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Abstract

The Pickup and Delivery Problem with Time Windows and Scheduled Lines (PDPTW-SL) con-
cerns scheduling a set of vehicles to serve freight requests such that a part of the journey can be
carried out on a scheduled public transportation line using bus, train, tram, metro, etc. Due to
the complexity of the problem, which is NP-hard, we propose an Adaptive Large Neighborhood
Search (ALNS) heuristic algorithm to solve the PDPTW-SL. Complex aspects such as fixed lines’
schedules, synchronization and time-windows constraints are efficiently considered in the proposed
algorithm. Results of extensive computational experiments show that the ALNS is highly effective
in finding good-quality solutions on the generated PDPTW-SL instances with up to 100 freight
requests that reasonably represent real life situations.

Keywords: Freight transportation, Pickup and delivery problem, Heuristic algorithm, Scheduled
lines

1. Introduction

A successful integration of passenger and freight transportation creates a seamless movement of
people and freight. This integration achieves socially desirable transport options economically
viable in urban areas as it reduces the impact of congestion and air pollution (Lindholm and
Behrends [21]). Actual integration is already being observed in long-haul freight transportation
(e.g., passenger aircraft and ferries). Norwegian Hurtigruten carries freight and people efficiently
and seamlessly in the region of Northern Europe (Levin et al. [18], Hurtigruten [16]). However,
short-haul passenger and freight (i.e., small packages) transportation is rarely integrated, although
these services largely use the same infrastructure.

This paper investigates opportunities and the feasibility of using available public transportation
vehicles, which operate according to predetermined routes and schedules, for transporting freight.
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A successful synchronization of pickup and delivery (PD) vehicles with scheduled lines (SLs) is
directly related to coordination and consolidation of transport. Coordination assures the precision
and timing of each leg’s movement. On the other hand, consolidation implies that the amount
of freight transferred to/from SLs fits with capacities of PD and SL vehicles. Considering both
coordination and consolidation of such integrated system, we introduce the Pickup and Delivery
Problem with Time Windows and Scheduled Lines (PDPTW-SL).

There exists a rich literature on PDP-related problems. The interested readers are referred to
Berbeglia et al. [3] for a literature survey on the solution methodologies for PDPs. A special
case of PDPs where passengers need to be transported from their origin to their destination by
considering service level constraints are called dial-a-ride problems (DARP). An overview on the
mathematical models and the solution methodologies for single as well as multiple-vehicle DARPs
can be found in Cordeau and Laporte [6].

In another extension of the PDP, it is possible to consider transfer opportunity between PD vehicles
at predefined transfer nodes (PDP-T). Shang and Cuff [30] proposed an insertion heuristic algo-
rithm to solve instances with up to 167 requests for the PDP-T. Cortes et al. [7] proposed an exact
decomposition method, namely Branch-and-Cut (B&C), and solved PDP-T instances with up to
six requests. Moreover, Masson et al. [22, 23] proposed an ALNS to solve PDP-T and DARP-T,
respectively. In both cases, the authors solved instances with up to 100 requests. The PDP with
cross-docking opportunities has been studied by Petersen and Røpke [25], who proposed a large
neighborhood search heuristic to solve instances with up to 982 requests.

To the best our knowledge, Nash [24] is the first author who conceptually introduced the idea of
transporting freight using public transportation. One of the first attempts to combine scheduled
line services with DARP was done by Liaw et al. [20]. The authors formulated the problem where
transfers to public scheduled transportation are allowed for passengers and wheelchaired persons.
The authors proposed two types of heuristics (i.e., online and offline) and solved instances with up
to 120 requests. Later, Aldaihani and Dessouky [1] considered an integrated DARP with public
transport and proposed a two-stage heuristic algorithm to solve instances with up to 155 requests.
Hall et al. [15] introduced a mixed-integer program to solve an integrated dial-a-ride problem
(IDARP). The authors considered transfers to fixed lines without modeling schedules of the public
transportation. The authors solved small-sized instances with up to 4 requests. Trentini and Mal-
hene [33] presented a review of solutions for combining freight and passenger transportation used
in practice. In a related study, Trentini et al. [34] investigated a two-echelon VRP with transship-
ment in the context of passenger and freight integrated system. The authors proposed an ALNS to
solve instances with 50 customers.

As a real-life application of the integrated transport system, a project, called City Cargo Amsterdam
[5], was held as a pilot experiment in the Netherlands in 2007. Two cargo trams were used to
transport freight in the city centre of Amsterdam. The goods were transferred from cargo trucks
onto trams to be delivered to the inner part of the city. In 2009 the project was quit due to lack of
funds.

In this paper, we consider two transport scenarios: (i) an integrated transportation system and,
(ii) the pickup and delivery problem where transfers to scheduled lines are not allowed. These
two scenarios are intended to provide plausible and sufficient reasons to implement such system
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by comparing them in terms of the total operating costs of the PD vehicles. The PDPTW-SL is
NP-hard since it is an extension of the classical PDPTW. It is shown that only a limited number of
requests can be solved to optimality within a reasonable time limit. For this reason, we have de-
veloped a metaheuristic to obtain good-quality solutions. More specifically, we propose an ALNS
heuristic algorithm which is based on the destroy and re-create principle.

The contribution of the paper is three-fold: (i) to adapt the classical ALNS heuristic algorithm to
solve PDPTW-SL, and (ii) to efficiently handle synchronization constraints within the proposed
ALNS framework and finally, (iii) to analyze the cost savings due to the use of scheduled lines
in freight transportation. The remainder of this paper is organized as follows. In Section 2, we
present a mathematical formulation of the PDPTW-SL. Section 3 describes the proposed ALNS
heuristic algorithm for the PDPTW-SL. Section 4 presents the results of extensive computational
experiments. Conclusions are stated in Section 5.

2. The pickup and delivery problem with time windows and scheduled lines

The PDPTW-SL is an extension of the standard PDPTW that additionally considers the flexibil-
ity of using available scheduled lines, such as bus, train, metro, etc. Due to the fact that public
transportation systems have a certain coverage (i.e., rural or urban), some delivery trips of the
PD vehicles may overlap with SL services. Thus, using public transportation as a part of freight
transportation may lead to cost and environmental benefits for the whole transportation system.
For instance, due to less driving time of the PD vehicles, logistics service providers may expe-
rience substantial operating cost savings. As a consequence, less traveling time of the vehicles
also leads to fewer carbon dioxide-equivalent (CO2e) emissions at the global level for the whole
society Demir et al. [9, 11]. Furthermore, using scheduled lines for carrying freight gives extra
cost benefits for public transport service providers as the utilization of SL services increases. An
example application which is based on the current metro system of Amsterdam can be illustrated
as in Figure 1.

The system depicted in Figure 1 contains four scheduled lines, and five transfer nodes (end-of-lines
stations). Note that T 51

1 , T 53
1 , T 54

1 as well as T 50
2 and T 54

2 can be merged into two transfer nodes
as these denote the same locations. Each metro line has one single route with one destination in
each direction. To use this metro system as a part of the transportation plan, package(s) can be
delivered to one of its end-of-line stations and transported to other side of the line considering
available capacity and schedules of the metro line.

2.1. A formal description of the PDPTW-SL

In this section we give a formal description of the PDPTW-SL. All information (e.g., requests,
demands, travel times, time windows) is considered known beforehand, and a possible transport
plan for the whole planning horizon (e.g., one day) should be generated before the execution of the
transport activities. A solution to the problem is a routing plan and schedules for both requests and
PD vehicles. We now define the PDPTW-SL on a digraph G = (N ,A), whereN represents the set
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Figure 1 An illustration of the metro system in Amsterdam (2014)

of nodes (i.e., depots, pickup, delivery and replicated transfer nodes3) and A represents the set of
arcs. We note that i, j, r, v, w, and t are used as indices in this paper.

• Request: Each request r ∈ P is associated with an origin node r and a destination node r + n,
where n is the number of requests to be satisfied. Each request is associated with two desired
time windows: one for the origin ([lr, ur]), and one for the destination point ([lr+n, ur+n]).
Furthermore, demand dr is known for each request.

• PD Vehicle: A set of PD vehicles is given byV. In addition, each vehicle v ∈V is associated
with the carrying capacity Qv, the depot (origin and destination) ov, and time window [lov ,
uov].

• Travel and service time: Travel and service times are known beforehand and remain un-
changed during the planning horizon. Each arc (i, j) ∈ A is associated with travel time Υi j.
The service time at node i ∈ N is represented as si.

• Scheduled line: A set of all physical transfer nodes is given as S and the set of all physical
scheduled lines is given as E, which is defined by the directed arc between the start and the
end of the line (i, j), such that i, j ∈ S. For example, between two transfer nodes i and j,
there are two scheduled lines considered that are one arc for each direction, (i, j) and ( j, i).
Each scheduled line has a set of indices K i j for the departure times from i (the start of fixed
line), such that the departure time is given as pw

i j, ∀ (i, j) ∈ E, w ∈ K i j (e.g., p0
T1,T2

= 30). We
note that each scheduled line may have different frequencies than other lines, thus the size

3see more detailed explanation at page 5
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of the K i j may differ. Furthermore, it is assumed that SL vehicles are designed to carry a
limited number of packages, thus implying a finite carrying capacity ki j, ∀ (i, j) ∈ E.

We state the following additional assumptions related to SL services.

• The package carrying capacity is not influenced by the passenger demand on SL services.
• Each transfer node is considered as a coordination and a consolidation point for requests

(e.g., DHL-Packstation [12]). In other words, a storage space for to-be-shipped packages
is available at the transfer nodes. The packages can be stored until the vehicle’s departure
time (i.e., scheduled line or PD). Furthermore, it is considered that multiple PD vehicles
can be serviced simultaneously at a transfer node. In other words, we assume that the load-
ing/unloading infrastructure is always available for multiple vehicles at a time.

• In case of multiple freight carriers using SL services, it is assumed that each carrier has a
limited storage space at the transfer node and on the SL vehicle (e.g., contract-based agree-
ment). Hence, it is assured that the considered capacity is not affected by the demand of
other actors involved.

• It is assumed that cost ηi j per each unit of parcels shipped on the SL (i, j) includes transporta-
tion, handling (transshipment) and storage costs. Handling of the packages during transship-
ment is assumed to be under the responsibility of the SL service provider (e.g., the driver of
the SL vehicle).

• Since the focus of the present problem is related to the operational-level aspects, we disregard
all investments needed, such as the re-design of the SL vehicle and the physical storage
space required at the transfer nodes. Obviously this assumption may affect the outcome of
the system (i.e., might lead to less benefits).

• It is assumed that all data is known beforehand. In practice, this might not be the case
because of the uncertainty in travel times and demands. Disregarding these aspects in the
planning process might eventually lead to infeasible plans and expensive repair (recourse)
actions to tackle such violations.

In order to model waiting times of the PD vehicles and multiple visits at the transfer nodes, each
physical scheduled line (i.e., (i, j) ∈ E, e.g., arcs (1, 2) and (2, 1) in Figure 2a) is replicated n
times as in Hall et al. [15]. In addition, each replication is assigned to one request, and only that
specific request can travel on the assigned scheduled line (see Figure 2b). This is done to reduce
the number of decision variables. Therefore, the set of all replicated scheduled lines is given as F
(e.g., (1a, 2a), (1b, 2b), (2a, 1a) and (2b, 1b) in Figure 2b).

1 2

(a) Physical fixed line

1a

1b

2a

2b

(b) Virtual fixed line
Figure 2 An illustration of a replicated fixed line
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Furthermore, the replication process means that each physical transfer node in S (e.g., nodes 1 and
2 in Figure 2a) is replicated n times (e.g., T ≡ {1a, 1b, 2a, 2b} in the considered example). For the
sake of modeling let ψt, ∀ t ∈ T be the physical transfer node represented by the replicated transfer
node t (e.g., ψ1a = ψ1b = 1). Consequently, set T t can be defined as {i ∈ T |ψi = ψt, i , t}, ∀ t ∈ T
(e.g., in Figure 2b, T 2a = {2b}, as 2a and 2b represent physical transfer node 2).

The proposed model is not limited to only one fixed line (e.g., (1, 2) and (2, 1)). Different topolo-
gies may be considered, such as square, triangle, star or any other complex networks. Furthermore,
the requests are allowed to be shipped from one scheduled line to the other. The additional param-
eters used in our model are given in Table 1.

Table 1
Parameters

Notation Definition

δ Number of depots
dr Demand of request r
Υi j Traveling time from node i to node j
si Service time at node i
ki j Freight carrying capacity on the fixed line (i, j)
Qv Carrying capacity of the vehicle v

[li, ui] Time window of node i
pw

i j Departure time from transfer node i on the scheduled line (i, j), indexed by w
ψt Physical transfer node that is represented by replicated transfer node t
τ Number of replicated transfer nodes (i.e., | T |)

f r
i


1 if node i is r,
0 if node i ∈ N2 \ {r; r + n}(see Table 2),
−1 if node i is r + n.

θv The routing cost per one time unit of vehicle v
ηi j The cost of shipping one unit of package on the SL (i, j)

Using the parameters above, the notation of sets is given in Table 2.

Table 2
Sets

Notation Definition

V Set of PD vehicles
O Set of depots, O ≡ [1, ..., δ] (i.e. ov ∈ O, ∀ v ∈ V)
P Set of requests or pickup nodes, P ≡ [δ + 1, · · · , δ + n]
D Set of delivery nodes,D ≡ [δ + n + 1, · · · , δ + 2n]
T Set of replicated transfer nodes, T ≡ [δ + 2n + 1, · · · , δ + 2n + nτ](see nodes 1a, 1b, 2a and 2b in Figure 2b)
T t Set of replicated transfer nodes associated the same physical transfer node as t (e.g. in Figure 2b, T 2a = {2b}, T 1a = {1b}, etc.)
N Set of nodes in the graph G; P ∪ D ∪ O ∪ T ≡ N
N1 Set of nodes that are related to requests (P ∪ D)
N2 Set of nodes that represent requests and replicated transfer nodes (P ∪ D ∪ T )
E Set of physical SLs which is defined as (i, j), with associated K i j and ki j
K i j Set of indices for the departure times from the physical transfer node i on SL (i, j) ∈ E
F Set of replicated SLs which is defined as (i, j) with associated Kψiψ j

F r Set of replicated SLs associated with request r (e.g. in Figure 2, F a = {(1a, 2a), (2a, 1a)})
F t Set of replicated SLs connected to the replicated transfer node t (e.g. in Figure 2, F 1a = {(1a, 2a), (2a, 1a)})
F i j Set of replicated SLs associated with a physical SL (i, j) ∈ E (e.g. in Figure 2, F 1,2 = {(1a, 2a), (1b, 2b)},

F 2,1 = {(2a, 1a), (2b, 1b)}
A Set of arcs in G defined by N × N , (note thatA \ A1 ≡ F ∪ {(i, j)|i ∈ O, j ∈ N2} ∪ {(i, j)|i ∈ N2, j ∈ O}
A1 = N2 × N2 \ F

The decision variables used to handle routing and scheduling of the PD vehicles, along with the
flow and the timing of the requests are given in Table 3.
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Table 3
Decision variables

Notation Definition

xv
i j A binary variable equal to 1 if arc (i, j) is used by PD vehicle v, 0 otherwise, ∀ (i, j) ∈ A, v ∈ V
αv A continuous variable which shows the time at which vehicle v returns to its depot, ∀ v ∈ V
βi A continuous variable which shows the departure time of a vehicle from node i, ∀ i ∈ N
yr

i j A binary variable equal to 1 if arc (i, j) is used by request r, 0 otherwise, ∀ i, j ∈ N2, r ∈ P
γr

i A continuous variable which shows the departure time of request r from node i, ∀ i ∈ N2, r ∈ P
qrw

i j A binary variable equal to 1 if replicated fixed line (i, j) is used by request r that departs from i at time pw
i j, 0 otherwise,

∀ r ∈ P, (i, j) ∈ F r , w ∈ Kψiψ j

2.2. Mathematical formulation of the PDPTW-SL

The PDPTW-SL can be formalized as the following mixed-integer program.

min
∑

(i, j)∈A

∑
v∈V

θvΥi jxv
i j +
∑
r∈P

∑
(i, j)∈F r

∑
w∈Kψiψ j

ηi jdrqrw
i j (1)

Term (1) minimizes the total travel cost of the PD vehicles and the cost of using SLs for transferred
requests.

subject to

Routing and flow constraints∑
i∈N

∑
v∈V

xv
i j = 1 ∀ j ∈ N1 (2)∑

i∈N2

xv
ov,i ≤ 1 ∀v ∈ V (3)∑

i∈N

∑
v∈V

xv
it ≤ 1 ∀t ∈ T (4)∑

j∈N

xv
i j −
∑
j∈N

xv
ji = 0 ∀i ∈ N , v ∈ V (5)∑

j∈N2

yr
i j −
∑
j∈N2

yr
ji = f r

i ∀r ∈ P, i ∈ N2 (6)∑
i∈N

∑
v∈V

xv
it ≤
∑
r∈P

∑
(i, j)∈F t

yr
i j ∀t ∈ T (7)

Constraints (2) assure that all pickup and delivery nodes are visited exactly once. Constraints
(3) ensure that each vehicle leaves its depot at most once and Constraints (4) assure that each
replicated transfer node is visited at most once. Flow conservation for PD vehicles is considered in
Constraints (5). Constraints (6) assure flow conservation for the paths of each request. Constraints
(7) ensure that if a request uses a scheduled line, a PD vehicle should pick it up/drop it off at a
transfer node related to that specific SL.
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Scheduling constraints
yr

i j = 1 =⇒ γr
j ≥ γ

r
i + Υi j + s j ∀r ∈ P, i, j ∈ N2 (8)∑

v∈V

xv
i j = 1 =⇒ β j ≥ βi + Υi j + s j ∀i ∈ N , j ∈ N2 (9)

xv
i,ov

= 1 =⇒ αv ≥ βi + Υi,ov + sov ∀i ∈ N2, v ∈ V (10)

βr+n ≥ βr + Υr,r+n + sr+n ∀r ∈ P (11)
li ≤ βi − si ≤ ui ∀i ∈ N1 (12)

lgv ≤ αv ≤ uov ∀v ∈ V (13)∑
w∈Kψiψ j

qrw
i j = yr

i j ∀r ∈ P, (i, j) ∈ F r (14)

qrw
i j = 1 and yr

i j = 1 =⇒ γr
i = pw

i j ∀r ∈ P, (i, j) ∈ F r,w ∈ Kψiψ j
(15)∑

r∈P

∑
(a,b)∈F i j

drqrw
ab ≤ ki j ∀(i, j) ∈ E,w ∈ K i j (16)∑

r∈P

dryr
i j ≤
∑
v∈V

Qvxv
i j ∀(i, j) ∈ A1 (17)

Timing for each request is considered in Constraints (8). Similarly for PD vehicles, scheduling
is updated in Constraints (9) and (10). Constraints (11) assure precedence relationship of each
request. Constraints (12) and (13) force the time windows to be respected. Constraints (14) – (15)
assure that if a request uses a scheduled line, it departs at a scheduled departure time. Constraints
(16) ensure that package carrying capacity on the scheduled line is not exceeded. Constraints (17)
consider the capacity of each PD vehicle.

Synchronization constraints∑
j∈N1

yr
i j = 1 =⇒ γr

i = βi ∀r ∈ P, i ∈ T (18)∑
j∈N2

yr
i j = 1 =⇒ γr

i = βi ∀r ∈ P, i ∈ N1 (19)∑
i∈N2

yr
i,r+n = 1 =⇒ γr

r+n = βr+n ∀r ∈ P (20)

yr
t j = 1 =⇒ γr

t = βt ∀r ∈ P, t ∈ T , j ∈ T t (21)

The set of constraints (18) – (21) ensure the synchronization between requests’ and vehicles’ sched-
ules. Constraints (18) force departure times of requests and vehicles from a replicated transfer node
to be equal if there is a request flow from that node towards a pickup/delivery node. Constraints
(19) force departure times of requests and vehicles from a pickup/delivery node to be equal if there
is a request flow from that node. Constraints (20) force arrival time at the destination node of a
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request be equal to departure time of a vehicle from that node. Constraints (21) assure time syn-
chronization between vehicles and requests at each transfer node, with regards to flow between
replications of the same original transfer node.

Decision variable domains
xv

i j ∈ {0, 1} ∀(i, j) ∈ A, v ∈ V (22)

yr
i j ∈ {0, 1} ∀i, j ∈ N2, r ∈ P (23)

αv ∈ R+ ∀v ∈ V (24)
γr

i ∈ R+ ∀i ∈ N2, r ∈ P (25)
βi ∈ R+ ∀i ∈ N (26)

qrw
i j ∈ {0, 1} ∀r ∈ P, (i, j) ∈ F r,w ∈ Kψiψ j

(27)

Note that Constraints (8) – (10), (15) and (18) – (21) are formulated as implications, and standard
linearization techniques can be used to express them using one or two linear inequalities.

3. An adaptive large neighborhood search heuristic algorithm for the PDPTW-SL

The proposed metaheuristic is an extension of the Large Neighborhood Search (LNS) heuristic,
which is first proposed by Shaw [31]. LNS is based on the idea of gradually improving an initial
solution by using both destroy and repair neighborhood operators. In other words, LNS consists of
a series of removal and insertion moves. If a new solution is better than the current best solution,
the algorithm replaces the current solution and uses this new current solution as an input in the
next iteration.

ALNS heuristic framework was first introduced in Pisinger and Røpke [26], Røpke and Pisinger
[29], Pisinger and Røpke [27] to solve several vehicle routing problems. Instead of using one
large neighborhood as in LNS, the ALNS applies several removal and insertion operators to a
given solution. The neighborhood of a given set of feasible routes is investigated by removing
some requests and reinserting them back to the solution. The removal and insertion operators are
dynamically selected according to their past and current performance. To this end, each operator
is assigned a probability of being selected. The new solution is accepted if it satisfies some criteria
defined by the metaheuristic framework (e.g., simulated annealing, tabu search). In the following
sections, the main features of the proposed ALNS algorithm are provided in detail.

3.1. Initialization stage

A greedy insertion heuristic is used to obtain a feasible initial solution to the PDPTW-SL. All
requests are initially stored in a list L and inserted one by one in a random order in their best
available positions (for more detail on greedy insertion (GI) – see Section 3.4). The feasibility
with regard to the capacity of PD and SL vehicles and time windows is always maintained.
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3.2. Adaptive score adjustment procedure

The selection of the removal and insertion operators is controlled by a roulette-wheel mechanism.
Initially, all removal and insertion operators are equally weighted (i.e., for 10 considered removal
and 10 insertion operators, probabilities of each are set to 0.1). As in the implementation of
Røpke and Pisinger [29], during the course of the algorithm, more specifically every Nw iterations,
each operator is given a score πi (i.e., to assess its performance). The probability is updated as
Pt+1

d = Pt
d (1 − rp) + rp πi/ωi, where rp is the roulette wheel parameter, πi is the score of operator

i and ωi is the number of times it was used during the last Nw iterations. The score πi of each
operator measures how well the operator has performed at every iteration. If a new best solution is
found, the score of the removal and insertion operators is increased by σ1. If the solution is better
than the current solution, the score is increased by σ2. If the solution is worse than the current
solution but accepted, the score is increased by σ3.

3.3. Removal stage

Ten removal operators are used in our ALNS heuristic algorithm. All operators are adapted from
or inspired by Shaw [31], Røpke and Pisinger [29] and Demir et al. [8]. The removal stage mainly
consists of removing φ requests from the current solution and adding them to so-called removal
list L. A pseudo-code of the removal procedure is presented in Algorithm 1. The algorithm
is initialized with a feasible solution X as input and returns a partially destroyed solution. The
parameter φ defines the number of iterations of the search. In Algorithm 1, a chosen operator is
used to remove a set of requests (i.e., pickup, delivery and transfer nodes if used) from the solution.
Removed pickup and delivery nodes are then inserted into list L.

Algorithm 1: The overall structure of the removal operators
input : A feasible solution X and maximal number of iterations φ
output: A partially destroyed solution Xp

1 Initialize removal list (L← ∅)
2 for φ iterations do
3 Apply removal operator to remove a request r (includes two nodes; pickup and delivery)
4 L← L ∪ r

The removal operators used in our implementation are introduced below.

• Random Removal (RR): This operator randomly removes φ requests from the solution, and
runs for φ ∈ [φ, φ] iterations, where φ and φ are the lower and the upper limits on the number
of requests to be removed and φ is a random integer number within the specified range. The
idea of randomly selecting nodes helps diversifying the search space. The worst-case time
complexity of the RR operator is found to be O(|P|).

• Route Removal (ROR): This operator removes a full route from the solution. It randomly
selects a route from the set of routes in the solution. The remove operator then repeatedly
selects a node j from this route until all nodes are removed. The corresponding node of j,
i.e., its pickup or delivery node, is removed irrespective of which route it is positioned in.
The ROR operator can be implemented in O(P) worst-case time.
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• Late-Arrival Removal (LAR): For each request r, this operator calculates the deviation
of service start time from time lr and lr+n, and then removes the request with the largest
deviation (i.e., r∗ = argmaxr∈P{|[βr − sr − lr] + [βr+n − sr+n − lr+n]|}, where βx is the departure
time from node x). The idea is to prevent long waits or delayed service start times. The
algorithm starts with an empty removal list, and similarly to RR runs for φ ∈ [φ, φ] iterations.
The worst-case time complexity of the LAR operator is O(|P|2).

• Worst-Distance Removal (WDR): This operator iteratively removes high-cost customers,
where the cost is defined as the sum of distances from the preceding and following nodes
on the tour of both the pickup and the delivery nodes of a request, i.e., it removes node
r∗ = argmaxr∈P{|Υi−1,r + Υr,i+1 + Υ j−1,r+n + Υr+n, j+1|}, where i − 1 and j − 1, are predecessors
and i + 1 and j + 1 successors of the pickup and delivery nodes, respectively. The worst-case
time complexity of the WDR operator is O(|P|2).

• Shaw Removal (SR): The objective of the SR operator is to remove a set of customers that
are related in a predefined way and therefore are easy to interchange. The algorithm starts by
randomly selecting a request r1 and adds it to the removal list. Let lr1,r2 = −1 if two nodes,
one related to r1 (i.e., r1 or r1 + n) and another to r2 (i.e., r2 or r2 + n) are in the same route,
and 1 otherwise. The operator selects the request r∗ = argminr2∈P{Π1[Υr1,r2 + Υr1+n,r2+n] +

Π2[|βr1 − βr2 | + |βr1+n − βr2+n|] + Π3lr1,r2 + Π4|dr1 − dr2 |}, where Π1–Π4 are weights that are
normalized to find the best candidate from the considered solution. The operator is applied
φ ∈ [φ, φ] times by selecting a request not yet in the removal list which is most similar to the
one last added to the list. The worst-case time complexity of the SR operator is O(|P|2).

• Proximity-Based Removal (PR): The operator removes a set of requests that are related in
terms of distance. This operator is a special case of the Shaw removal operator with Π1 = 1,
and Π2 = Π3 = Π4 = 0. The worst-case time complexity of the PR operator is O(|P|2).

• Demand-Based Removal (DR): This operator is a special case of the Shaw removal with
Π4 = 1, and Π1 = Π2 = Π3 = 0. The worst-case time complexity of the DR operator is
O(|P|2).

• Time-Based Removal (TR): The operator is a special case of the Shaw removal with Π2 = 1,
and Π1 = Π3 = Π4 = 0. The worst-case time complexity of the TR operator is O(|P|2).

• Historical knowledge Removal (HR): This operator keeps a record of the position cost of
every request r, defined as the sum of the distances between its preceding and following
nodes of its origin and destination nodes, and calculated as cr = Υi−1,r + Υr,i+1 + Υ j−1,r+n +

Υr+n, j+1 at every iteration of the algorithm. Note that i − 1 and j − 1 are the preceding nodes
of the origin and, respectively, destination nodes of r and i + 1 and j + 1 are their successors
in the corresponding PD-vehicle routes. At any point in the algorithm, the best position cost
c∗r of request r is updated to be the minimum of all cx values calculated until that point. The
HR operator then picks the request r∗ with maximum deviation from its best position cost,
i.e., r∗ = argmaxr∈P{cr − c∗r}. Request r∗ is then added to the removal list. The operator
iterates φ ∈ [φ, φ]. The worst-case time complexity of the HR operator is O(|P|2).

• Worst Removal (WR): This operator removes φ ∈ [φ, φ] requests with the highest cost. The
cost in this case is computed as follows: given a solution, the cost of a request r is the dif-
ference in the objective function between the current solution (with r) and the same solution
without serving r. Note that the difference between WR and WDR is that WR uses the total
cost (including transfer cost) of the requests as objective, whereas WDR focuses only on the
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distance. In addition, WR also takes into account the length of the newly introduced arcs
(i − 1, i + 1) and ( j − 1, j + 1) when removing nodes i and j from a route.

3.4. Insertion stage

Five insertion operators are used in the proposed ALNS heuristic algorithm. The aim of these
operators is to repair a partially destroyed solution by reinserting the requests from the removal
list L back into the existing routes, if possible. The general schematic overview of an insertion
procedure is shown in Algorithm 2. It is noteworthy that in Line 5 of the insertion algorithm, we
do not consider every possible insertion. In order to avoid redundant computations in repairTrans-
fers(X, r, T r) and feasibleSchedule(X)) due to time windows, a preliminary time window check is
applied as described in Braekers et al. [4]. Due to the fact that PD-vehicle capacity constraints can
be fully verified only after applying repairTransfers(X, r, T r) procedure, capacity violations for
the routes with no transferable requests can be easily detected. Note that feasibleSchedule(X) and
feasibleCapacity(X, c(X), ηi j) (see Line 11 in Algorithm 2) methods are described in Section 3.5.

Algorithm 2: The generic structure of an insertion i∗ (X∗new, L, Xcurrent) procedure
input : A partially destroyed current solution X∗new, a list of removed requests L, and current solution Xcurrent

output: A feasible solution obtained after the insertion procedure

1 for (each request r in L) do
2 Xnew ← NULL
3 c(X∗new)← +∞

4 for (each route Q and route M) do
5 for (each position q within a route Q and each position m within a route M) do
6 Insert r and r + n in positions q and m, respectively, in solution X∗new
7 if (Q , M) then
8 (Xt, t∗r , t∗r+n)← repairTransfers(X∗new, r, T r)
9 else

10 Xt ← X∗new

11 if (feasibleCapacity(Xt, c(Xt), ηi j) and feasibleSchedule(Xt)) then
12 if (acceptance criteria of i∗ is satisfied) then
13 Xnew ← Xt

14 if (Xnew , NULL) then
15 X∗new ← Xnew

16 else
17 return Xcurrent

18 return X∗new

The feasibility with regard to the capacity, SL schedules and time windows is always maintained.
Note that checking the feasibility is not trivial, since pickup and delivery nodes of the same request
can be located in different PD routes, and hence, a tour must include at least one scheduled line.
Such partial solutions need to be repaired by adding transfer nodes. Therefore, repairTransfers(X,
r, T r) procedure is run to insert corresponding replicated transfer nodes in a greedy fashion. As
proposed for the MIP formulation, each original transfer node is replicated n (number of requests)
times, hence each request gets assigned a list of replicated transfer nodes. The overview of the
repair mechanism is shown in Algorithm 3.
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Algorithm 3: The generic structure of the repairTransfers(X, r, T r) procedure
input : A partial solution X, a request r and T r replicated transfer nodes related to r
output: A feasible solution Xt and a origin and a destination transfer nodes (t∗r , t∗r+n) of r in the current

solution Xt

1 Q← the route related to r
2 M ← the route related to r + n
3 t∗r ← transfer node ∈ T r with the cheapest insertion in route Q, sequenced after r
4 T r = T r \ t∗r
5 t∗r+n ← transfer node ∈ T r with the cheapest insertion in route M, sequenced earlier than r + n
6 Xt ← updated X given minimal cost insertions of t∗r and t∗r+n
7 return (Xt, t∗r , t∗r+n)

A transferable request r is assigned two related replicated transfer nodes: t∗r (i.e., origin transfer
node), and t∗r+n (i.e., destination transfer node).

We now briefly define the five insertion operators used in the ALNS algorithm. We note that the
requests are randomly chosen from the removal list L.

• Greedy Insertion (GI): This operator repeatedly inserts a request (both pickup and delivery
nodes) in the best possible position of the routes. ∆r

Ii J j
is the objective function value when

the pickup node of r is inserted in route I (position i) and its corresponding delivery node is
inserted in route J (position j). Thus, ∆r

Ii J j
* = argmin{∆r

Ii J j
}. The worst-case time complexity

of this operator is O(|P|2).
• Second-best Insertion (SI): This new operator chooses the second best insertion for ran-

domly selected unassigned request. The main idea of using this operator is to diversify the
search. The worst-case time complexity of the SI is O(|P|2).

• Greedy Insertion with Noise function (GIN): This operator is an extension of the greedy
algorithm but uses a degree of freedom in selecting the best place for a node. This degree
of freedom is achieved by modifying the cost for request r: New Cost = Actual Cost +

d̄ µ ε, where d̄ is the maximum distance between nodes, µ is a noise parameter used for
diversification and is set equal to 0.1, and ε is a random number between [−1, 1]. New Cost
is calculated for each request in L. The worst-case time complexity of the GIN operator is
O(|P|2).

• Second-best Insertion with Noise function (SIN): This operator is an extension of the SI
and uses the same noise function as the GIN operator. The worst-case time complexity of
the SIN operator is O(|P|2).

• Best out of λ Feasible Insertions (λFI): This new operator is similar to GI but chooses the
best insertion out of the first λ feasible insertions. The parameter λ is a randomly generated
integer number between 1 and ψ. For each unassigned request we generate a set of possible
insertions associated with corresponding distance-based costs (disregarding distance to the
corresponding transfer nodes), while considering precedence constraints. These positions
are not necessary feasible in terms of time windows. Additionally, in order to filter out some
more of the infeasible insertions, the time windows of the subsequent nodes visited within
the considered routes are verified. The generated set is sorted in increasing order based on
insertion costs. Hence the operator investigates the cheapest insertions overall routes first.
The worst-case time complexity of the λFI operator is O(|P|2).
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Moreover, additional five variants of these operators are also used, where the requests are sorted in
L in terms of their time flexibility (i.e., the least flexible first). The flexibility of request r can be
computed as |ur+n − lr|.

3.5. Feasibility of the routes and schedules

Scheduling (time windows) constraints bring complexity to the PDPTW-SL since the requests may
be picked up by a PD vehicle and delivered by another one. This implies that PD vehicles and SLs
must be synchronized. This problem can be handled as shown in Algorithm 4.

Algorithm 4: The generic structure of the feasibleSchedule(X) procedure
input : A solution X
output: Boolean value: TRUE if feasible, FALS E if infeasible

1 list← ∅
2 βt∗r ← 0, βt∗r+n

← 0, ∀ r ∈ P
3 for (each route I in X) do
4 for (each node i in I) do
5 βi ← max{βpi + Υpi,i + si; li + si}

6 if (βi > ui + si) then
7 return FALSE

8 if (i = t∗r+n, ∀r ∈ P) then
9 list← list ∪ i

10 i← end route

11 while (list , ∅) do
12 for (t∗r+n in list) do
13 if (βt∗r > 0) then
14 pathr ← generatePath(t∗r , t

∗
r+n)

15 βt∗r+n
← determineT ime(βt∗r , pathr)

16 for (each successor node i of t∗r+n) do
17 βi ← max{βpi + Υpi,i + si; li + si}

18 if (βi > ui + si) then
19 return FALSE

20 if (i = t∗r1+n, ∀r1 ∈ P) then
21 list← list ∪ i
22 i← end route

23 list← list \ t∗r+n

24 if (βt∗r = 0, ∀ βt∗r+n
∈ list) then

25 return FALSE

26 return TRUE

All β values for the transfer nodes are reset to 0 in Line 2. The first block of the algorithm (Lines
3 – 10) sets the time for all nodes at the earliest possible value (depending on the start of the time
window and the departure time from the preceding node pi). The algorithm switches to the next
route whenever a destination transfer node is reached. This node is added to a list that contains all
destination transfer nodes which do not have an updated synchronized time. The second part of

14



the algorithm (Lines 11 – 25) runs until the list of destination transfer nodes is emptied or a cycle
(see Figure 4) is found.

• For each t∗r+n ∈ list with the corresponding origin transfer node (i.e., t∗r ) that has already
received a timing, generate a shortest path (Dijkstra [13]) from t∗r to t∗r+n (Line 14). Given
the shortest path and the departure time from t∗r , the algorithm computes the time at t∗r+n by
considering earliest scheduled departure time later than βt∗r (i.e., dβt∗r e) for every intermediate
line used (Line 15). Considered t∗r+n with a synchronized timing is removed from the list.
Finally, all succeeding nodes of t∗r+n get assigned a value until a destination transfer node is
reached and added to the list.

• Whenever all βt∗r is zero ∀ t∗r+n ∈ list, the algorithm finds a cycle (see Figure 4) and stops.
Hence, no feasible schedule is possible for a given solution X.

For a better understanding, we refer to the example shown in Figure 3. Three requests, namely a,
b, and c, are to be delivered to destination nodes a+n, b+n and c+n, respectively. All the requests
are transferable, thus each request is shipped on a scheduled line. All these transfer nodes are
replications of the original transfer nodes and each replication is assigned to only one request. In
the present example, Ta represents the origin transfer node of a, and Ta+n is its destination transfer
node. For the sake of simplicity, each arc has one time unit and each node does not require any
service time. The numbers on top of the nodes indicate the departure time from that specific node.
In this example, three PD vehicles are needed for the transportation of these three requests.

a

a+n

Ta Tb+n

Ta+n

Tc+n

Tc

db

b

c

c+n

TbDepot Depot

Depot

Depot Depot

Depot

0 1 2 3

3 4 5 6

7 8 9 10

11 12 13

11

0

0

Figure 3 An interdependency relation of the routes

By referring to Figure 3, the feasibility of the schedule is checked as follows: the process starts
in the first route. The algorithm reaches the transfer node Ta+n that is a destination transfer node
of request a. The algorithm moves to the second route and reaches Tc+n, which is a destination
transfer node of request c. Finally, it moves to the last route and updates the timing for the whole
route as no destination transfer node is encountered. The list contains two destination transfer
nodes, i.e., Ta+n and Tc+n. A shortest path is generated from Tc to Tc+n, and the departure time
βTc+n is updated (i.e., 3). Afterwards, the subsequent nodes of Tc+n for a given synchronized time
βTc+n get assigned time values until Tb+n is reached. Similarly, the timing of Ta+n is updated and
followed by Tb+n.

Note that a cycle implies that the precedence constraints are violated for at least two transferable
requests, since such requests need to be picked up and dropped off twice (see Figure 4). In addition,
cycles may be composed of multiple routes and requests.

The procedure determineTime(βt∗r , pathr) (see Algorithm 4, Line 15) computes departure time from
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Figure 4 An example of a two-request cycle

t∗r+n for a given departure time from t∗r .

The capacity constraints of both PD and SL vehicles are verified in Algorithm 5. First, the al-
gorithm checks SL capacity by first generating scheduled line paths along with every scheduled
departure time from the considered transfer nodes (Line 3). The capacity variables are updated
for each SL and each possible scheduled departure. The cost of the solution is updated in Line
6. Whenever the capacity is violated (Line 7), the algorithm stops and returns FALSE value. The
PD-vehicle capacity constraints can be checked in a standard way with some preprocessing (Line
9). In particular, the destination transfer node of a transferable request r (i.e., t∗r+n) becomes an
origin node on a different route, hence it will have a positive demand (i.e., dr) whereas the origin
transfer node of r (i.e., t∗r ) becomes a destination node and it is assigned a negative demand (i.e.,
-dr).

Algorithm 5: The generic structure of feasibleCapacity(X, c(X), ηi j) procedure
input : A solution X, routing cost of X, and cost of using SL ηi j per unit shipped on (i, j)
output: A boolean value θ

1 Initialize mw
i j array for the capacity used on the scheduled line (i, j) at time pw

i j and P
t
← set of transferable

requests in solution X
2 for (r in P

t
) do

3 set (K
r
, γ)← scheduled lines (i, j) used by r and corresponding scheduled departure times γr

i j

4 for ((i,j) ∈ K
r
) do

5 set mw
i j ← mw

i j + dr

6 set c(X)← c(X) + dr ηi j

7 if (mw
i j > ki j) then

8 return FALSE

9 if (PDvehicleCapacityViolated(X)) then
10 return FALSE

11 return TRUE

3.6. Acceptance and stopping criteria

In the ALNS, we have implemented simulated annealing as a master search framework for the
PDPTW-SL. The overall framework of the ALNS algorithm with simulated annealing is provided
in Algorithm 6.

In the algorithm, Xbest indicates the best solution found during the search, Xcurrent is the current
solution obtained at the beginning of an iteration, and Xnew is a temporary solution found at the end
of iteration that can be discarded or become the current solution. The cost of solution X is denoted
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Algorithm 6: The general framework of the ALNS with simulated annealing
input : A set of removal operators D, a set of insertion operators I, initialization constant Pinit, cooling rate κ
output: Xbest

1 Generate an initial solution by using the Greedy insertion algorithm
2 Initialize probability Pt

d for each destroy operator d ∈ D and probability Pt
i for each insertion operator i ∈ I

3 Let T be the temperature and j be the counter initialized as j← 1
4 Let Xcurrent ← Xbest ← Xinit

5 repeat
6 Select a removal operator d∗ ∈ D with probability Pt

d
7 Let X∗new be the solution obtained by applying operator d∗ to Xcurrent

8 Select an insertion operator i∗ ∈ I with probability Pt
i

9 Let Xnew be the new solution obtained by applying operator i∗ to X∗new
10 if c(Xnew) < c(Xcurrent) then
11 Xcurrent ← Xnew

12 if c(Xcurrent) < c(Xbest) then
13 Xbest ← Xcurrent

14 else
15 Let ν← e−(c(Xnew)−c(Xcurrent))/T

16 Generate a random number ε ∈ [0, 1]
17 if ε < ν then
18 Xcurrent ← Xnew

19 T ← κ T
20 Update probabilities using the adaptive weight adjustment procedure
21 j← j + 1
22 until the maximum number of iterations is reached

by c(X). A solution Xnew is always accepted if c(Xnew) < c(Xcurrent), and accepted with probability
e−(c(Xnew)−c(Xcurrent))/T if c(Xnew) > c(Xcurrent), where T is the temperature. The initial temperature is
set at Pinit, where Pinit is an initialization constant. The current temperature is gradually decreased
during the course of the algorithm as κT , where 0 < κ < 1 is a fixed parameter. The algorithm
returns the best found solution after a fixed number of iterations (i.e., 10,000 iterations).

4. Computational results

This section presents the results of extensive computational experiments performed to assess the
performance of our ALNS heuristic algorithm. We first describe the generation of the instances and
of the parameters. We then present the computational results obtained by the proposed heuristic
algorithm.

4.1. Data and experimental setting

Three sets of instances, namely R, C, and RC, with three scheduled lines in a triangular topology
and a frequency of one departure of every 30 time units are considered. Each instance contains
100 requests (i.e., 100 pick-up and 100 delivery nodes) over 200×200 time units on an Euclidean
space. Instances follow a naming convention of G n sl, where G is the geographic distribution of
the customers, n is the number of requests that needs to be served, and sl is the number of SLs.
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Instances are classified with respect to the geographical locations of the nodes. For example, C
involves clustered nodes around transfer nodes, R considers uniform-randomly distributed request
nodes, and finally RC involve randomly clustered nodes. More specifically, C and RC have the
nodes positioned within at most 30, respectively 80 time units to one of its three available transfer
nodes. In all cases, two depots with 30 heterogeneous PD vehicles each are considered.

The planning horizon is set to 10 working hours (i.e., 600 time units). The widths of the time
windows are randomly generated between 26 and 91 time units. Service times are considered to
be up to three time units. Each demand is assigned between one and three units. The capacity of
PD vehicle is generated between six and 20 units. The carrying capacity on the considered SLs
is assumed to be 15 demand units. Additional instances were also generated such that subsets of
requests, PD vehicles, SLs out of R, C, and RC datasets are used. The three main datasets (i.e., R,
C, and RC) can be found on the web page of SmartLogisticsLab [32].

4.2. Parameter tuning

The proposed algorithm is implemented in NetBeans IDE 7.1.1 using Java. All experiments were
conducted on an Intel Core i5 with 2.6 GHz speed and 4 GB RAM. A more detailed tuning was
done on the five most sensitive parameters as shown in Table 4. These were identified during some
preliminary tests. Three instances of small sizes (i.e., 8, 16 and 25 requests) were solved 10 times
each for the given combination of parameters. The rest of the parameters were chosen based on
some other experiments and our intuition.

Table 4
Results of parameter tuning

Iterations Destroy rate σ1 σ2 σ3 Average value Iterations Destroy rate σ1 σ2 σ3 Average value
% e % e

10,000 0.15 1 0 1 954.09 15,000 0.15 1 0 1 953.72
10,000 0.15 1 0 5 953.08 15,000 0.15 1 0 5 953.61
10,000 0.15 1 3 1 954.18 15,000 0.15 1 3 1 950.98
10,000 0.15 1 3 5 951.86 15,000 0.15 1 3 5 954.02
10,000 0.15 5 0 1 958.49 15,000 0.15 5 0 1 954.03
10,000 0.15 5 0 5 958.52 15,000 0.15 5 0 5 952.59
10,000 0.15 5 3 1 954.66 15,000 0.15 5 3 1 952.94
10,000 0.15 5 3 5 953.00 15,000 0.15 5 3 5 952.57
10,000 0.25 1 0 1 950.04 15,000 0.25 1 0 1 949.80
10,000 0.25 1 0 5 953.80 15,000 0.25 1 0 5 953.82
10,000 0.25 1 3 1 954.87 15,000 0.25 1 3 1 951.89
10,000 0.25 1 3 5 948.25 15,000 0.25 1 3 5 950.64
10,000 0.25 5 0 1 953.16 15,000 0.25 5 0 1 951.42
10,000 0.25 5 0 5 954.14 15,000 0.25 5 0 5 954.47
10,000 0.25 5 3 1 954.10 15,000 0.25 5 3 1 952.34
10,000 0.25 5 3 5 951.46 15,000 0.25 5 3 5 953.02
10,000 0.35 1 0 1 950.63 15,000 0.35 1 0 1 949.67
10,000 0.35 1 0 5 951.08 15,000 0.35 1 0 5 950.36
10,000 0.35 1 3 1 950.53 15,000 0.35 1 3 1 954.97
10,000 0.35 1 3 5 951.65 15,000 0.35 1 3 5 954.01
10,000 0.35 5 0 1 951.77 15,000 0.35 5 0 1 952.77
10,000 0.35 5 0 5 949.89 15,000 0.35 5 0 5 950.59
10,000 0.35 5 3 1 949.72 15,000 0.35 5 3 1 951.11
10,000 0.35 5 3 5 951.88 15,000 0.35 5 3 5 952.34

In total, our algorithm contains 16 user-controlled parameters which are listed in Table 5.
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Table 5
Parameters used in the ALNS heuristic

Category Description Typical values

A Total number of iterations (Ni) 10,000

Number of iterations for roulette wheel (Nw) 200

Roulette wheel parameter (rp) 0.1

New global solution (σ1) 1

Better solution (σ2) 3

Worse solution (σ3) 5

B Startup temperature parameter (Pinit) 200

Cooling rate (κ) 0.9995

Lower limit of removable requests (φ) 2.5% of |P|

Upper limit of removable requests (φ) 25% of |P|

First Shaw parameter (Π1) 0.5

Second Shaw parameter (Π2) 0.2

Third Shaw parameter (Π3) 0.1

Fourth Shaw parameter (Π4) 0.2

Noise parameter (µ) 0.1

Number of feasible insertions (ψ) 30

It is noted that a driving cost of the PD vehicles is assumed to be 0.5 e per minute. It seems
reasonable considering all operational costs, such as fuel consumption, driver wage, insurance,
and tax. The cost of each demand unit of package request shipped on a fixed line is set to 1
e, which includes handling, storage and transportation costs. The parameters used in the ALNS
algorithm are categorized into two categories as described below.

• Group A defines the selection procedure with the roulette wheel mechanism. We note that
our setting of the parameters σ1, σ2 and σ3 is contrary to the expected setting σ1 ≥ σ2 ≥

σ3, normally used to reward an operator for good performance. In our implementation and
similar to Demir et al. [8, 10], we have chosen (based on parameter tuning) an unconventional
setting of these parameters whereby the discovery of a worse solution is rewarded more than
the discovery of a better solution. This is to help diversify the search in the algorithm.

• Group B of parameters is used to calibrate the simulated annealing acceptance mechanism
and the removal and insertion operators.

To show the number of times each operator called within the ALNS, we give relevant information
in Table 6 and Table 7. These tables show, for each operator, the frequency of use during the
course of the algorithm. The total time spent to run each operator is also shown in the parentheses.
We note that the results are obtained using only one instance of each different size in terms of the
number of requests.

The results shown in Table 6 indicate that operators RR, SR, PR and HR are used almost equally
often. In many cases, the most widely used operators are LAR, TR and WR.

As seen in Table 7, most used insertion operators are the ones that have ordered L. Since least
flexible requests are inserted first, these operators have higher chances to insert all requests within
the existing routes. More specifically, oGI, oSI and their variants with noise functions are widely
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Table 6
Number of iterations and the CPU times required by the removal operators

Instance RR ROR LAR WDR SR PR DR TR HR WR

R 25 1 986(0.0) 800(0.0) 1,358(0.1) 766(0.0) 979(0.0) 938(0.0) 900(0.0) 1,121(0.0) 904(0.0) 1,248(0.0)
R 50 1 946(0.0) 947(0.0) 900(0.0) 951(0.0) 1,051(0.0) 963(0.0) 826(0.0) 1,241(0.0) 946(0.0) 1,229(0.0)
R 75 1 995(0.0) 893(0.0) 1,104(0.0) 943(0.1) 958(0.1) 933(0.1) 769(0.0) 1,196(0.1) 936(0.1) 1,273(0.0)
R 100 1 1,024(0.0) 640(0.0) 1,323(0.1) 1,294(0.1) 907(0.1) 926(0.1) 743(0.1) 1,205(0.1) 1,096(0.1) 842(0.1)

Table 7
Number of iterations and the CPU times required by the insertion operators

Instance GI SI GIN SIN λFI oGI oSI oGIN oSIN oλFI

R 25 1 860(0.2) 855(0.2) 537(0.1) 510(0.2) 451(0.0) 1,843(0.9) 1,945(1.2) 1,024(0.6) 1,045(0.6) 930(0.3)
R 50 1 655(0.7) 631(0.5) 312(0.1) 414(0.4) 453(0.1) 2,359(11.2) 2,332(10.8) 971(4.5) 941(4.5) 932(1.1)
R 75 1 636(1.4) 532(0.9) 404(0.6) 263(0.5) 286(0.0) 2,697(44.9) 2,643(42.5) 1,040(13.5) 832(13.0) 667(1.5)
R 100 1 531(4.2) 485(2.1) 212(1.3) 252(1.1) 273(0.2) 3,315(285.0) 3,095(263.8) 875(56.7) 510(42.5) 452(4.7)

selected. It is noted that randomly-ordered insertion operators do not perform well, as many times
the algorithm cannot insert all unassigned requests back to the solution due to their order of inser-
tion.

Tables 8 – 9 indicate the number of times an operator has found the best and a better solution
compared to the current one, respectively. It is noted that the number in parenthesis indicates the
number of times a current solution is improved, but not to become a best known.

Table 8
Number of global best solutions found and number of improving solutions achieved by the removal operators

Instance RR ROR LAR WDR SR PR DR TR HR WR

R 25 1 1(61) 0(47) 1(29) 0(4) 0(77) 0(43) 2(48) 4(97) 1(60) 2(152)
R 50 1 24(179) 2(111) 6(205) 3(68) 4(188) 5(137) 1(72) 5(257) 1(56) 1(154)
R 75 1 14(195) 6(94) 3(208) 1(154) 7(235) 6(178) 4(42) 6(290) 9(189) 4(168)
R 100 1 17(226) 9(73) 9(292) 4(107) 7(228) 7(196) 2(32) 4(306) 8(163) 7(256)

Table 9
Number of global best solutions found and number of improving solutions achieved by the insertion
operators

Instance GI SI GIN SIN λFI oGI oSI oGIN oSIN oλFI

R 25 1 1(7) 1(7) 0(3) 0(2) 0(0) 3(253) 4(210) 2(73) 0(63) 0(0)
R 50 1 18(36) 0(10) 0(3) 0(1) 0(0) 19(755) 15(575) 0(25) 0(22) 0(0)
R 75 1 8(21) 0(5) 0(0) 0(2) 0(0) 28(1069) 23(628) 1(15) 0(13) 0(0)
R 100 1 12(27) 0(6) 0(1) 0(0) 0(0) 32(1211) 30(630) 0(2) 0(2) 0(0)

The results indicate that all removal operators, to some extent, contribute to achieving improved
solutions. On the other hand, some insertion operators (i.e., λFI and oλFI) do not improve a current
solution at any time. However, as it will be shown below, these operators are needed to diversify
the search and achieve better overall performance of the algorithm. Furthermore, as expected,
greedy operators (i.e., best and second-best) help obtaining improved solutions.

In order to identify the usefulness of the new insertion operators proposed in this article, we tested
four configurations of the ALNS. These are shown in Table 10, along with the average objective
function values over ten runs of the algorithm. We used the same instances as in Table 4.

According to the obtained results, using SI, SIN and λFI operators leads to the best performance
of the algorithm. These operators are mainly destined to diversify the search. As seen in Table 10,
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Table 10
A tuning of insertion operators

Configuration Average value
e

Without SI and SIN 949.61
Without λFI and oλFI 952.15
Without SI, SIN, λFI and oλFI 956.13
With all operators 948.25

it seems imperative to use such operators along with the unconventional scoring setting.

4.3. Results of the ALNS heuristic on the PDPTWs

In this section, we provide in Tables 11 – 13 computational results on the PDPTW benchmark
instances (i.e., Li and Lim [19]), which come in three sets: R, C and RC classified with respect
to the positioning of the customers (i.e., random, clustered and randomly-clustered). The reason
for choosing these instances is that Røpke and Cordeau [28] and Baldacci et al. [2] provided their
results by using the minimization of operating costs as our algorithm does. Tables 11 – 13 compare
published results to the ones obtained by our ALNS heuristic algorithm. The comparison is made in
terms of the average solution values obtained through 10 runs of the algorithm. This table presents,
for each instance, the value of the best known or optimal solution compiled from [28, 2, 29] under
column “Best known value”. Note that the values in bold emphasize that the proposed algorithm
found the best known solution. The symbol “*” indicates that the values are not necessary optimal
and are obtained by Røpke and Pisinger [29]. Moreover, we note that all figures presented in these
tables use a single decimal digit. For the ALNS algorithm, we then present the best solution value
obtained in column “ALNS best found”. In addition, we indicate “ALNS average value” after 10
runs with the corresponding average GAP (%) (i.e., let υ(ALNS ) be the solution value produced
by our algorithm, then, the GAP (%) = 100 (υ(ALNS )−υ(Best)) /υ(ALNS ), where υ(Best) is the
best known solution value for each instance). Finally, we show the corresponding average CPU
times required to run the algorithm.

Table 11
Results of the ALNS heuristic on benchmark PDPTW-C instances

Li and Lim [19] # of Best known CPU ALNS ALNS GAP CPU
instances requests value seconds best found average value % seconds

LC1 2 1 106 2,704.6 3.3 2,704.6 2,704.6 0.00 47
LC1 2 2 105 2,764.6 21.5 2,764.6 2,764.8 0.01 51
LC1 2 3 103 2,772.2 114.9 2,772.2 2,779.3 0.26 121
LC1 2 4 105 2, 661.4∗ 209 2,661.4 2,684 0.84 123
LC1 2 5 107 2,702 4.8 2,702 2,702 0.00 40
LC1 2 6 107 2,701 7.4 2,701 2,701 0.00 42
LC1 2 7 107 2,701 7.7 2,701 2,701 0.00 38
LC1 2 8 105 2,689.8 16 2,689.8 2,689.9 0.00 43
LC1 2 9 105 2,724.2 55.3 2,724.2 2,758.1 1.23 63
LC1 2 10 104 2,741.6 137.1 2,743.9 2,763.8 0.80 67

Average 58 0.31 66
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Table 12
Results of the ALNS heuristic on benchmark PDPTW-RC instances

Li and Lim [19] # of Best known CPU ALNS ALNS GAP CPU
instances requests value seconds best found average value % seconds

LRC1 2 1 106 3,606.1 3.1 3,606.1 3,608.9 0.08 45
LRC1 2 2 103 3,292.4 322.3 3,292.4 3,304.3 0.36 67
LRC1 2 3 105 3, 079.5∗ 183 3,108.5 3,121.2 1.34 107
LRC1 2 4 106 2, 525.8∗ 284 2,552.1 2,583.2 2.22 190
LRC1 2 5 107 3,715.8 42.1 3,766.2 3,788.3 1.91 55
LRC1 2 6 105 3,360.9 7 3,382.4 3,401 1.18 39
LRC1 2 7 106 3,317.7 408.2 3,344.3 3,377.1 1.76 52
LRC1 2 8 104 3,086.5 1562.7 3,129.5 3,143.7 1.82 63
LRC1 2 9 104 3,053.8 1757.2 3,093.6 3,141.5 2.79 54
LRC1 2 10 105 2, 837.5∗ 156 2,857.2 2,881.3 1.52 51

Average 473 1.49 72

Table 13
Results of the ALNS heuristic on benchmark PDPTW-R instances

Li and Lim [19] # of Best known CPU ALNS ALNS GAP CPU
instances requests value seconds best found average value % seconds

LR1 2 1 105 4,819.1 1.6 4,819.1 4,819.1 0.00 42
LR1 2 2 105 4,093.1 20.6 4,093.1 4,101.4 0.20 96
LR1 2 3 104 3,486.8 3690.8 3,486.8 3,503.6 0.48 162
LR1 2 4 105 2, 830.7∗ 228 2,839.1 2,873.1 1.48 201
LR1 2 5 106 4,221.6 2.6 4,221.6 4,239.2 0.42 42
LR1 2 6 107 3,763 180.9 3,763 3,769.9 0.18 70
LR1 2 7 103 3, 112.9∗ 173 3,112.9 3,124.9 0.38 107
LR1 2 8 103 2, 645.4∗ 226 2,652.4 2,664.7 0.72 159
LR1 2 9 105 3,953.5 15.4 3,953.5 3,961 0.19 52
LR1 2 10 104 3,386.3 1376.7 3,390.4 3,411.2 0.73 62

Average 592 0.48 99

As shown in Table 11 – 13, the ALNS heuristic performs very well on the PDPTW instances
considered in our tests. For the majority of instances, our heuristic algorithm was able to obtain
the best known solutions published in the literature in at least one out of the 10 runs. For the rest of
the instances, the percentage deviations are found to be not greater than 2.79%. The average CPU
time required for the algorithm on the instances is found to be around 78 seconds.

4.4. Results of the generated instances

This section presents the results obtained by the proposed heuristic on the four generated sets of
PDPTW-SL instances. These sets are generated from the three main datasets described in Section
4.1, by considering subsets of request, transfer node and PD vehicle sets. For the first group (with
up to 12 requests and one SL), each instance was solved 10 times with the proposed heuristic and
once with the PDPTW-SL MIP model by using CPLEX 12.3 (IBM ILOG [17]) with its default
settings and the valid inequalities proposed by Ghilas et al. [14]. A common time-limit of ten
hours was imposed to CPLEX on the solution time for all instances. The following three groups
were solved 10 times using the proposed ALNS in the context of PDPTW-SL and PDPTW. The
detailed results of these experiments are presented in Table 14 – 15.

In most of the cases, Table 14 indicates that the ALNS algorithm generated the same solution
values as those of CPLEX, but in a substantially smaller amount of time. For the instances solved
to optimality, the average CPU time required by CPLEX is approximately 8,251 seconds where the
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Table 14
Computational results for the instances with up to 12 requests

Instance
CPLEX ALNS

Upper bound Lower bound GAP CPU seconds Value GAP CPU
% % seconds

C 6 1 369.36 369.36 0.00 5,267 369.36 0.00 1
C 7 1 390.30 390.30 0.00 3,762 390.30 0.00 1
C 8 1 446.34 384.93 13.76 36,000 446.34 - 2
C 9 1 493.66 327.43 33.67 36,000 472.68 - 2
C 10 1 - 335.89 - 36,000 510.01 - 2
C 11 1 - 347.68 - 36,000 522.84 - 2
C 12 1 - 366.81 - 36,000 541.60 - 2
RC 6 1 572.75 572.75 0.00 185 572.75 0.00 1
RC 7 1 575.95 575.95 0.00 368 575.95 0.00 1
RC 8 1 585.32 585.32 0.00 961 585.32 0.00 1
RC 9 1 593.69 593.69 0.00 32,204 593.69 0.00 2
RC 10 1 599.94 599.94 0.00 24,925 599.94 0.00 2
RC 11 1 624.47 624.47 0.00 18,128 624.47 0.00 2
RC 12 1 - 608.89 - 36,000 662.03 - 2
R 6 1 416.16 416.16 0.00 2 416.16 0.00 1
R 7 1 473.05 473.05 0.00 5 473.05 0.00 1
R 8 1 558.17 558.17 0.00 16 558.17 0.00 1
R 9 1 632.41 632.41 0.00 8,782 632.41 0.00 1
R 10 1 636.05 636.05 0.00 3,421 636.05 0.00 2
R 11 1 748.28 748.28 0.00 17,493 748.28 0.00 2
R 12 1 - 771.01 - 36,000 934.73 - 2

same statistic for the ALNS to produce the reported solutions is approximately 2 seconds. In some
cases where CPLEX could not find any solution or could obtain a sub-optimal one, the proposed
ALNS was able to find solutions that have a tighter GAP relative to the best lower bound found
within the imposed time limit.

Tables 15 – 17 provide the results obtained for larger instances. The column Instance indicates the
instance identification. The Best known cost column indicates the best objective value found after
10 runs of the algorithm. In addition, columns Average cost and Average GAP show the average
objective values over 10 runs and respectively the average GAP from the best solution found. The
Cost savings column indicates the cost savings of the best PDPTW-SL solution compared to the
best corresponding PDPTW solution. The Best driving time column shows the total driving time
of the best solution found and the Driving time savings indicate the savings with regard to the total
driving time. CPU indicates the average computational time for solving the instances. Vehicles
used and Units on SLs provide the number of PD vehicles used and the number of shipments
(demand units) on the available SLs in the best solution found.

The proposed algorithm is relatively fast. For example, instances of up to 100 requests are solved
in less than 40 minutes. As it can be noticed from the Tables 15 – 17, the ALNS algorithm for
the PDPTW-SL is substantially slower than the same algorithm in case of the PDPTW. The main
reason is the extra complexity that is induced by having the flexibility of using available scheduled
lines, thus making multiple PD-vehicle routes depend on each other. In particular synchronization
constraints (i.e., time windows and capacity) require extra computation time (e.g., 20 – 30% of the
CPU time).

It is noted that the efficiency of the proposed system may be highly dependent on both the spatial
pattern of the requests and the configuration of the scheduled lines. Unless the design of the
scheduled line services (routes and schedules) is integrated with vehicle routing, it is likely that the
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Table 15
Results of C instances

Instance Best known Average Average Cost Best Driving time CPU # of vehicles Units on
value value GAP % savings % driving time savings % seconds used SLs

C 25 0 997.83 997.83 0.00 1,995.66 1 5

C 25 1 943.92 944.25 0.04 5.40 1,873.84 6.10 10 7 14
C 25 2 927.40 935.25 0.84 7.06 1,828.79 8.36 11 8 26
C 25 3 818.46 824.20 0.70 17.98 1,586.93 20.48 17 8 50

C 50 0 1,529.37 1,541.56 0.79 3,058.73 4 8

C 50 1 1,415.60 1,425.67 0.71 7.44 2,793.19 8.68 124 10 14
C 50 2 1,342.23 1,356.01 1.02 12.24 2,634.47 13.87 121 10 50
C 50 3 1,214.16 1,229.30 1.23 20.61 2,354.31 23.03 144 10 74

C 75 0 2,040.54 2,069.10 1.38 4,081.09 12 10

C 75 1 1,807.33 1,829.14 1.19 11.43 3,558.66 12.80 411 12 56
C 75 2 1,686.85 1,702.30 0.91 17.33 3,283.70 19.54 528 12 90
C 75 3 1,621.18 1,641.60 1.24 20.55 3,112.36 23.74 650 13 130

C 100 0 2,349.46 2,378.79 1.23 4,698.91 34 12

C 100 1 2,112.73 2,126.42 0.64 10.08 4,167.47 11.31 2378 13 58
C 100 2 2,040.36 2,069.71 1.42 13.16 3,964.72 15.62 2224 14 116
C 100 3 1,915.40 1,939.87 1.26 18.47 3,662.80 22.05 2357 14 168

Table 16
Results of RC instances

Instance Best known Average Average Cost Best Driving time CPU # of vehicles Units on
value value GAP % savings % driving time savings % seconds used SLs

RC 25 0 1,633.56 1,633.56 0.00 3,267.11 2 8

RC 25 1 1,393.59 1,394.94 0.10 14.69 2,779.19 14.93 5 7 8
RC 25 2 1,338.54 1,338.54 0.00 18.06 2,665.08 18.43 5 7 12
RC 25 3 1,328.42 1,328.42 0.00 18.68 2,642.84 19.11 5 7 14

RC 50 0 2,445.38 2,456.61 0.46 4,890.76 3 11

RC 50 1 2,348.14 2,365.36 0.73 3.98 4,684.27 4.22 28 11 4
RC 50 2 2,348.14 2,366.23 0.76 3.98 4,684.27 4.22 33 11 12
RC 50 3 2,337.20 2,356.19 0.81 4.42 4,656.39 4.79 36 10 18

RC 75 0 2,863.05 2,868.34 0.18 5,726.11 9 12

RC 75 1 2,814.39 2,825.63 0.40 1.70 5,616.78 1.91 143 12 12
RC 75 2 2,814.39 2,836.39 0.78 1.70 5,616.78 1.91 155 12 12
RC 75 3 2,814.39 2,839.05 0.87 1.70 5,616.78 1.91 181 12 12

RC 100 0 3,114.35 3,119.10 0.15 6,228.70 25 12

RC 100 1 3,088.07 3,093.66 0.18 0.84 6,164.13 1.04 794 12 12
RC 100 2 3,088.07 3,100.22 0.39 0.84 6,164.13 1.04 677 12 12
RC 100 3 3,088.07 3,134.30 1.48 0.84 6,164.13 1.04 985 12 12

gains from an integrated system operation would be very small. Hence, designing such a system
involves tactical decisions related to the pattern of the scheduled lines (positioning of the transfer
nodes relative to the demand nodes clusters), the storage areas at the transfer nodes, and the re-
design of the SL vehicles (e.g., freight compartment), that are not taken into consideration in this
paper as the focus was on operational costs of the proposed system.

Overall, the results indicate the potential operating costs due to available scheduled lines. In par-
ticular, the savings range from 0 to 20% with regard to operating costs and from 0 to 23% in terms
of driving time. Note that in this study the amount of CO2e emissions is directly proportional to
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Table 17
Results of R instances

Instance Best known Average Average Cost Best Driving time CPU # of vehicles Units on
value value GAP % savings % driving time savings % seconds used SLs

R 25 0 1,774.75 1,774.75 0.00 3,549.50 1 8

R 25 1 1,747.61 1,750.59 0.17 1.53 3,491.22 1.64 2 8 4
R 25 2 1,560.51 1,576.77 1.03 12.07 3,109.01 12.41 3 8 12
R 25 3 1,560.51 1,570.65 0.65 12.07 3,109.01 12.41 3 8 12

R 50 0 2,614.49 2,623.19 0.33 5,228.98 3 12

R 50 1 2,614.49 2,624.28 0.37 0.00 5,228.98 0.00 15 12 0
R 50 2 2,553.97 2,570.34 0.64 2.31 5,075.95 2.93 20 13 32
R 50 3 2,531.17 2,559.32 1.10 3.19 5,036.33 3.68 22 13 26

R 75 0 3,337.85 3,337.85 0.00 6,675.70 7 14

R 75 1 3,337.85 3,355.41 0.52 0.00 6,675.70 0.00 69 14 0
R 75 2 3,321.14 3,361.77 1.21 0.50 6,630.28 0.68 98 15 12
R 75 3 3,321.14 3,349.07 0.83 0.50 6,630.28 0.68 110 15 12

R 100 0 3,643.07 3,646.89 0.10 7,286.14 26 15

R 100 1 3,643.07 3,665.31 0.61 0.00 7,286.14 0.00 538 15 0
R 100 2 3,628.87 3,646.65 0.49 0.39 7,245.74 0.55 690 16 12
R 100 3 3,628.87 3,637.37 0.23 0.39 7,245.74 0.55 725 16 12

total driving time as we disregard the extra emissions produced by the SLs due to extra carried
weight (i.e., packages).

The most of the savings can be achieved by shipping requests on the available SLs. However,
the number of PD vehicles used slightly increases in PDPTW-SL compared to the solutions for
PDPTW, especially in C instances. It is explained by the fact that the number of vehicles used
depends on the time windows, capacities, and demands. Moreover, we note that savings decrease
along with the increase in the number of requests for R and RC instances. This can be explained
by the increasing density of the requests over the considered area (200×200 time units). Hence,
driving time from one demand node to another becomes shorter. For C instances the savings remain
significant for larger instances as well. Hence, we can conclude that the more demand points are
clustered around transfer nodes, the better performance of the system is. An obvious point that is
supported by the results is that the more SLs are available, more savings can be achieved compared
to the classical PDPTW.

4.5. The effect of heterogeneous routing costs on the algorithm performance

In this section, we present computational experiments on the instances with heterogeneous vehicle
routing costs that are based on the vehicle capacity. The minimum-capacity vehicle is assumed to
cost 0.5 e per operating time unit. Larger vehicles are assigned a cost that increases linearly along
with the carrying capacity. Each instance is run ten times and the results are given in Table 18. The
columns are self-explanatory, similar to previously presented tables.

According to the obtained results, the proposed ALNS seems to perform stable when considering
heterogeneous costs, leading to solutions with an average GAP of 0.88% compared to the best
known solutions. In addition, the results indicate that objective function values tend to increase
due to larger routing costs (heterogeneous costs) for the considered vehicles, compared to homo-
geneous case (i.e., 0.5 e for all vehicles). In this context, making use of available SLs leads to
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Table 18
An analysis of heterogeneous vehicle routing costs

Instance Best known Average Average Cost savings CPU # of vehicles Units on
value value GAP % % seconds used SLs

25 C 0 1,106.39 1,113.83 0.67 1 5 -
25 C 1 998.32 1,010.29 1.18 9.77 6 6 10

25 RC 0 1,704.62 1,714.14 0.56 1 7 -
25 RC 1 1,449.07 1,456.16 0.49 14.99 4 7 4

25 R 0 1,916.39 1,942.96 1.37 1 8 -
25 R 1 1,861.04 1,878.43 0.93 2.89 2 8 3

50 C 0 1,623.09 1,635.45 0.76 3 8 -
50 C 1 1,459.64 1,489.81 2.03 10.07 127 9 17

50 RC 0 2,603.40 2,639.39 1.36 4 11 -
50 RC 1 2,476.35 2,510.05 1.34 4.88 24 11 6

50 R 0 2,796.81 2,815.62 0.67 4 12 -
50 R 1 2,796.81 2,802.74 0.21 0.00 15 12 0

75 C 0 2,278.57 2,309.17 1.33 8 11 -
75 C 1 1,955.53 1,972.39 0.85 14.18 698 11 25

75 RC 0 3,164.14 3,183.45 0.61 7 12 -
75 RC 1 3,144.66 3,155.30 0.34 0.62 122 12 6

75 R 0 3,583.39 3,603.99 0.57 5 14 -
75 R 1 3,572.31 3,586.76 0.40 0.31 138 15 2

100 C 0 3,985.45 4,017.42 0.80 22 12 -
100 C 1 3,557.39 3,576.59 0.54 10.74 2178 13 36

100 RC 0 3,420.74 3,461.23 1.17 9 13 -
100 RC 1 3,344.28 3,362.95 0.56 2.24 644 12 6

100 R 0 3,758.27 3,792.44 0.90 13 15 -
100 R 1 3,758.27 3,825.33 1.75 0.00 668 15 0

average cost savings of 5.89% compared to the corresponding best-known PDPTW solutions.

4.6. An application study

In this section we investigate the performance of the PDPTW-SL environment on a realistic sched-
uled lined system. In particular, we solve one instance of 100 randomly generated requests on a
60 x 60 time-units area, three depots and 20 PD vehicles. The scheduled lines graph is shown
in Figure 5 and it is inspired from the current metro system in Amsterdam (see Figure 1). The
distances are considered Euclidean and time windows are randomly generated.

Table 19
Results on a realistic real-life scheduled line system

Instance
PDPTW-SL PDPTW

Driving # of shipments on Cost CPU # of Driving Cost CPU # of
time scheduled lines e seconds vehicles time e seconds vehicles

Amsterdam 1,767.22 36 919.61 1,258.52 10 1,945.69 972.85 34.62 7100 requests

The results shown in Table 19 are obtained after five runs of the algorithm and indicate the best
solutions found for both PDPTW-SL and PDPTW. In particular, the PDPTW-SL integrated trans-
portation system led to 5% savings in terms of operating costs and 9% in fewer total driving time.
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Figure 5 An illustrative representation of Amsterdam’s metro system

Even though PDPTW-SL system can lead to operating costs and CO2e emissions benefits, the
number of vehicles used is increased as compared to PDPTW.

5. Conclusions

We have described a metaheuristic algorithm to solve the PDPTW-SL. To fully evaluate the ef-
fectiveness of the algorithm, we have generated different sets of instances and compiled a library
of PDPTW-SL instances. Compared to the existing solutions on a set of PDPTW instances, the
proposed algorithm performed well in terms of both, solution quality (with a maximum GAP of
2.79%) and CPU time (78 seconds on average). Furthermore, we have also shown that small
PDPTW-SL instances can be solved optimally by the proposed formulation. The solutions ob-
tained from solving larger instances, up to 100 requests, were compared to their corresponding
PDPTW solutions and it is concluded that the flexibility of using scheduled line services leads to
significant cost savings and fewer CO2e emissions. However, note that the performance of the
PDPTW-SL system may be highly dependent on the relative positioning of the scheduled lines to
the request nodes. In addition, investment costs needed for implementing such system may affect
its outcome.

The reliability of such a system may decrease due to extra causes of delays and cargo damages
(i.e., transfers to/from SLs, delays in SL schedules). Therefore, shippers may not be willing to
use PDPTW-SL system. In order to tackle such issues, more advanced planning tools are needed,
which consider stochastic aspects of the problem. The current research state of the considered
problem is yet young and further industry collaborations are to be done in order to learn more
about practical issues that may or may not prevent the implementation and the execution of such a
system.

Overall the numerical experiments show that the proposed algorithm is highly effective in find-
ing good-quality solutions for relatively large instances in a reasonable amount of time (up to 40
minutes). Regarding extensions of the investigated problem, additional aspects may be considered
such as driver-related constraints, stochastic aspects (demands, travel times) or passenger requests,
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and the other related constraints (e.g., maximum ride-time). Investigation of exact decomposition
algorithms (e.g., Branch & Price) could also be an interesting research direction. In addition, since
the results show that the number of PD vehicles used may increase when SLs are introduced, it
would be interesting to introduce fixed costs for the PD vehicles as well to make more clear the
trade-off between using fewer PD vehicles or using SLs with more PD vehicles.
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