N
7 Beta

Research School for Operations
Management and Logistics

Reasoning About Property Preservation
in Adaptive Case Management

Rik Eshuis
Richard Hull
Mengfei Yi

Beta Working Paper series 484

BETA publicatie WP 484 (working

paper)
ISBN
ISSN
NUR 804

Eindhoven August 2015

Reasoning About Property Preservation
in Adaptive Case Management

Rik Eshuis!, Richard Hull?, and Mengfei Yi!

1 School of Industrial Engineering, Eindhoven University of Technology, Netherlands
2 IBM T J Watson Research Center, USA

Abstract. Adaptive Case Management (ACM) has emerged as a key
BPM technology for supporting unstructured business process, and has
been used to support flexible services orchestration. A key problem in
ACM is that case schemas need to be changed to best fit the case at hand.
Such changes are ad-hoc, and may result in schemas that do not reflect
the intended logic or properties. This paper presents a formal approach
for reasoning about which properties of a case schema are preserved after
a modification, and describes change operations that are guaranteed to
preserve certain properties. The Case Management model used here is
a variant of the Guard-Stage-Milestone model for declarative business
artifacts. Applicability is illustrated using a real-life example.

1 Introduction

Case management has been introduced to support knowledge intensive business
processes, which are organized around data artifacts [28,8,24]. Case manage-
ment often needs to support flexible business processes that are performed by
knowledge workers. So case management schemas must be easy to change. Adap-
tive Case Management (ACM) has been proposed as umbrella term for flexible
case management [22]. Case Management has been applied in many knowledge-
worker driven application areas, including fraud detection, healthcare, education,
and social work, and has also been used as a basis to support flexible services
orchestration to enable collaboration between enterprises (e.g., [17,19]).

Designing case management models is hard. The presence of business rules
may make it difficult to assess and predict the behavior specified in a case man-
agement model or schema. However, changing case management schemas is even
harder. Unwanted behavior such as logical errors can be easily introduced by
changing a case management model. More generally, a change could have unde-
sirable side effects. Therefore, certain user-defined properties should be preserved
in the changed schema.

This paper studies conditions under which case management schemas can be
changed while preserving specified properties. We use the Guard-Stage-Milestone
(GSM) model; GSM schemas declaratively specify life-cycles of business artifacts.
The meta-model underlying the OMG standard Case Management Model and
Notation (CMMN) [3] is based on GSM. In this paper we use a restricted variant
of the GSM model, called Fully Acyclic GSM, to enable a focus on the key
ideas and the development of informative and useful results. We leave for future
research the generalization of the approach to richer variants of GSM.

The paper makes three fundamental contributions. First, we develop a pre-
cise definition for testing the preservation of properties. This is based on the
notion of conditional emulatability, which allows to specify a condition under
which executions of one GSM schema can be imitated by executions of a second
GSM schema, including having exactly the same behavior on selected output
attributes. Second, we develop a general-purpose “Lifting Lemma”. Speaking
intuitively, this provides a mechanism for isolating changes to a “local area” in a
GSM schema. The designer can prove preservation properties at the local level,
and then apply the Lifting Lemma to infer the preservation of properties at the
“global level”. The Lifting Lemma can also be used to specify best practices for
schema change operations, which ensure a form of modularity and guarantee the
preservation of selected properties. And third, we use the Lifting Lemma to
show how key change operations can be defined so as to guarantee the preser-
vation of certain properties. Importantly, the theoretical work is motivated by
examples arising in a real-world application.

The remainder of this paper is structured as follows. Section 2 introduces
the problem of changing GSM schemas based on a real-world example, and illus-
trates change operations that preserve specified properties. Section 3 formally
introduces the GSM model used in this paper. Section 4 develops the Lifting
Lemma, and Section 5 illustrates applications of the Lifting Lemma by defining
general-purpose change operations that preserve selected properties. Section 6
describes related work, and Section 7 offers brief conclusions.

2 Motivation

To introduce the problem of variability, we consider an example based on a real-
world process from an international technology company, which has offices in
different geographic regions of the world. In the process, business criteria for
partner contracts are assessed. Each region has its own flavor of the process.

Example 2.1: The base process, called here BCAbase, is used for the main region
and has the following activities (see Figure 1). First, data is gathered needed to
perform the assessment. Next, two activities are performed in parallel as a pre-
check. The credit is checked to ensure that the credit limit of the partner is still
valid. In parallel, the past performance of the partner is evaluated and checked.
If both checks are successful, the pre-check succeeds and a detailed check is
performed, which may either succeed or fail. If the pre-check has succeeded
within three weeks, a bonus is paid to the team managing the deal.

Fig. 1 shows the lifecycle part of the GSM schema for this process. The lifecy-
cle contains stages (rounded rectangles) which represent the business activities
(in this paper, these are essentially (atomic) tasks that are not explicilty mod-
eled within the GSM schema). Guards (diamonds) specify under which condition
work in a stage is launched. Milestones (circles) represent business objectives
that are achieved by stages to which they are attached or by important events.
Guards and milestones have sentries (business rules) that specify when they are
executed; these are shown in Tables 1 and 2. Sentries implicitly specify depen-
dencies between stages and milestones: for instance, the sentry of the guard of
stage Credit Check states that the stage is opened if milestone IDGS has been

- Credit Check b
employee H PCS H
Qoo D

: e . S Detailed () OCS
- H . RALTTTPRR Check
Business N . Dcu
...... IDGS. .
ity nitel Data peﬁo,mance BPECS -
Gathering IDGU E\g#ueacllion __BPECU H

: i _.OFCU
ﬁ Fast ..} | Team Bonus

> Turnaround " <> Pay 8PS
Bonus Eligibility

Fig. 1. Main Business Criteria Assessment process (BCA?**¢)

Stage Guard

Initial Data Gathering init

Credit Check IDGS

Business Performance Evaluation Check IDGS

Detailed Check PCS

Fast Turnaround Business Eligibility IDGS

Team Bonus Pay C:Fast Turnaround Business Eligibility

A fast_turnaround A PCS
Table 1. Stages and guards for BCA®®*¢ in Fig. 1

achieved, so the guard of Credit Check depends on IDGS. The dependencies are
graphically depicted using dashed arrows in Fig. 1. (Our diagramatic convention
does not explictly indicate how multiple milestones are combined in a sentry,
e.g., the sentry for PCS; please refer to the tables.) Rectangles represent data
attributes. A dashed line from a stage to a data attribute indicates that the stage
computes a value for the data attribute. To compare different GSM schemas, we
make use of output attributes, depicted in bold italics, which can be milestones
or data attributes. Some attributes are not shown (spez., fast_turnaround com-
puted by Fast Turnaround Business Eligibility and BP_good computed by Business
Performance Evaluation Check).

The behavior of GSM schemas is driven by event occurrences, which are
typically the result of completion of a stage execution. In response to an event
occurrence, a B(usiness)-step is taken, in which as many sentries as possible
are applied. For instance, suppose that in some “snapshot”, i.e., the state of an
artifact instance at some time during its execution, the milestone BPECS is true
and stages Credit Check and Fast Turnaround Bonus Eligibility are the only open
stages. If stage completion event C:Credit Check now occurs with value 9 for
rating, then milestone CCS gets achieved. The milestone PCS also gets achieved,
and also stage Detailed Check is opened (and thus, the external activity associated
with that stage is started). At this point no further sentries can be applied, the
B-step is finished, and the new snapshot has been computed. (See also Example
3.7 below.) O

We next present three variations on this example.

Milestone Full Name Sentry

IDGS Initial Data Gathering Successful ~ C:Initial Data Gathering A ...

IDGU Initial Data Gathering Unsuccessful C:Initial Data Gathering A ...

CCS Credit Check Successful C:Credit Check A rating > 8

CCU Credit Check Unsuccessful C:Credit Check A rating < 8

BPECS Business Performance Evaluation = C:Business Performance Evaluation
Check Successful Check N BP_good

BPECU Business Performance Evaluation C:Business Performance Evaluation
Check Unsuccessful Check A - BP_good

PCS Pre-checks Successful CCS A BPECS

PCU Pre-checks Unsuccessful CCU v BPECU

DCS Detailed Check Successful C:Detailed Check A ...

DCU Detailed Check Unsuccessful C:Detailed Check A ...

TBPS Team Bonus Pay Successful C:Team Bonus Pay

Table 2. Milestones for BCAY**¢ in Fig. 1

| conmncaion]
employee Qpcs B
count
—— & Detailed () DCS
Check
IDGS Business N . bcu
\nl(. Initial Data § Performance {_) BPECS

Gathe Evaluation
o 106y, Check BPECU

Fast 5 Team Bonus
Turnaround Pay TBPS
revenue Bonus Ehglblhty

Fig. 2. Process BCA?! resulting after applying change of Example 2.3

Example 2.2: In another region, the business performance of a partner is eval-
uated and checked only if the partner has more than 300 employees. The GSM
schema of Fig. 1 is changed as follows (the other sentries are not changed):

— The guard of stage Business Performance Evaluation Check becomes IDGS A
employee_count > 300.
— Milestone PCS can be achieved via extra sentry CCS Aemployee_count < 300.

Now the question arises how the change affects cases. We would like to assert
that for partners with 300 or more employees, the new GSM schema emulates
the behavior of the old GSM schema, and the old GSM schema emulates that
of the new, so for the same cases, the same output results in both schemas.
(Emulates’ is defined precisely in Definition 4.4 below.) For partners with less
than 300 employees, this assertion does not hold. In particular, it may be that a
company with say 290 employees and a poor performance is accepted under the
new schema but rejected under the old schema. Example 5.3 will illustrate how
the formalism and results of this paper can be applied to prove these properties.
O

Example 2.3: Consider again the base process BCA’*¢ of Example 2.1. In yet

another region, the credit of the partner is not checked. Schema BCA’®*¢ is

’ Credit Check ccu . E
count i .)
: " . & Detailed () DCS
: Tt Check
Business N . peu
...... D .
Olmt Initial Data : Performance BPECS :
Gathering IDGU' E\g:‘iasl\(on ..BPECU :
s PR A “Amcs
i> Market @)]
N Check AMCU_o :

annual
revenue
" Fast "t | Team Bonus
“> Turnaround 1 <> Pay TBPS
Bonus Eligibility

Fig. 3. Process BCA™® after applying change of Example 2.4

changed by deleting stage Credit check and milestones CCS and CCU, as visual-
ized in BCA® in Fig. 2. The sentries of milestones PCS and PCU need to change
as follows (the other sentries are not changed):

— The sentry of milestone PCS becomes BPECS.
— The sentry of milestone PCU becomes BPECU.

To characterize the change, we would like to assert that for cases under the
old schema for which the credit check was successful, the new schema emulates
the old schema. For cases of partners for which the credit check was unsuccessful
in Fig. 1 there is a difference: for those cases the detailed check can be performed
as in Fig. 2. This example will be revisited in Examples 4.5 and 4.11. O

Example 2.4: Consider again the base process BCA**¢_ In a fourth region, the
market addressed by the partner is assessed. Stage Addressable Market Check
is inserted with milestones AMCS (Addressable Market Check Successful) and
AMCU (Addressable Market Check Unsuccessful); see BCA™* in Fig. 3. The
sentries need to change as follows (the other sentries are not changed):

— The guard of stage Addressable Market Check becomes IGDSAannual_revenue >
$500K;

— The sentry of milestone PCS is replaced with two sentries: CCS A BPECS A
AMCS and CCS A BPECS A annual_revenue < $500K.

— The sentry of milestone PCU becomes CCU v BPECU v AMCU.

The change assertion is that for cases in which the annual revenue is lower
than $500K, the old schema emulates the new schema and vice versa. Also for
cases in which the annual revenue is higher or equal to $500K and the milestone
AMCS gets achieved, the old and the new schema emulate each other. This will
be revisited in Example 5.12. O

In the remainder of this paper, we develop formal machinery that precisely
defines the impact of each change on the GSM schema and also characterizes
which properties of cases are preserved when a change is applied. We revisit
these examples to illustrate the salient points.

3 The Formal GSM Model

This section presents formal definitions for the variant of GSM used in this paper.
This includes a specific notion of “executions” of a GSM schema, that will be
important in our reasoning about property preservation. It is assumed that the
reader is familiar with the basic aspects of the formal definitions of GSM (e.g.,
as in [16,6,9]).

The development here imposes a family of restrictions on the GSM variants
of, e.g., [16,9], to enable the development of interesting theoretical properties
concerning schema evolution. Speaking intuitively, the key restrictions and vari-
ations for GSM studied in this paper are as follows. (See below for more detail.)
The first two restrictions are primarily cosmetic and do not significantly im-
pact the expressive power of GSM schemas, and the third is a variant studied
in previous papers. The other ones are more impactful, and enable a form of
monotonicity the enables the results about property preservation developed in
this paper. These are inspired by the Case Management model of [28].

1. Explicit modeling of “output attributes: This is done to streamline notions of

equivalence between schemas.

Flat stage hierarchy, i.e., no nesting of stages.

Single artifact type and single artifact instance.

3. Sentries without events are triggered when they change value. This semantics
is also used in [9].

4. Stage attributes not permitted in sentries. (Stage completion events are mod-

eled and can trigger sentries. Also, a stage’s completion can be tested by

testing whether its output attributes have assigned values.)

Acyclicity of the dependency graph.

6. Unique attribute writer: For each data attribute there is exactly one stage
that can assign values to that attribute.

7. Strict sentry satisfaction: Intuitively, this ensures that a sentry is not as-
signed a value until values have been assigned to a set of relevant attributes
(see below).

8. No terminating sentries for stages, mo invalidating sentries for milestones:
This means that the sole mechanism for aborting the execution of a stage is
a roll-back.

9. Restricted form of rollback, that is compliant with the dependency graph.

o

o

As will be seen, the combination of these restrictions will also imply the following:

10. Assign once: Except in the case of roll-back, each attribute starts with null
value, and is assigned a non-null value at most once during execution.

Generalization and adaptation of these results to richer variants of GSM, and to
the full GSM model, are left for future research.

These assumptions enable a streamlined approach for the formal definitions
of GSM schema and operational semantics. Because there is no stage hierarchy,
in this paper we are able to blur the distinction between stages and the tasks
that they contain.

We assume three infinite disjoint sets of names, for data attributes, for mile-
stones, and for stages. Each data attibute a has a type type(a) which is scalar

(e.g., string, character, integer, float, etc.), or is a set of records of scalars. Mile-
stones can be used as attributes with type Boolean. Both data attributes and
milestones may take the unassigned (or null) value (denoted).

We assume a condition language C that includes fixed predicates over scalars
(e.g., ‘<’ over integers or floats), and Boolean connectives. Quantification and
testing set membership is supported for working with the set-valued attributes.
The condition formulas may involve stage, milestone, and data attributes. All
attributes start with undefined value (). Milestones will take the value True if
one of their sentries go true. Stages will take the value True at the time when they
complete. (This is a variation on the traditional behavior of stage attributes.)

A sentry ¢ has one of the three forms: “p”, “C:S”, or “C:S A ¢”, where ¢ is
a condition formula ranging over the attributes of I'. Here “C:S” is called the
completion event for stage S. Also, C:S (if present) is the completion event for
and ¢ (if present) is the formula for ¢. Sentries having the first form are called
eventless, and sentries having the latter two forms are called event-based.

Definition 3.1: A GSM schema is a 5-tuple I' = (Att = Atty U Att,, U
Attg, Mstart, Attout, sen, sig) where:

Atty is a finite set of data attributes.

Att,, is a finite set of milestone attributes.

Attg is a finite set of stage attributes.

Mgtart € Atty, is called the start milestone. It is used as a mechanism for

launching an execution of I'.

5. Attyyr C Attyg U Att,, is the set of output attributes for I'. This set is also
denoted as out(I).

6. The sentry assignment sen is a function from AttsU (att,, — {mstart }) to sets
of sentries with formulas in the condition language C ranging over Att, and
such that if there is a completion event C:S then S € Attg. Each element of
set sen(v) for v € Attg U Att,, is called a sentry of v.

7. The signature assignment sig is a function from Attg to pairs (I, O) of finite

sets of attributes from Atty, i.e., sig : Attg — P(Atty) x Pn(Atty). If

sig(S) = (I,0), then we denote I as sig,,(5), called the input of S, and

denote O as sig,,.(S), called the output of S.

= oo =

Definition 3.2: Let I' = (Att = Attg U Att,, U Atls, Mgtart, Altout, Sen, sig) be a
GSM schema. The dependency graph of I', denoted DG(I"), is a directed graph
(V, E) where

1. The set of vertices V = Attg U Att,,.

2. For m € Att,, and v € V, (m,v) € E if the attribute m occurs in the sentry
sen(v) of (milestone or stage) v.

3. For S € Attg and v € V, (S,v) € E if some attribute in sig,,,(S) occurs in
a sentry in sen(v).

4. For S, 8" € Atts, (S,S8") € FE if sig,,,(S) N sig,,(S") # 0, i.e, if some output
of S is an input of S’.

Schema I' is Fully Acyclic if DG(I") is a directed acyclic graph. In this case we
say that I" is an FA-GSM schema.

Note that for a GSM schema I', there is no incoming edge for the start
milestone in DG(I"). This is because the start milestone has no sentry.

We comment further on differences between the GSM variant used here and
the variants of previous work, e.g., [6,9]. If I" is FA-GSM, then what about the
polarized dependency graph of I" as defined in the earlier work? First, because
there are no invalidating sentries for milestones, nor terminating sentries for
stages, each node in PDG(I") has positive polarity. Second, because the depen-
dency graph of I" is acyclic, so is the polarized dependency graph. In particular,
each FA-GSM schema is a GSM schema in the sense of the earlier work. Fur-
ther, the equivalence theorem for B-steps developed there also holds for FA-GSM
schemas.

Definition 3.3: For a GSM schema I' = (Att = AttgUAtt,,UAtts, Mmsart, Attout,
sen, sig) a snapshot is a mapping o from Att into values of appropriate type
(where some attributes may be assigned the null value L). For milestone and
stage attributes, the only permitted values are 1 and True.

In the GSM model used here, milestone and stage attributes will never take
the value False. This is because such attributes will remain undefined until they
become true. We now present the definition of strict satisfaction of a sentry for
a stage or milestone.

Definition 3.4: Let I' = (Att = Attg U Att,, U Atts, Mstart, Attout, S€N, $ig) be a
GSM schema. Let g be a sentry for miletone m, and let ¢ be the formula of u.
Given a snapshot o of I' (where some attributes may have undefined value), ¢
is strictly satisfied by o, denoted o =51t ¢, if o is non-null for each attribute
A occurring in ¢, and if ¢ is satisfied by o.

Now let ¢ be the formula of a sentry for a stage S. For snapshot o of I'; ¢
is strictly satisfied for S by o, denoted o ="t ¢, if (a) o is non-null for each
attribute in sig;,(S), (b) o is non-null for each attribute occurring in ¢, and (c)
p is satisfied by o.

In particular, if o E£7" ¢, then each input attribute for S is defined, and

so S can be launched. In this paper we focus on strict satisfaction, and refer to
this simply as “satisfaction”.

Remark 3.5: In the above semantics, the formula —(z = 1) will evaluate to
False if x is undefined. Under another form of semantics for logics that include
undefined attribute values, the formula will take the value of True for the case
where x is undefined. Note also that under the above semantics, a formula z = =
will evaluate to false if z has null value, and will evaluate to true of x has a
non-null value. O

The notion of B-step for a FA-GSM schema I" and snapshot o is defined as in
[6,9]. Further, it can be verified that the basic equivalence results from [6] apply
to FA-GSM schemas. In particular, B-steps computed using the incremental
semantics satisfy the Church-Rosser property, i.e., two B-steps that start with the
same snapshot and same triggering event will have the same final snapshot and
same generated events. In this paper we generally use the incremental semantics
when studying a B-step. A formalism for studying the properties of executions
according to the incremental semantics is presented next.

Definition 3.6: Let I' = (Att = Atty U Att,, U Atts, Mggart, Attout, sen, sig) be
an FA-GSM schema. An ezecution of I is a sequence

£ = (Oinit: 00,01, B1,01,..., 0, B, 0p)
where

1. ;i is a snapshot of I' with all attributes having null-value except for mggart,
which has value True.
2. For each i € [1..n],

(a) foreach j € [2..n] with j # i, stage(B;) # stage(B;), where stage(S(cq, ...,
¢n)) = S for each expression having the form S(cy,...,¢,) where S €
Attg.

(b) o; is a snapshot of I'.

(c) If i € [2..n], then o; is the resulting snapshot of the the B-step starting
from o0;_7 and incorporating the completion of stage S with payload
c1,...,¢p where 5, = S(cq,...,¢p). If i € [2.n — 1], then «;41 is the set
of stages lauched during that snapshot.

(d) For the case of i = 0, og is the snapshot resulting from a B-step applied
to the initial snapshot o;,;; where mgar¢ has transitioned from L to
True, and «a; is the set of stages launched by that B-step.

The set of executions of I" is denoted Exec(I)

The above execution £ is terminal if the B-step resulting from the application
of event C:3,, launches no stages, and if for each stage S that was launched, there
is a f; with stage(8;) = S (that is, each launched stage eventually completes).
The set of terminal executions is denoted TermEzec(I).

In an execution £ having the form as above, it can be shown that for each
i€[l.n],

. -

1. each stage in «; does not appear in Uisioy.

2. B is an expression of form S(cy,...,¢,) where S is a stage name in U%_; o,
and ¢1,...,cp, are values for the attributes in sig,,,(S).

In the case of a terminal execution 0y, 00, @1, f1, - - -, 0n, the set of stages
mentioned in {f,...,B,} will equal the set UT«;. Also, no sentry will be true
in 0,, i.e., no sentry can be fired to form a B-step from o,. (This is true in
part because we are using the “becomes true” semantics for eventless sentries.)
Thus, a terminal execution cannot be extended, and corresponds intuitively to
a complete execution of one instance of I'.

Example 3.7: We illustrate the notion of execution by revisiting Example
2.1 and the B-step described there. Snapshots are denoted here by listing all
milestones that are true, all stages that are open, and the value of each defined
data attribute. In each execution of BCA**¢, gy = {Initial Data Gathering}. After
that stage completes, we might arrive at o1 that additionally has milestone IDGS
true, and each of Credit Check, Business Performance Evaluation Check, and Fast

10

Turnaround Bonus Eligibility open. Also, as holds these three stage names. The
next steps of the execution might be as follows.

B2 = C:Business Performance Evaluation Check
o9 = {init, IDGS, BPECS,
Credit Check, Fast Turnaround Bonus Eligibility,
employee_count : 1200, annual_revenue : $700K, BP_good : True}

a3 — @
B3 = C:Credit Check
o3 = {init, IDGS, BPECS, CCS, PCS,

Fast Turnaround Bonus Eligibility, Detailed Check,
employee_count : 1200, annual_revenue : $700K,
rating : 9, BP_good : True, }
ay = {Detailed Check}

The B-step of Example 2.1 occurs from 3 to o3. O

4 Reasoning about GSM executions

This section develops tools for reasoning about GSM executions, including com-
paring the executions supported by different FA-GSM schemas. The first sub-
section introduces the notion of stage i/o assignments, used to formally study
the possible behaviors of stage executions. The second subsection defines condi-
tional emulation, which provides the basis for formally comparing the behaviors
of FA-GSM schemas. And the third subsection presents the Lifting Lemma.

4.1 Stage i/o assignments

A primary goal of this paper is to study the preservation of properties when
transforming an FA-GSM schema I'! into a related FA-GSM schema I'2. To
accomplish this we study properties of elements of Ezec(I'!) vis-a-vis elements
of Ezec(I'?). Non-determinism in executions of an FA-GSM I' may lead to dif-
ferent outcomes for the same input, which complicates a fair comparison among
executions of different schemas. There are two ways that non-determinism arises:

Different stage outputs: Since many stages correspond to human activities,
the outputs may vary due to a variety of factors that are not explicitly
available in the snapshot that launched the stage containing that stage.

Different stage completion timing: Because sentries may include stage com-
pletion events, there may be “race” conditions under which a sentry does or
does not fire. For example, consider sentry ¢ = C:S A ¢. Suppose that in a
particular execution £ stage S completes before all variables in ¢ have be-
come defined. Then v can never be triggered in £. In contrast, if S completes
after all variables in (¢ have become defined then i might trigger in &.

To enable “apples to apples” comparisons of executions of I" and I, we shall
use conditions that accomodate these two causes of non-determinism.

The next definition allows us to focus on pairs of executions for which all
shared stages have the same behavior. In essence, this enables us to assume that

11

the stages are “deterministic” for a particular comparison. (For this definition,
recall that there is no stage nesting, and so we can blur the distinction between
a stage and the task that it contains.)

Definition 4.1: Given FA-GSM schema I" = (Att = Attq U Att,, U Attg, Mstart,
Attoyt, sen, sig), a stage i/o assignment is a function 7 with domain Attg such
that for each S € Attg, 7[S] : $ig;,,(S) = $ig,u:(S), that is, 7[S] is a function
whose signature matches the signature of S in I
An execution & = oypit, 00,1, B1,-..,0, of I'is compliant with 7 if for each
€ [L.n], if B; = C:S(c1,...,cp) then the values ci,...,¢, correspond to the
output of 7(5) applied to values that o;_; assigns to the input attributes of S.
The set of executions of I" that are compliant with 7 is denoted as Ezec(l, 7).

Example 4.2: Let IDG denote stage Initial Data Gathering of BCA*®*¢, and BPEC
denote Business Performance Evaluation Check. In one stage i/o assignment Tagc
for the ABC company, we might have

Tagc[IDG](employee_count) = 1200
Tagc[IDG](annual_revenue) = $ 500K
Tasc[BPEC](BP_good) = True

Because the evaluations of business performance may be subjective, a differ-
ent stage i/o assignment Tpg. might arise, with TAgc[IDG] = 7agc[IDG] but
Tasc|BPEC](BP_good) = Fualse. O

The following result states that if two executions of I" are compliant with the
same stage i/o assignment, and it the order of stage completions is the same,
then they are identical in all other ways as well. In other words, the full range
of nondeterminism in GSM executions can be controlled by holding the stage
behaviors and the relative timing of stage completion fixed.

Lemma 4.3: Let I be an FA-GSM schema and 7 a stage i/o assignment for I'.
Let {7 = 09, af, B1,...,0% be a terminal execution in Ezec(I',T) for ¢ € [1,2].
Suppose further that the ordering of stage completions in ¢! is identical to the
ordering of stage completions in £2. Then &' = €2, and in particular, the values
of the final snapshots of £ and &2 on out(I") are identical.

Proof: (Sketch) Recall that in GSM, for a snapshot o and event C:S(cq, ..., ¢,),
there is at most one result of computing a B-step on ¢ and C:S(cy,...,¢,). The
result now follows from a straightforward induction. ad

As an aside, we note that if all sentries in I" are eventless, then the above
lemma remains true if the condition on orderings of stage completions is dropped.

4.2 Conditional Emulation

In the general case, we shall be looking at a pair I'", I'> of FA-GSM schemas and
attempting to compare elements of TermEzec(I'') with elements of TermEzec(I?).

12

We typically focus on executions that satisfy a condition, e.g., in the case of Ex-
ample 2.2, 2 = “employee count > 300”. We then demonstrate that executions
of one schema that satisfy the condition can be emulated by executions of the
other, e.g., for each execution of BCA™? that satisfies (2 there is a corresponding
execution of BCAY*¢ that behaves identically on output attributes PCU, DCS,
and recommendation (see Example 5.3 below).

In the sequel, if f is a function over domain D, and C C D, then f|c denotes
the restriction of f to C. ‘ ‘ . ‘ ‘

Suppose now that I'* = (Att' = Atty U Atty,, U Att, Mastart " At sen’, sig)
for 4 in [1,2]. Suppose further that 7* is a stage i/o assignment for I'*, ¢ in [1,2].
Then 7! and 72 are compatible if Tl\AttéﬁAtt% = TQ\Att;ﬁAttZ.

Let I'', I'? be as above. As suggested above, we shall work with conditions
2 over the union Att' U At?, in order to focus on executions of I'! or I'? of
interest. For a snapshot o! over I'', o' satisfies £2 with existential extension,
denoted o' =% (2, if there is some extension o of o' to include all attributes of
2 not in Att', such that o =strict . (For the current paper we require strict
satisfaction of the conditions {2; variations of this can also be used.)

We now define the notion of “conditional emulatability”, which enables us
to compare the behavior of pairs of schemas with regards to selected attributes.

Definition 4.4: Let I'" = (Att' = Atti, U Att), U Atts, mgpars?, Att. ., sen’, sig')
be an FA-GSM schema for i in [1,2], and let A C Att' N Att*, and let 2 be a
condition over Att! U Att>. Then I'' emulates I'? under 2, denoted =g al?,

if the following holds. If

1. 72 is a stage i/o assignment for I'?;

2. &2 € Ezec(I'?) is a (possibly non-terminal) 72-compliant execution with final
snapshot o?; and

3. o2 ()

then

1. there exists a stage i/o assignment 7! for I'! that is compatible with 72, and
2. there exists a 7!-compliant execution ¢! € Evec(I'') with final snapshot o,
3. such that ot|4 = 02| 4.

We write F1#Q7AF2 if FlAQ”AFz and FQAQ,Afl.

Example 4.5: Recall BCA"*® (Example 2.1) and BCA?? (Example 2.3). Let

1. A= {PCS, PCU}
2. 2 = “Rating = 9"

We illustrate now how it can be shown that Flﬁg’Afz. For the — direction, fix
stage i/o assignment 72 for I'2. We focus here on executions &2 of I'? where IDGS
is satisfied. In those cases, the only 7! that extends 72 and enables satisfaction
of 2 will have 71[Credit Check](Rating) = 9. For this 7!, the stage Credit Check
will execute and return Rating with value 9 and trigger the milestone CCS. Thus,
an execution ¢! compliant with 7! can be constructed from ¢2 by inserting the
launch and completion of Credit Rating sometime in between the satisfaction of
IDGS and satisfaction of CCS. Emulation in the other direction is straightforward
to show. O

13

4.3 The Lifting Lemma

The Lifting Lemma will enable us to infer emulatability in terms of output
attributes, i.e., at a “global level”, based on emulatability in terms of selected
milestone attributes, i.e., at a “local level”.

To state the lifting lemma we need to be able to talk about the areas where
schemas I'', I'? differ.

Definition 4.6: Let I = (Att' = Aﬁtfi U Atzf;n U Atts, mgpart’, ALt ;, sen’, sig')
be an FA-GSM schema, let A" C Att, U Atty, for i in [1,2]. Then Al, A% is a
change pair for I'', T'? if Att' — A' = att? — A = A and sen'|4 = sen?®| 4. In

this case, both Al and A? are called change sets.

That is, A', A? is a change pair for I'", I'? if the two schemas are identical
except for the milestones and stages in the delta’s.

Next, we introduce the notion of “fence” that allows us to create a separation
between a change set and an output attribute.

Definition 4.7: Let I' = (Att = Atty U Att,, U Atts, Mggart, Attout, sen, sig) be
an FA-GSM schema, let A C Att,, U Attg, and let O C Att,,:. A set F C Att,,
is a fence between A and O if for each pair 6 € A,0 € O and each path p from
0 to o in DG(I") there is some m € M on path p.

Speaking intuitively, if F is a fence between A and O, and if certain “race”
conditions do not hold, then the values assigned to O will not be impacted by
the behavior in the A area. In this sense, the fence F “protects” the set O
of output attributes from the set A. The next definition identifies the “race”
conditions that need to be avoided (see Example 4.9 below).

Definition 4.8: Let I' = (Att = Atty U Att,, U Atts, Mgtart, Attout, sen, sig) be
an FA-GSM schema, F C Att,, a set of milestones in I', and v € Att,, U Attg.
Then v is completion independent modulo F if for each stage S € Attg and each
path p from S to v, if there is a node w on p with a sentry of form “C:S...”,
then there is a node f € F that lies between w and v in p.

We note that since w # f, w has the effect of transforming the C:S into an
S, i.e., from time-specific to persisting.

Example 4.9: In BCA***¢, with the exception of bonus and TBPS, all output
attributes are completion independent modulo {PCS}. In contrast, bonus and
TBPS are not, because of the completion event C:Fast Turnaround Bonus Eligibility
in the guard for stage Team Bonus Pay. O

We now have the Lifting Lemma, which states that under certain conditions,
if I'" emulates I'? for the elements of a fence, then I'' also emulates I'? for
output attributes that are downstream from that fence. The proof, omitted, is
based on splicing of executions.

Lemma 4.10: (Lifting Lemma) Let I = (Att' = Atty U Att;, U Atly, mgtars’,
Att ., sen®, sig") be an FA-GSM schema for i in [1,2]. Suppose that:

out’

14

A, A? is a change pair for I'!, I'2.

O C out(I') N out(I'?).

F is a fence between A® and O in I" for i in [1,2].

O is completion independent modulo F in I', for i in [1,2].
2 is a condition over Att' U Att.

FIAQ_’]:FQ.

S Ut

Then Fl—\g’ofz.
We next apply the Lifting Lemma to the example of deletion from Section 2.

Example 4.11: Recall Example 4.5, and the property BCA***=, ,BCA%!,
where F = {PCS,PCU} and 2 = “rating = 9”. Let A! = {Credit Check, CCS,
CCU, PCS, PCU} and A? = {PCS, PCU}. Then A!, A? is a change pair for I't, I'2.
It is straightforward to verify that F is a fence between these change sets and the
output attributes O = {IDGU, PCU, recommendation, DCS, DCU}. Thus, by the
Lifting Lemma, I''< o oI'. Intuitively, this states that I'', I'* have identical
behavior on O, if the rating attribute is assumed to have value 9. There are
no guarantees with regards to the attribute bonus), because of a possible race
condition involving the completion of Fast Turnaround Bonus Eligibility, which
occurs in the sentry for Team Bonus Pay.

However, note that bonus and TBPS have a completion dependency on Fast
Turnaround Bonus Elibibility that is not blocked by F. As a result, the Lifting
Lemma does not apply to those attributes. Indeed, it is possible to construct
an example execution &' of I'' where Team Bonus Pay is not launched, but in
the corresponding execution &2 of I'? this stage would launch. Intuitively, this
can happen if in ¢!, Business Performance Evaluation Check completes before Fast
Turnaround Bonus Eligibility, and Credit Check completes after Fast Turnaround
Bonus Eligibility. In particular, in €', PCS becomes true only after Fast Turnaround
Bonus Eligibility, and so the guard for Team Bonus Pay will never go true. (With
this particular example, an alternative 52/ can be constructed to achieve an
emulation, but in the general case there might be other stages whose launching
would depend on the timing of when Business Performance Evaluation Check
completes.)

Note that if the completion event C:Fast Turnaround Bonus Eligibility in the
guard for Team Bonus Pay were dropped, then Term Bonus Pay, TBPS, and bonus
would be completion independent modulo F, and so the Lifting Lemma would
apply to them. O

5 Property Preserving Schema Modifications

This section presents operators for modifying FA-GSM schemas that guarantee
the preservation of various properties. The operators focus on sentry modifica-
tion, and on deletions and insertions of stages and milestones. The proofs about
property preservation rely on the Lifting Lemma. Examples from Section 2 are
used to illustrate the results developed here.

We begin with a useful observation that is a very straightforward consequence
of the Lifting Lemma. Before making the observation, we need the following: the

15

notion of “shadow” of a change set A. Intuitively, the shadow is the set of
milestones, stages, and data attributes that are “downstream” of nodes in A in
the graph DG(T).

Definition 5.1: Let I' = (Att = Atty U Att,, U Atts, Mggart, Attous, sen, sig) be
an FA-GSM schema and A C Att,, U Attg. The shadow of A in I', denoted
shadow(A, I') is {v € Att,, U Atts | 30 € A and a path in DG(I") from 6 to v}
U a € $ig,:(S)|S € Atts and 30 € A and a path in DG(I") from ¢ to S}.

Let A', A? be a change pair for FA-GSM schemas I'*, I'2. It is easily shown
that shadow (A, I'*) = shadow(A?, I'?).

Proposition 5.2: Let I = (Att' = Aty U At U Attly, mgpar’, Att. ;. sen, sig')
for i in [1,2], and let A, A2 be a change pair for I'*, I'?. Let A = shadow (A, I'') =

shadow(A?,I'?), and let O = (Atth,, U At2,,)) — A. Then I'Sp e 02

out out

Proof: (Sketch) To apply the Lifting Lemma in this case, choose the fence F to

be (). Each node o € O satisfies the conditions concerning paths from A to o,

because there are no such paths. a
We next examine a simple form of sentry modification.

Example 5.3: Consider BCA***¢ from Example 2.1 and BCA™? from Example
2.2. Recall that BCA™? is formed from BCA®®*® by modifying the sentry on
Business Performance Evaluation Check, to skip launching of that stage if the
client has < 300 employees, and adding a sentry for milestone PCS. Let 2 =
“employee_count > 300”. A case-by-case argument can be used to show that
BCA™**=¢, (pcs pcuy BCA™ . Now let

— O = {IDGU, PCU, recommendation, DCS, DCU}.
— A! = {Business Performance Evaluation Check, BPECS, BPECU, PCS}.
— A? = {PCS}.

Similar to Example 4.11, it is easily verified that F = {PCS, PCU} is a fence
for A and O, for i in [1,2]. Further, O is completion-independent modulo F.
The Lifting Lemma now implies that I''<=(, oI'2. We comment now on a pos-
sible extension of the Lifting Lemma that could be used to compare the behav-
ior of BCA***¢ and BCA™? on companies with < 300 employees. Assume here
that Business Performance Evaluation Check produces one Boolean data attribute
BP_good, which is assigned True if the stage returns a positive evaluation, and
is assigned Fulse otherwise. In essence, the construction of BCA™? ig implicitly
assuming that all such companies will have BP_good set to True. One way to
capture this is to extend the condition language to include properties of stage
i/o assignments, and set 2’ = “employee_count > 300 A T'[Business Performance
Evaluation Check](BP_good) = True”, where T is a variable that ranges over
stage i/o assignments. O

We consider the challenge of generalizing the above example, to find a general-
purpose approach for modifying a schema to (a) reflect changes to the sentries of
one node, and (b) preserve behavior as much as possible? Several aspects make
the preceding example “easy” to work with: (i) only one sentry is modified, (ii)

16

the modification involves adding a condition using conjunction, (iii) the new
condition is based on a data attribute whose defining stage precedes the affected
sentry in DG(BCA"**¢). Although not done here, a generalization of the approach
can be developed, that permits adding conditions (with conjunction) to multiple
sentries of a stage or milestone. In this case, identifying the preserved properties
can be accomplished inductively, based on modifying one sentry at a time.

5.1 Deletion

This subsection develops constructions for deleting milestones and stages from
FA-GSM schemas. Similar to the examples of Section 2, the focus is on enabling
the deletions while maximizing emulatability.

We begin by describing the construction for deleting a single milestone. We
shall use two notational conventions. The first is for substitutions in sentries:
given a sentry v, an attribute z, and a formula ¢, ¥[z/¢] denotes the result
of replacing all occurrences of z in ¥ by (). The second is a manipulation on
sentries called completion-event removal: For a sentry of form v = C.S A ¢,
define cer(1)) to be S A ¢. Notice that ¢ will be true for the single B-step where
stage S completes, whereas cer(¢)) will be true for that B-step and all subsequent
B-steps. If 1 is eventless, then cer(y) = .

The following definition specifies implicitly an algorithm for deleting a mile-
stone while preserving all output behaviors.

Definition 5.4: Let I' = (Att = AttyU Att,,, U Atts, mstars, Attous, sSen, sig) be an
FA-GSM schema, m a milestone of I', and M = {91, ...,1,} the set of sentries
of m in I'. The deletion of m from I', denoted del(I',m), is the FA-GSM schema
constructed from I in the following way. Suppose that v is a stage or milestone
in I', that y is a sentry for v, and that m occurs in x. Then replace x in I" with
a set of sentries

N = {x[m/cer(¢p)] | p € [1,4]}
Finally, delete m from the set of attributes of I'.

Intuitively, in the construction of schema del(I, m) occurrences of m in sen-
tries are replaced by “macro-expansions” of m. It is straightforward to verify
that the result of the construction is an FA-GSM schema.

(Completion event removal is performed to handle situations where the target
sentry itself has a completion event.)

Lemma 5.5: Let I be an FA-GSM schema and m a milestone of I''. Let F
be the set of stages and milestones of I" whose sentries are modified to create
del(I',m). Then I's ppye, Fdel(I, m).

Proof: (Sketch) One aspect of the proof is to show that for a sentry 1, cer(v)
takes the value True for all snapshots after ¢ has triggered, and also that the
behavior of cer(t)) mimics 1, in terms of triggering behavior. The other aspect
involves showing how executions of I' can be transformed into executions of
del(I';m) with the same behaviors on F. O

17

Deleting a stage S from an FA-GSM schema I is similar to deleting a mile-
stone, in terms of performing “macro-expansions” in selected sentries. However,
there are three complications. First, something must be done about the values
of the data attributes produced by S. In the approach taken here, we assume
that a vector @ of constants is used to serve as default values. Second, speaking
intuitively, we must ensure that the attribute values in ¢ are not available for
use until after S would have completed; the approach taken here follows the
pattern used for deleting milestones. And third, we must address sentries x that
have form C:S A ; for these we essentially replace C:S with the sentries that
launch S.

Definition 5.6: Let I' = (Att = Atty U Att,, U Atts, mggart, Attous, sen, sig) be
an FA-GSM schema, S a stage of I', and M = {¢1,...,1,} the set of sentries of
minI". Let @ = 81G,,:(S) and let @ be a vector of constants having types that
match @. The deletion of S from I" using ¢ for @, denoted del(I, S, /?)7 is
an FA-GSM schema constructed from I' in the following way. Suppose that v
is a stage or milestone in I', that x is a sentry for v, and that x includes C:.S
and/or includes one or more attribute from d. Then replace x with a set of
sentries

N = {x[C:5/vp, 7/7] A cer(yy) | p € [1, 4]}
Finally, delete S from Attg.

Example 5.7: To illustrate the above construction, consider a variation BCA%

of BCA%!_ in which only the stage Credit Check is deleted, but milestones CCS
and CCU are to be retained. In this case, the sentry of CCS will become “IDGS
A 9 > 8, and the sentry of CCU will become “IDGS A9 < 8”. 0O

The following lemma establishes the key property preservation properties of
the stage deletion construction. (The proof is similar to that of the preceding
lemma, and is omitted.)

Lemma 5.8: Let I' = (Att = Atty U Att,, U Atts, Mspart, Attout, sSen, sig) be an
FA-GSM schema, S a stage of I', and ¢ a vector of constants having the types
of @ = sig,,;(S). Let F be the set of stages and milestones whose sentries are
modified in del(I', S, @). Let 2 be “@ = €. Then I'=g rdel(I',m).

The preceding lemmas are now generalized to provide conditions on property
preservation when a full fragment is deleted from an FA-GSM schema. Suppose
that I' = (Att = AttgU Att,, U Atts, Mstart, Attout, sen, sig) is an FA-GSM schema,
and let X’ be a set of stages and/or milestones in I'. For each stage S in X, let
@S = 51G0,:(S) and let @5 be a set of constants with the same types. Let @
denote a listing of all s for stages S € X, and define ¢ similarly.

Now let z1,...,x, be a listing of the elements of X. Let I = del(x1, del(x,
o del(xy, I, d®)2, ..., d%2 /@), d%1 /@), where @ /€% is empty
if ; is a milestone. It can be shown that the deletion operation satisfies a Church-
Rosser property, and so different orderings for X will yield equivalent FA-GSM
schemas. We define the deletion of X from I', denoted del(F,X,?/?), to be
one of these equivalent schemas. The following result can be shown using an
induction based on Lemmas 5.5 and 5.8.

18

Theorem 5.9: Let I' = (Att = Atty U Att,, U Atts, Mgtart, Attous, sen, sig), X,
@ and @ and I = del(I', X, d /@) be as above. Let F be the collection of all
stages and milestones in IV whose sentries have been modified, and let {2 be the
formula @ = . Then I'ss I, Furthermore, if O C Atty,, is completion-
independent modulo F, then I'ssg oI”.

5.2 Insertion

This subsection studies property preservation in the context of insertions to
an FA-GSM schema I'. Speaking intuitively, the emphasis here is on enabling
the designer to insert one or several stages and milestones, while ensuring that
the global impact of the insertion is minimized “when things go right”. This
approach was followed in the construction of schema BCA™® from BCAb®*¢ in
Section 2: for each execution of BCA*"® where milestone AMCS goes true there is
guaranteed to be a corresponding execution of BCAb®*¢ that produces the same
outcome.
The following definition is provided to talk about “bulk” insertions.

Definition 5.10: Let I' = (Att = Attg U Att,, U Attg, maart, Altout, sen, sig)
be an FA-GSM schema. An insertable fragment for I' is a tuple A = (AttA =
At U At U At AttS,,, sen®, sig”) that satisfies the following conditions:

out’

Att(f is a set of data attributes names, disjoint from Att,.
Atth

m
Attﬁ is a set of stage names, disjoint from Attg.

Atts,, C Atth elta U att? .

out =

sen® is a mapping from Attﬁ U Attﬁ into sets of sentries, where each sentry

can refer to elements of AttUA#t* and completions of elements of AttsUAttS .
6. sig” is a mapping from stages in Attﬁ, such that for each S € Att?,

(a) sigo(S) and sig5,,(S) are finite sets of attribute names.

(b) sig2(S) C Atty U (U{sigs,,(S") | S" # S, S € Att5})

(c) sigh (S)NAtty = 0, i.e., the stages in A produce all new data attributes.
7. The dependency graph produced by merging I" and A is acyclic.

is a set of milestone names, disjoint from Att,,.

L W=

The insertion of A into I', denoted ins(I', A) is the tuple (At = (AttyU Atts) U
(Atty, U AHS) U (Attg U AHS), Mgtart, Attour U AttS,,, senU sen?, sig U sig™)

Given I') A as above, it is straightforward to verify that ins(I, A) is an FA-
GSM schema.

To enable modular insertions, and to facilitate straightforward reasoning
about the impact of an insertion, a best practice is to include as part of A
one or more milestones that are used to indicate the “success” or “failure” of
a case with regards to the inserted activity. (More refined kinds of milestones
can also be imagined). The following result assumes there is a single “success”
milestone mgyccess in A; generalizations are left to the reader. The result follows
easily from the Lifting Lemma.

19

Theorem 5.11: Let I' = (Att = Attg U Att,, U Atts, Mgtart, Attous, sen, sig) be
an FA-GSM schema, and let A = (Att® = At U At UALS, Atts ., sen®, sig™)
be an insertable fragment that includes a milestone mgyceess- Suppose that F C
Att,, is a family of milestones in I', and suppose that I" is the result of modifying
ins(I', A) by replacing each sentry p of a milestone in F by u A mgyccess. Let §2
= “Mguccess - Finally, let O C Att,,; be completion-independent modulo F in

I'". Then FA(LOFI.

Example 5.12: In the schema BCA™® of Example 2.4, with regards to the
above theorem, the milestone AMCS plays the role of mgyccess, the set {PCS}
plays the role of F, and the set {recommendation, DCS, DCU} plays the rols of
O. In this case, the theorem tells us that for each execution of BCA™® for which
AMCS goes true, there is a corresponding execution of the base schema BCAP*¢
with the same outcomes on @. What about failure of Addressable Market Check?
In this case a variant of Theorem 5.11 can be formulated, based on a milestone
Mg In the example, AMCU would play role of ™ fails {PCU} would play the
roles of both 7 and O. 0O

6 Related work

We discuss the literature on changes in process models for activity-centric busi-
ness process management and case management.

In the context of activity-centric BPM, change operations have been pro-
posed [29]. Different correctness criteria have been identified in the literature to
assess which changes are allowed so that cases can be migrated properly from
an old to a new schema [26]. A particular focus has been on ensuring that when
the execution of a BP instance starts on one schema and migrates to another
one while in flight, the final BP instance corresponds to an execution of the new
schema. In our approach, we study a novel form of correctness, which focuses
on preservation of schema properties, defined in terms of emulatability of one
shema by another one. A form of unconditional emulatability was studied in
connection with declarative artifact-centric business processes in [4]. That work
was in an abstract setting; in contrast the results here are tied to a practical
Case Management model, and motivated by a real-world use case.

Applying changes to activity-centric process models leads to variety of related
process models that needs to be managed properly [10-12,27]. Configurable
workflow models [10, 27] manage adaptations for activity-centric process models.
Configurable workflow models contain configurable elements that can be skipped
or blocked. This way, different workflow models can be generated from the same
configurable workflow model.

Business process families relate feature models, introduced for managing vari-
ability in software product lines, to business process models [11]. There the main
focus is on finding inconsistencies between selected features and the generated
process model realizing those features.

The Provop (Process Variants by Options) approach uses groups of atomic
change operations, called options, to generate different process models from a
base process model [12]. Different strategies for defining base models are dis-
cussed.

20

Case management originates from industry, including, e.g., [28] and work
on business artifacts, e.g., [24]. Recent overview works include [8,15,22]. Case
management is related to the more general concept of data-centric business
process management, which studies how activity-centric processes can be made
more data-aware [24, 18, 25, 20] to improve their flexibility. This includes work on
declarative artifact-centric models, including GSM [5, 6] and declarative process
models for case management [14].

Though the problem of change has been recognized as central to case man-
agement [15], in particular adaptive case management [21], it has not been widely
studied. Mukkalama et al. [23] study change in DCR Graphs, a declarative for-
malism for case management. They define basic change operations that add and
remove behavior, but their operations are aimed at a micro-level, so removing
atomic elements from schema. In our approach, we study also the impact of
adding and removing larger fragments, so at a macro level. They focus on log-
ical correctness and the use of automated verification techniques, whereas we
develop tests for property preservation that can be checked at a syntactic level.

Motahari et al. [21] present a framework and prototype implementation that
supports adaptive case management in social enterprises. The framework sup-
ports change, but does not address preservation of properties across changes.

There has been active research on verification for artifact-centric BPM mod-
els (e.g., [2,7,1,13]). That work could be also be applied to reason about preser-
vation of properties of case management schemas during evolution. The ap-
proach in the current paper uses syntactic conditions rather than semantic ones,
and would thus be subsantially easier easier to deploy and maintain than a
verification-based approach.

7 Conclusion

This paper studies schema modifications in the context of a varient of the Guard-
Stage-Milestone (GSM) model for Case Management. The main contributions of
this paper are (i) a precise definition for testing the preservation of properties
through the use of conditional emulatability; (ii) the development of a general-
purpose “Lifting Lemma” which allows a variety of approaches to achieve and/or
prove property preservation; and (iii) the specification of operators to perform
schema manipulations that are guaranteed to preserve certain properties. The
theoretical work is motivated by examples arising in a real-world application.

The research here can be extended in several directions, including the follow-
ing: (a) extend results to more general kinds of GSM schema; (b) extend results
to other Case Management and BPM models ([28] is a natural first candidate,
and also the OMG CMMN standard [3]); (c) develop algorithms for schema mod-
ifications other than deletion and insertion, that preserve specified properties;
(d) generalize to support adaptation of schemas for cases that are “in-flight”.
and (e) develop approaches to apply the theoretical results developed here in
practical settings.

21

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

F. Belardinelli, A. Lomuscio, and F. Patrizi. Verification of GSM-based artifact-
centric systems through finite abstraction. In Proc. Intl. Conf. on Service-Oriented
Computing (ICSOC), pages 17-31, 2012.

K. Bhattacharya, C. E. Gerede, R. Hull, R. Liu, and J. Su. Towards formal analysis
of artifact-centric business process models. In Proc. Int. Conf. on Business Process
Management (BPM), pages 288-304, 2007.

BizAgi and others. Case Management Model and Notation (CMMN), v1, May
2014. OMG Document Number formal/2014-05-05, Object Management Group.
D. Calvanese, G. D. Giacomo, R. Hull, and J. Su. Artifact-centric workflow dom-
inance. In Proc. Intl. Conf. on Service Oriented Computing (ICSOC), 2009.

D. Cohn and R. Hull. Business Artifacts: A Data-centric Approach to Modeling
Business Operations and Processes. IEEE Data Eng. Bull., 32(3):3-9, 2009.

E. Damaggio, R. Hull, and R. Vaculin. On the equivalence of incremental and
fixpoint semantics for business artifacts with guard-stage-milestone lifecycles. In-
formation Systems, 38:561-584, 2013.

A. Deutsch, R. Hull, F. Patrizi, and V. Vianu. Automatic verification of data-
centric business processes. In Proc. Intl. Conf. on Database Theory (ICDT), 2009.
C. Di Ciccio, A. Marrella, and A. Russo. Knowledge-intensive processes: Character-
istics, requirements and analysis of contemporary approaches. J. Data Semantics,
4(1):29-57, 2015.

R. Eshuis, R. Hull, Y. Sun, and R. Vaculin. Splitting GSM schemas: A framework
for outsourcing of declarative artifact systems. Inf. Syst., 46:157-187, 2014.

F. Gottschalk, W. M. P. van der Aalst, M. H. Jansen-Vullers, and M. L. Rosa.
Configurable workflow models. Int. J. Cooperative Inf. Syst., 17(2):177-221, 2008.
G. Groner, M. Boskovic, F. S. Parreiras, and D. Gasevic. Modeling and validation
of business process families. Inf. Syst., 38(5):709-726, 2013.

A. Hallerbach, T. Bauer, and M. Reichert. Capturing variability in business process
models: the provop approach. Journal of Software Maintenance, 22(6-7):519-546,
2010.

B. B. Hariri, D. Calvanese, G. D. Giacomo, A. Deutsch, and M. Montali. Verifi-
cation of relational data-centric dynamic systems with external services. In Proc.
Intl. Symp. Principles of Database Systems, pages 163-174, 2013.

T. T. Hildebrandt, R. R. Mukkamala, and T. Slaats. Designing a cross-
organizational case management system using dynamic condition response graphs.
In Proc. IEEE EDOC 2011, pages 161-170. IEEE Computer Society, 2011.

S. Huber, A. Hauptmann, M. Lederer, and M. Kurz. Managing complexity in
adaptive case management. In Proc. S-BPM ONE 20183, pages 209-226, 2013.

R. Hull, E. Damaggio, R. D. Masellis, F. Fournier, M. Gupta, F. H. III, S. Hobson,
M. Linehan, S. Maradugu, A. Nigam, P. Sukaviriya, and R. Vaculin. Business
artifacts with guard-stage-milestone lifecycles: managing artifact interactions with
conditions and events. In Proc. of the 5th ACM Int. Conf. on Distributed Event-
Based Systems, DEBS, USA, pages 51-62, 2011.

R. Hull, N. C. Narendra, and A. Nigam. Facilitating workflow interoperation using
artifact-centric hubs. In ICSOC/Service Wave, pages 1-18, 2009.

V. Kiinzle and M. Reichert. Philharmonicflows: towards a framework for object-
aware process management. Journal of Software Maintenance, 23(4):205-244, 2011.
L. Limonad, D. Boaz, R. Hull, R. Vaculin, and F. T. Heath. A generic business
artifacts based authorization framework for cross-enterprise collaboration. In SRII
Global Conference, pages 70-79, 2012.

A. Meyer, L. Pufahl, D. Fahland, and M. Weske. Modeling and enacting complex
data dependencies in business processes. In Proc. BPM 2013, pages 171-186, 2013.

22

21.

22.

23.

24.

25.

26.

27.

28.

29.

H. R. Motahari Nezhad, C. Bartolini, S. Graupner, and S. Spence. Adaptive case
management in the social enterprise. In Proc. ICSOC 2012, pages 550-557, 2012.
H. R. Motahari Nezhad and K. D. Swenson. Adaptive case management: Overview
and research challenges. In IEEE CBI 20183, pages 264-269. IEEE, 2013.

R. R. Mukkamala, T. T. Hildebrandt, and T. Slaats. Towards trustworthy adaptive
case management with dynamic condition response graphs. In Proc. EDOC 2013,
pages 127-136, 2013.

A. Nigam and N. S. Caswell. Business artifacts: An approach to operational spec-
ification. IBM Systems Journal, 42(3):428-445, 2003.

G. Redding, M. Dumas, A. H. M. ter Hofstede, and A. Iordachescu. A flexible,
object-centric approach for business process modelling. Service Oriented Comput-
ing and Applications, 4(3):191-201, 2010.

S. Rinderle, M. Reichert, and P. Dadam. Correctness criteria for dynamic changes
in workflow systems - a survey. Data Knowl. Eng., 50(1):9-34, 2004.

M. Rosemann and W. M. P. van der Aalst. A configurable reference modelling
language. Inf. Syst., 32(1):1-23, 2007.

W. M. P. van der Aalst, M. Weske, and D. Griinbauer. Case handling: a new
paradigm for business process support. Data Knowl. Eng., 53(2):129-162, 2005.
B. Weber, M. Reichert, and S. Rinderle-Ma. Change patterns and change support
features - enhancing flexibility in process-aware information systems. Data Knowl.
Eng., 66(3):438-466, 2008.

	Voorblad WP 484
	Beta_wp484
	Working papers Beta overzicht vanaf 2009
	Sheet1

