the Bidirectional TLTWPD to produce the reported solutions is approximately

12.06 seconds.
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Table 5 Computational Results for the Instances with 10 Requests

Optimal Gurobi TLTWPD
Instance Value CPU seconds CPU seconds

Prob10a-1 55.28 8.77 0.98
Prob10b-1 134.78 7.75 3.37
Prob10c-1 222.69 26.82 4.07
Prob10d-1 186.75 9.98 0.56
Prob10e-1 143.49 10.02 1.34
Prob10a-2 117 9.05 1.39
Prob10b-2 214.28 8.78 7.21
Prob10c-2 310.25 55.8 36.21
Prob10d-2 191.81 48.42 1.73
Prob10e-2 173.49 35.88 2.02
Prob10a-3 163.92 8.52 8.19
Prob10b-3 244.28 1583.47 39.70
Prob10c-3 329.98 568.62 67.14
Prob10d-3 202.31 68.61 2.74
Prob10e-3 203.49 25.17 4.32

The results reported in Table 6 show that the algorithm is able to solve most of the instances

with up to 12 requests within 15 minutes. The wider the time windows the more time it takes

to obtain the optimal solutions, since wide time windows add more complexity to the proposed

problem by having a larger flexibility.

Table 6 Computational Results for the Instances with 11 and 12 Requests

Instance Optimal Value Time(s) Instance optimal value Time(s) Instance optimal value Time(s)

Prob11a-1 76.73 1.16 Prob11a-2 133.07 3.58 Prob11a-3 177.3 13.6
Prob11b-1 192.53 7.21 Prob11b-2 278.66 20.22 Prob11b-3 364.99 85.57
Prob11c-1 195.87 4.35 Prob11c-2 299.23 105.54 Prob11c-3 361.3 848.64
Prob11d-1 192 2.28 Prob11d-2 250.26 12.2 Prob11d-3 305.88 36.33
Prob11e-1 134.19 2.65 Prob11e-2 164.19 3.4 Prob11e-3 224.19 10.2
Prob12a-1 72.29 1.65 Prob12a-2 123.39 3.11 Prob12a-3 155.94 28.46
Prob12b-1 236.46 9.1 Prob12b-2 341.69 55.09 Prob12b-3 394.03 174.74
Prob12c-1 221.33 5.84 Prob12c-2 349.11 265.29 Prob12c-3 378.95 3778.36
Prob12d-1 194.45 5.82 Prob12d-2 269.93 25.74 Prob12d-3 288.5 99.27
Prob12e-1 196.85 4.67 Prob12e-2 226.85 5.34 Prob12e-3 256.85 16.96

In Table 7, most instances with up to 20 requests could be solved as well. Due to the memory

limit, some instances in this table cannot be solved with the current algorithm, especially the

instances with medium time windows. As can be seen the computation times can increase to several

days.
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Table 7 Instances with 13, 14, 15, 16, 17, 18, 19 and 20 Requests

Instance Optimal Value Time(s) Instance optimal value Time(s)

Prob13a-1 117.72 2.12 Prob13a-2 185.81 5.77
Prob13b-1 284.06 77.33 Prob13b-2 386.06 345.32
Prob13c-1 239.48 56.6 Prob13c-2 400.94 6829.21
Prob13d-1 244.65 3.71 Prob13d-2 309.76 39.67
Prob13e-1 194.33 4.63 Prob13e-2 224.33 7.22
Prob14a-1 118.59 2.17 Prob14a-2 187.33 10.92
Prob14b-1 236.46 407.86 Prob14b-2 388.09 579.7
Prob14c-1 245.74 258.16 Prob14c-2 449.36 362031.71
Prob14d-1 205.13 3.6 Prob14d-2 310.92 81
Prob14e-1 253.99 3.73 Prob14e-2 303.99 30.73
Prob15a-1 160.88 3.06 Prob15a-2 190.88 47.24
Prob15b-1 230.86 550.44 Prob15b-2 386.71 314.46
Prob15c-1 327.09 1112.3 Prob15c-2 430.39 2d5h
Prob15d-1 238.02 14.49 Prob15d-2 383.5 616.27
Prob15e-1 262.14 21.86 Prob15e-2 360.49 1763.32
Prob16a-1 181.12 16.24 Prob16a-2 263.53 1094.15
Prob16b-1 347.78 8926.75 Prob16b-2 526.44 1d6h
Prob16c-1 388.76 2206.04 Prob16c-2 569.35 3d5h
Prob16d-1 268.83 1128.9 Prob16d-2 429.68 14644.43
Prob16e-1 373.70 23.36 Prob16e-2 459.70 170.62
Prob17a-1 147.06 21.86 Prob17a-2 262.41 507.1
Prob17b-1 414.25 11213.97 Prob17b-2 - -
Prob17c-1 342.71 2483.01 Prob17c-2 - -
Prob17d-1 366.06 467.38 Prob17d-2 500.66 27402.66
Prob17e-1 430.95 8989.86 Prob17e-2 504.28 815.2
Prob18a-1 224.86 395.09 Prob18a-2 300.61 1700.65
Prob18b-1 356.25 1d15h Prob18b-2 - -
Prob18c-1 416.54 3477.76 Prob18c-2 - -
Prob18d-1 319.49 3358.58 Prob18d-2 538.98 31824.23
Prob18e-1 483.7 214.54 Prob18e-2 513.70 2168.91
Prob19a-1 273.52 450.31 Prob19a-2 338.61 49570.31
Prob19b-1 411.56 4903.78 Prob19b-2 - -
Prob19c-1 410.4 18616.45 Prob19c-2 - -
Prob19d-1 405.91 577.91 Prob19d-2 610.26 33924.18
Prob19e-1 501.88 438.87 Prob19e-2 541.09 10725.64
Prob20a-1 285.16 2316.52 Prob20a-2 438.67 41946.24
Prob20b-1 - - Prob20b-2 - -
Prob20c-1 413.22 11038.24 Prob20c-2 - -
Prob20d-1 467.49 3776.55 Prob20d-2 - -
Prob20e-1 501.88 869.77 Prob20e-2 649.88 81791.4

6.4. Performance of the restricted dynamic programming heuristic algorithm

We also have conducted computational experiments to analyze the solution quality produced by

restricted dynamic programming heuristic algorithm. In Table 7 we have seen that the exact

procedure has enormous computation times and problems with the memory restrictions. In Table

8 we solve the same instances but now with the restricted dynamic programming heuristic. The

restricted dynamic programming heuristic algorithm is run with different values for B.

Considering only the 60 instances for which we know the optimal solution, it turns out that

with a value of B = 1000 the algorithm leads in on average 24 seconds to the optimal solution for

45 (75%) of the 60 instances. With a value of B = 5000 this increases considerably to 93% of the

instances, but the average computation time is now tenfold (245s). Increasing the value of B to

10000 ensures that 97% of the instances are solved to optimality in on average 504 seconds.
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Table 8 Impact of Different B Values on Instances in Table 7

Optimal B=1000 B=5000 B= 10000
Instance Value Value Time(s) % gap Value Time(s) % gap Value Time(s) % gap

Prob14a-1 118.59 118.59 0.39 0 118.59 0.58 0 118.59 2.22 0
Prob14b-1 236.46 236.46 6.29 0 236.46 1.45 0 236.46 12.67 0
Prob14c-1 245.74 245.74 9 0 245.74 16.46 0 245.74 20.62 0
Prob14d-1 205.13 205.13 2.96 0 205.13 5.6 0 205.13 4.51 0
Prob14e-1 253.99 253.99 4.6 0 253.99 2.29 0 253.99 3.09 0
Prob14a-2 187.33 187.33 2.31 0 187.33 7.69 0 187.33 4.65 0
Prob14b-2 388.09 388.09 9.61 0 388.09 27.01 0 388.09 106.22 0
Prob14c-2 449.36 428.5 7.4 4.64 433.11 104.33 3.62 449.36 247.46 0
Prob14d-2 310.92 310.92 16.6 0 310.92 26.52 0 310.92 20.72 0
Prob14e-2 303.99 303.99 6.8 0 303.99 17.46 0 303.99 5.12 0
Prob15a-1 160.88 160.88 4.03 0 160.88 2.39 0 160.88 2.32 0
Prob15b-1 230.86 230.86 3.3 0 230.86 3.86 0 230.86 11.5 0
Prob15c-1 327.09 327.09 3.91 0 327.09 10.26 0 430.38 567.7 0
Prob15d-1 238.02 238.02 4.73 0 238.02 7.62 0 238.02 6.21 0
Prob15e-1 262.14 262.14 7.73 0 262.14 6.35 0 262.14 5.43 0
Prob15a-2 190.88 190.88 8.24 0 190.88 2.5 0 190.88 8.72 0
Prob15b-2 386.71 386.71 10.06 0 386.71 43.31 0 386.71 68.04 0
Prob15c-2 430.39 398.47 20.99 7.42 430.39 183.58 0 430.39 583.58 0
Prob15d-2 383.5 383.5 11.76 0 383.5 24.04 0 383.5 55.9 0
Prob15e-2 360.49 360.49 16.49 0 360.49 16.07 0 360.49 17.22 0
Prob16a-1 181.13 181.13 7.16 0 181.13 5.26 0 181.13 4.36 0
Prob16b-1 347.78 347.78 22.79 0 347.78 103.73 0 347.78 355.52 0
Prob16c-1 388.76 388.76 13.65 0 338.76 39.67 0 388.76 256.46 0
Prob16d-1 268.83 268.83 12.62 0 268.83 8.39 0 268.83 54.16 0
Prob16e-1 373.3 373.7 6.07 0 373.3 10.81 0 373.3 9.25 0
Prob16a-2 263.53 263.53 17.52 0 263.53 16.49 0 263.53 77.1 0
Prob16b-2 526.44 475.79 38.25 9.62 526.44 231.04 0 526.44 1034.59 0
Prob16c-2 569.35 520.41 13.5 8.6 565.01 336.06 0.76 567.93 819.13 0.25
Prob16d-2 429.88 429.68 16.08 0 429.68 161.07 0 429.68 262.52 0
Prob16e-2 459.7 459.7 9.88 0 459.7 83.96 0 459.7 45.08 0
Prob17a-1 147.06 147.06 5.77 0 147.06 6.76 0 147.06 5.66 0
Prob17b-1 414.25 414.25 33.87 0 414.25 538.03 0 414.25 1471.2 0
Prob17c-1 342.71 339.73 9.42 0.87 342.71 341.49 0 342.71 257.73 0
Prob17d-1 366.06 366.06 19.88 0 366.06 91.56 0 366.06 46.93 0
Prob17e-1 430.95 430.95 35.46 0 430.95 12.41 0 430.95 22.28 0
Prob17a-2 262.41 262.41 27.13 0 262.41 119.08 0 262.41 85.58 0
Prob17b-2 - 553.17 55.73 - 563.15 320.39 - 596.99 802.6 -
Prob17c-2 - 478.06 15.05 - 569.31 571.69 - 571.14 1146.89 -
Prob17d-2 500.66 493.24 23.03 1.48 500.66 299.23 0 500.66 700.54 0
Prob17e-2 504.28 504.28 14.27 0 504.28 168.7 0 504.28 238.02 0
Prob18a-1 224.86 224.86 7.52 0 224.86 15.20 0 224.86 8.39 0
Prob18b-1 356.25 259.13 27.41 27.26 356.25 570.05 0 356.25 1595.13 0
Prob18c-1 416.54 391.9 15.01 5.92 416.54 330.65 0 416.54 282.04 0
Prob18d-1 319.49 319.49 26.74 0 319.49 119.55 0 319.49 57.24 0
Prob18e-1 483.7 483.7 2.87 0 483.7 137.81 0 483.7 84.68 0
Prob18a-2 300.61 300.61 50.22 0 300.61 187.77 0 300.61 240.6 0
Prob18b-2 - 553.77 48.1 - 553.77 624.94 - 606.56 231.65 -
Prob18c-2 - 555.3 55.41 - 555.3 323.55 - 555.3 1035.26 -
Prob18d-2 538.98 517.61 32.2 0 538.98 312.07 0 538.98 475.17 0
Prob18e-2 513.7 513.7 38.36 0 483.7 210.43 0 513.7 438.61 0
Prob19a-1 273.52 273.52 10.09 0 273.52 27.25 0 273.52 31.11 0
Prob19b-1 411.56 267.56 23.59 34.99 411.56 499.79 0 411.56 1055.17 0
Prob19c-1 410.4 386.03 25.98 5.94 410.4 193.25 0 410.4 489.21 0
Prob19d-1 405.91 349.56 18.27 13.88 405.91 191.64 0 405.91 82.87 0
Prob19e-1 501.88 501.88 33.79 0 501.88 300.1 0 501.88 302.36 0
Prob19a-2 338.61 338.61 38.4 0 338.61 281.31 0 338.61 1074.03 0
Prob19b-2 - 561.04 57.88 - 563.56 584.45 - 592.09 1456.65 -
Prob19c-2 - 561.83 31.36 - 594.55 459.97 - 594.55 1101.69 -
Prob19d-2 610.26 564.01 44.24 7.58 575.79 547.33 5.65 610.26 1177.36 0
Prob19e-2 541.09 541.09 45.19 0 541.09 497.62 0 541.09 610.57 0
Prob20a-1 285.16 285.16 21.06 0 285.16 39 0 285.16 57.4 0
Prob20b-1 - 269.38 33.07 - 468.83 184.61 - 468.83 1709.1 -
Prob20c-1 413.22 381.96 17.18 7.56 413.22 468.99 0 413.22 334.41 0
Prob20d-1 467.49 459.49 23.81 1.71 467.49 321.94 0 467.49 740.09 0
Prob20e-1 501.88 501.88 43.37 0 501.88 1154.24 0 501.88 1902.5 0
Prob20a-2 438.67 438.67 99.84 0 438.67 601.08 0 438.67 1090.78 0
Prob20b-2 - 561.38 37.61 - 594.2 1020.78 - 594.2 1939.41 -
Prob20c-2 - 594.98 90.34 - 629.09 983.19 - 682.83 1020.53 -
Prob20d-2 - 642.82 91.93 - 645.45 898.51 - 645.61 3184.15 -
Prob20e-2 649.88 599.09 31.83 7.82 646.09 1403.8 0.58 646.2 2034.67 0.57
Average 23.96 2.08 245.05 0.15 504.18 0.01
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The two instances which were not solved to optimality had respectively a gap of 0.25 and 0.57.

This means that, compare to the TLTWPD, the average gap of restricted dynamic programming

heuristic algorithm over the 60 instances is just 0.01%.

Note that all the instances which the exact TLTWPD algorithm was not able to solve (e.g.

Prob19b− 2 in Table 7) can be solved within one hour with this restricted dynamic programming

algorithm.

Secondly, in Table 9, we presents the impact of different E values on the performances of the

algorithm with a fixed value for B = 5000. We set the values of E to n, 0.25n, 0.125n and fractional

values are rounded to its closed integer. The results indicate that the computation times decrease

if the value for E decreases. As can be seen in Table 9 the solution quality is almost maintained

if the value of E is set equal to 0.25n, except for instance Prb19a − 1. Moreover, the solution

of Prb19d − 2 is even improved. Remember from Table 8 that this instance was not solved to

optimality with B = 5000 and E = n.

When we further reduce E to 0.125n, the computation times are about 33% of the original

computation times with E = n. However, the solution quality is deteriorated in most cases. It is

also worth to mention that the solution quality of two instances are improved. That is because

smaller values for E allow only label expansions to near neighbors, which sometimes can escape

the local optimum by including ”unpromising” labels for further iterations.

Table 9 Impact of Different E Values on Instances with 19 and 20 Requests when B=5000

E=n E=0.25n E=0.125n
Instance Value Time(s) Value Time(s) % gap Value Time(s) % gap

Prob19a-1 273.52 27.25 242.5 116.52 11.34 242.5 27.67 11.34
Prob19b-1 411.56 499.79 411.56 102.75 0 411.56 50.18 0
Prob19c-1 410.4 193.25 410.4 132.25 0 360.4 36.52 12.18
Prob19d-1 405.91 191.64 405.91 114.92 0 405.91 50.2 0
Prob19e-1 501.88 300.1 501.88 216.36 0 501.88 61.19 0
Prob19a-2 338.61 281.31 338.61 175.06 0 334.61 40.11 1.18
Prob19b-2 592.09 584.45 592.09 424.15 0 548.59 118.58 7.35
Prob19c-2 594.55 459.97 594.55 333.79 0 574.93 318.25 3.3
Prob19d-2 605.31 547.33 610.26 470.95 -0.82 610.26 332.95 -0.82
Prob19e-2 541.09 497.62 541.09 413.32 0 531.88 176.05 1.7
Prob20a-1 285.16 39 285.16 29.96 0 275.22 27.63 3.49
Prob20b-1 468.83 184.61 468.83 122.98 0 468.83 36.99 0
Prob20c-1 413.22 468.99 413.22 313.76 0 413.22 36.26 0
Prob20d-1 467.49 321.94 467.49 181.31 0 467.49 64.54 0
Prob20e-1 501.88 262.46 501.88 122.93 0 457.88 79.36 8.77
Prob20a-2 438.67 601.08 438.67 338.77 0 438.67 64.11 0
Prob20b-2 594.2 1020.78 594.2 468.5 0 582.63 167.84 1.95
Prob20c-2 629.09 983.19 629.09 572.74 0 623.52 262.62 0.89
Prob20d-2 645.61 898.51 645.61 676.6 0 662.95 289.64 -2.69
Prob20e-2 649.88 1403.8 649.88 623.82 0 593.88 237.47 8.62
Average 488.35 297.57 0.53 123.91 2.86
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7. Conclusion

This paper presents the time-dependent profitable pickup and delivery traveling salesman problem

with time windows, which combines the characteristics of the traveling salesman problem with

pickup and delivery with the traveling salesman problem with profits. Moreover, the time-varying

traveling speed is considered to capture the real world problem of road congestion.

We proposed a tailored labeling algorithm with time windows and pickup and delivery for solv-

ing the TDPPDTSPTW. Considering time-dependent travel times increases the complexity of the

problem. New and strong dominance rules are presented to reduce the number of labels. Computa-

tional results show that most instances with up to 20 requests can be solved to optimality within

the given memory limit, but also that several instances with only 14 requests remain unsolved.

To reduce the computation time and memory usage a restricted dynamic programming heuristic

algorithm is implemented. This heuristic is able to find solutions for all instances with good qual-

ities (on average 0.01% gap for instances of which we know the optimal solution) and reasonable

computational time (on average 504 seconds).

Obviously, the performance of our exact algorithm critically depends on the tailored dominance

criterion that we generated. It shows great potential when there are significant profits varieties

among all the requests and relatively tight time windows attached to all the vertices. Finding more

efficient dominance criteria is important in future research.

In addition, solving realistic extensions of the TDPPDTSPTW also seems an attractive research

direction. More specifically, the time-dependent variant of the pickup and delivery problem with

time windows (TDPDPTW) and the time-dependent team orienteering problem (TDTOP) are

very interesting as it aims to optimize the routes of a fleet of vehicles, instead of one vehicle only.

When column generation is utilized to solve those two problems in an exact way, our proposed

problem can be seen as the pricing problem.
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Appendix

PROOF OF PROPOSITION 4.1. Consider two labels L1
f and L2

f that satisfy the six conditions in

proposition 4.1. We need to show that (1) any feasible extention of L2
f to destination depot 2n+ 1 is also a

feasible extention of L1
f and (2) for any feasible extention L of L2

f , the value of obj(L1
f

⊕
L) is larger than

or equal to the value of obj(L2
f

⊕
L).

Regarding the first point, let L be a feasible extention of L2
f . If such a path does not exist then obviously

one can remove label L2
f . We have that (a) the path p(L1

f

⊕
L) is elementary because of condition 2 and
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3, (b) p(L1
f

⊕
L) is not violating any time windows if the origin depot 0 is left at any time t ∈ dom(L2

f )

because of condition 4, 5 and FIFO assumption.

To show the second point, consider a feasible path p extending p(L2
f ) to 2n+ 1 and let L2∗

f =L2
f

⊕
L and

t0 = argmint∈Dom(L2∗
f

){δL2∗
f

(t)− t}. It is the optimal departure time form the depot given the path p(L2∗
f ).

The reduced cost of the path is

obj(L2∗
f ) = r(L2∗

f )− (δL2∗
f

(t0)− t0) = (r(L2
f ) + r(v(L)))− (δL2∗

f
(t0)− t0) (43)

Here r(L) is the sum of the profits associated with the requests nodes visited along path p. Now consider

the same path p to extend label L1
f . Departing origin depot 0 at time t0 is feasible for path p(L1∗

f ) (using

condition 4 as well as condition 5 and FIFO assumption) and induces an upper bound on the reduced cost

of L1∗
f :

obj(L1∗
f )≥ r(L1∗

f )− (δL1∗
f

(t0)− t0) (44)

Condition 5 implies that δL1
f
(t0)≤ δL2

f
(t0), and using the FIFO property this means that δL1∗

f
(t0)≤ δL2∗

f
(t0).

We also have that r(L1∗
f ) = r(L1

f )+r(L) = r(L2
f )+r(L) = r(L2∗

f ) because of condition 2 and 3. In combination

this means that

obj(L1∗
f )≥ r(L1∗

f )− (δL1∗
f

(t0)− t0)≥ r(L2∗
f )− (δL2∗

f
(t0)− t0) = obj(L2∗

f ) (45)

�

PROOF OF PROPOSITION 4.3. Similar to PROPOSITION 4.2, and by using conditions 2, 3 and 4, we

can prove that any feasible extention to L2
b is also feasible for L1

b

To show that the objective value of any path p(L1
b

⊕
L) is larger than or equal to the objective value of path

p(L2
b

⊕
L) for any feasible extention L of L2

b , we let L2∗
b =L2

b

⊕
L, and t∗ = argmint∈dom(L2∗

b
){δ(L2∗

b
)(t)− t},

that is, the optimal departure time from the depot given the path corresponding to L2∗
b . The objective value

of the path is

obj(L2∗
b ) = r(L2∗

b )− (δL2∗
b

(t∗)− t∗) = r(L2
f ) + r(L)− (δL2∗

f
(t∗)− t∗) (46)

Here r(L) is the sum of the profits associated with the nodes visited along the extention L. Now consider

the path p(L1∗
b ) = p(L1

b

⊕
L), it depart from the origin depot at time t∗ along path p(L∗b) and reach the node

v(L2
b ) at the same time as path p(L2∗

b ), but may arrive to node 2n+ 1 earlier or later. Therefore, departure

time t∗ at the depot will provide an upper bound on the objective value of path p(L1∗
b ). That is

obj(L1∗
f ) = r(L1∗

f )− (δL1∗
f

(t10)− t10) (47)

Consequently:

r(L1∗
b )− (δL1∗

b
(t∗)− t∗)

≥ (r(L1
b ) + r(L))− (δL2∗

b
(t∗)− t∗−φ(L1

b ,L
2
b )})

≥ (r(L2
b )−φ(L1

b ,L
2
b ) + r(L))− (δL2∗

b
(t∗)− t∗−φ(L1

b ,L
2
b ))

= (r(L2∗
b ) + r(L))− (δL2∗

f
(t∗)− t∗) = obj(L2∗

b )

(48)
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Therefore, we have that obj(L1∗
f )≥ obj(L2∗

f ). Note that the first inequality uses the definition of φ(L1
b ,L

2
b )

and the second inequality uses condition 5 of Proposition 4.3. �
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