

An Adaptive Large Neighborhood Search Heuristic for

the Share-a-Ride Problem

Baoxiang Li, Dmitry Krushinsky, Tom Van Woensel, Hajo A. Reijers

Beta Working Paper series 475

BETA publicatie WP 475 (working
paper)

ISBN
ISSN
NUR

804

Eindhoven June 2015

An Adaptive Large Neighborhood Search Heuristic for

the Share-a-Ride Problem

Baoxiang Lia,∗, Dmitry Krushinskya, Tom Van Woensela, Hajo A. Reijersb,c

aDepartment of Industrial Engineering and Innovation Sciences, Eindhoven University of
Technology, Eindhoven, The Netherlands

bDepartment of Computer Science, VU University Amsterdam, Amsterdam, The
Netherlands

cDepartment of Mathematics and Computer Science, Eindhoven University of
Technology, Eindhoven, The Netherlands

Abstract

The Share-a-Ride Problem (SARP) aims at maximizing the profit of serving
a set of passengers and parcels using a set of homogeneous vehicles. We
propose an adaptive large neighborhood search (ALNS) heuristic to address
the SARP. Furthermore, we study the problem of determining the time slack
in a SARP schedule. Our proposed solution approach is tested on three sets of
realistic instances. The performance of our heuristic is benchmarked against
a mixed integer programming (MIP) solver and the Dial-a-Ride Problem
(DARP) test instances. Compared to the MIP solver, our heuristic is superior
in both the solution times and the quality of the obtained solutions if the
CPU time is limited. We also report new best results for two out of twenty
benchmark DARP instances.

Keywords: Transportation, The Share-a-Ride Problem (SARP), Adaptive
Large Neighborhood Search, Slack Time

1. Introduction

In most real-life situations, especially in urban areas, people and freight
transportation operations are managed separately. New city logistics ap-

∗Corresponding author. Email: B.li@tue.nl, Tel:+31 (0)402472693, Postal address:
Paviljoen E18, Den Dolech 2, Eindhoven University of Technology, 5612 AZ Eindhoven,
The Netherlands

Preprint submitted to Elsevier June 2, 2015

mailto: B.li@tue.nl

proaches are needed to ensure an efficient urban mobility for both people
and goods.

For a real-world application, online shopping becomes increasingly pop-
ular, and the delivery time is the key to success of online shopping business.
To attract customers, many companies offer same-day delivery service (for
instance, Amazon, 360Buy). Currently, the parcels are mainly delivered by
vans. However, road congestion becomes a serious obstacle for a timely de-
livery. The main reason for road congestion is the significantly large number
of vehicles on the road. Basically, there are two kinds of vehicles on the road:
vehicles for passengers (e.g. bus, taxi, private car) and vehicles for freight
(e.g. truck, van). Ensuring an efficient urban mobility for both people and
goods becomes more and more critical. Furthermore, the accessibility of
some districts is limited for trucks (e.g. no trucks or limited hours for trucks
to enter a city center), while taxis are allowed almost everywhere at anytime.
We propose a potential collaboration between people transportation compa-
nies and online shopping companies in Li et al. [7]. For example, Connexxion
(a transportation company in the Netherlands) can deliver both passengers
and parcels, and the parcels can be provided by bol.com (an online shopping
website in the Netherlands). The parcels can be put in the trunk or under the
seat. Thus, the use of a people-and-parcel ridesharing system reduces costs,
alleviates urban congestion, and reduces environmental pollution. People-
and-parcels sharing can be modeled as the Share-a-Ride Problem (SARP,
see Li et al. [7]). The authors give an introduction to the SARP, which is
mainly used in mixed commodity services where people and parcels are si-
multaneously handled by the same transportation network. An application
for this problem is the taxi sharing system.

The problem under consideration can be described as follows. A number
of taxis drive in a city to serve transportation requests coming from people.
At the same time, they deliver some parcels in case it does not affect their
passengers significantly. In Figure 1, an example is given of a combined route
of the taxi for parcels and people service.

This involves planning the taxi routes capable of accommodating people
and freight as much as possible, under a given set of constraints (related to
pickup and delivery times, capacity of a taxi, etc.). This application can be
extended to other transportation modes, such as bus, train, or tram.

From the modeling perspective, the SARP can be considered as an ex-
tension of the Dial-a-Ride Problem (DARP), which is known to be NP-hard
[14]. What makes the SARP even more difficult is that it adds passenger

2

priority constraints to the classic DARP. The differences between the SARP
and the DARP can be summarized as follows:

(i) The SARP ensures that any passenger request must be processed
within a given time period, and parcels have no such constraints.

(ii) Two passengers cannot be in the same taxi at same time but two
parcels can, and a passenger service has a higher priority: we can insert at
most η requests between the pickup and the drop off point of a passenger
(η ∈ {0, 1, 2, ...}).

(iii) In the DARP and the SARP, the time window and travel time con-
straints lead to time slacks. Most DARP models in the literature do not
consider the time slacks. Even if some DARP model has the constraints re-
lated to the time slacks, the time slacks can always be put forward to the
previous requests or postponed to the following requests. But for the SARP,
the discount for passengers in the objective function is related to extra ride
time as compared to the direct trip. Thus, when the taxi is serving a pas-
senger, it is better not to assign any time slacks within the passenger trips.

Furthermore, the SARP is a generalization of the Pickup and Delivery
problem (PDP). The main difference between the SARP and the PDP is
that the SARP considers transportation of both passengers and parcels, it
includes extra constraints for passengers, and constraints that describe the
relationship between passengers and parcels.

The straightforward exact approach can only solve relatively small prob-
lems [7]. An efficient tool, however, is critical for the practical application of
the SARP, which motivates us to develop a metaheuristic algorithm to solve
it.

In this paper, we describe our heuristic that is based on an adaptive large
neighborhood search (ALNS). Three main contributions of this paper are as
follows:

• We propose a time slack strategy for the route scheduling.

• We describe an entropy-based diversity measurement. The measure-
ment method can be used: (i) to monitor the performance of subrou-
tines. (ii) adjust the heuristic during its execution.

• We show that medium-sized real life instances can be solved within a
relatively short CPU time.

The remainder of this paper is organized as follows. The literature is
reviewed in Section 2. Section 3 briefly introduces the problem and model

3

Passenger pickup point

P
P

D

D

P

D

Passenger drop off point

D Parcel drop-off pointP Parcel pickup point

Figure 1: The SARP – taxis serve both passengers and parcels

formulations used in this paper. In Section 4, we describe our ALNS. The
evaluation of the ALNS and computational results are presented in Section
5. Finally, Section 6 concludes the paper.

2. Literature Review

The description of the SARP was proposed recently. Li et al. [7] explained
the conceptual and mathematical models in which people and parcels are
handled in an integrated way by the same taxi network. To our knowledge,
there is no specific solution algorithm available for the SARP. However, the
SARP can be considered as an extension to the DARP, and most of the
heuristics used for the DARP can be adjusted for solving the SARP. Several
versions of the DARP were studied over the past four decades. We refer to
three surveys on the DARP by Cordeau and Laporte [4, 5] [2]. In this section,
we mainly review the class that was solved by tabu search, insertion-based,
and cluster-based heuristics. The reason is that these approaches can easily
accommodate a large variety of constraints, and allow solving instances with
hundreds of requests, according to [5].

Tabu search is a classical method to solve the DARP. Cordeau and La-
porte [12] described a tabu search heuristic for the DARP that has time

4

windows. The results presented in that paper were used as a benchmark
in subsequent papers that attempted to solve the DARP by heuristics. The
instances generated in that paper together with instances provided by Li and
Lim [3] are mainly used in the literature related to the pickup and delivery
problem with time windows (PDPTW) and the DARP problems.

Since large neighborhood search heuristics have shown excellent results in
solving transportation and scheduling problems in recent years, researchers
applied them to the Pickup and Delivery problem. Ropke and Pisinger [8]
proposed an adaptive large neighborhood search heuristic for the PDP with
time windows. The heuristic was tested on more than 350 instances. The
instances were modifications of those first proposed by Li and Lim [3]. The
regret insertion heuristic they used in this paper performs well: it decreases
at least 10% of the gap from the best known solution as compared to the
basic greedy operator (based on 16 tested problems).

Parragh et al. [16] proposed a variable neighborhood search-based heuris-
tic, using three classes of neighborhoods: (1) the first class uses simple swap
operations; (2) the second class is based on the so-called ejection chain idea
(moving sequences of requests); (3) the third neighborhood class exploits the
existence of trips where the vehicle load is zero. Regarding the test instances
proposed by Cordeau and Laporte [12], they reported 16 new best solutions.

Good insertion heuristics are critically important to the performance of
a neighborhood search. Lu and Dessouky [9] presented an insertion-based
construction heuristic to solve the multi-vehicle pickup and delivery problem
with time windows, which considered both incremental distance measures
and the cost of reducing the time window slack due to the insertion. The
proposed heuristic was tested on the instances provided by Li and Lim [3].
Diana and Dessouky [10] presented a new regret insertion-based construction
heuristic to solve the large-scale DARP with time windows. In their paper,
time window control was used to quickly check the feasibility of an insertion.
The algorithm was tested on data sets of 100 and 500 requests generated
from a para-transit service data. Häme [11] addressed an adaptive insertion
algorithm for the single-vehicle DARP. The performance of the heuristic with
different objective functions (related to route duration and time slack) was
evaluated.

Other heuristics, such as 2-opt or 3-opt route construction methods and
multi-phase construction heuristics, are described in the literature. Savels-
bergh [13] investigated the implementation of edge-exchange improvement
methods for the vehicle routing problem. According to this paper, the com-

5

puting time for 2-exchange and OR-exchange can be linear in the number of
requests. Hernández-Pérez and Salazar-González [15] proposed one heuris-
tic, which involves merging feasible paths, 2-opt and 3-opt methods. Schilde
et al. [6] presented four different modifications of metaheuristic solution ap-
proaches for the dynamic stochastic DARP with expected return transports:
dynamic versions of variable neighborhood search (VNS), stochastic VNS
(S-VNS), modified versions of the multiple plan approaches (MPA), and the
multiple scenario approach (MSA). For most of the tested cases, S-VNS out-
performs other methods.

3. Mathematical model formulation

Following the notation of Li et al. [7], let σ denote the number of requests
to be served, which includes m parcels and n passengers. The SARP is
defined on a complete undirected graph G = (V,E) where V = V p ∪ V f ∪
{0, 2σ + 1}. Subsets V p and V f correspond to passenger and parcel stops,
respectively, while stops 0 and 2σ + 1 represent the origin and destination
depots of the taxis. Moreover, V p,o and V f,o represent the set of passenger
origins and parcel origins, respectively. For easy referencing, all stops in V
are arranged in such a way that all origins precede all destinations, origins of
passengers precede origins of parcels, and destinations of passengers precede
those of parcels. Thus, the destination of each request can be obtained as its
origin offset by a fixed constant σ. With each edge (i, j) ∈ E are associated
a distance dij and a travel time tij. Let K be the set of vehicles, for each arc
(i, j) ∈ A and each vehicle k ∈ K, let Xk

ij = 1, if vehicle k travels from node
i directly to node j. For each passenger i (i ∈ V p,o), let rki be his/her ride
time on vehicle k.

The objective function includes four parts: (i) the profit obtained from
passengers; (ii) the profit obtained from parcels; (iii) the cost related to the
distance traveled; (iv) the discount related to extra ride time of passengers
as compared to the direct trip. Furthermore, the initial profits obtained from
a passenger and a parcel are represented by α and β, respectively; while the
average profits per unit distance are denoted by γ1 and γ2, and the cost per
unit distance is γ3. The discount factor for exceeding the direct delivery time
of passengers is represented by γ4.

6

Thus, we aim at optimizing the objective:

max

[∑
i∈V p,o

∑
j∈V

∑
k∈K

(α + γ1di,i+σ)Xk
ij +

∑
i∈V f,o

∑
j∈V

∑
k∈K

(β + γ2di,i+σ)Xk
ij

−γ3
∑
i∈V

∑
j∈V

∑
k∈K

dijX
k
ij − γ4

∑
i∈V p,o

∑
k∈K

(rki /ti,i+σ − 1)

]
, (1)

while satisfying the following constraints:

• capacity constraints of taxis;

• time window constraints for passengers and parcels;

• working hours limitation constraints for taxi drivers;

• every passenger or parcel can be served at most once by one taxi;

• any passenger request must be processed within a given time period;

• at most η requests can be inserted between the pickup and drop-off
point of a passenger.

For the mathematical formulation of constraints, we refer to Li et al. [7].

4. An Adaptive Large Neighborhood Heuristic for the SARP

In this section, we describe our ALNS heuristic. An initial solution is
constructed by using a basic greedy insertion heuristic to insert the ran-
domly selected requests to the vehicles. Next, the ALNS heuristic is used to
improve the original solution. All parameters mentioned in this section are
summarized in Table 1.

4.1. The ALNS framework

The heuristic used is based on the ALNS described by Ropke and Pisinger
[8]. The ALNS algorithm with simulated annealing as a local search frame-
work is presented in Algorithm 1. In the algorithm, each iteration includes
two subroutines: request selection and perturbation. Let s be the current
solution, s′ be the new solution, and f(s), f(s′) – the corresponding objective
values. If f(s′) is worse than f(s), we accept the solution s with probability
p(s′, s):

7

Table 1: Notations for the ALNS and solution evaluation

Ai Arrival time at stop i
[ei, li] Time window for stop i
Wi Waiting time at stop i Wi = max(0, ei −Ai)
Fi Time slack of request i
Bi The time when service at i starts, Bi = Ai +Wi + Fi
si Service time of request i
Di Departure time from stop i, Di = Bi +Wi + Fi + si
Li Ride time of request i, Li = Di+σ −Di

T Maximum route duration
$ Last request on the route
Ri Ride time of the request i
Ii Number of insertions between the pickup point and drop off point of passenger i,

for parcels, Ii = 0
M Big enough number (we used 105)

p(s′, s) = min{1, e(f(s′)−f(s))/T}, (2)

where T ≥ 0 is the “temperature” that starts at T0 and decreases every
iteration using the expression T := 0.9999 · T , T0 is defined in such a way
that the objective value of the first iteration is accepted with a probability
0.5. The simulated annealing structure is the same as in [8].

Two solution evaluation approaches are used for the ALNS:

(1) ALNSF : only feasible solutions are allowed during the search;

(2) ALNSI : infeasible solutions are considered and a penalty of the vio-
lated constraints is added to the objective.

Considering infeasible solutions provides more flexibility in averting local
optima. Nevertheless, the run time increases as all the constraints must
be checked, while the ALNSF stops checking when a violated constraint is
found.

4.2. Time slack calculation strategy for the SARP

As seen in (1), the ride time of passengers is a part of the objective
function. Thus, the distribution of the time slacks affects the objective value.
Figure 2 gives an example: suppose α = γ1 = γ3 = γ4 = 1, there are three

8

Algorithm 1: Adaptive Large Neighborhood Search

Input: Initial solution s, solution sbest := s;
1 while stopping criteria not reached do
2 s′ := s
3 Apply selection operator to select requests for removal
4 Apply perturbation operator to remove selected requests from s′

and reinsert as many unserved requests as we can into s′

5 if f(s′) > f(sbest) then
6 s := s′, sbest := s′

7 else
8 if f(s′) > f(s) then
9 s := s′

10 else
11 s := s′ with probability p(s′, s) defined in Equation (2)

12 end while

Output: sbest;

solutions with different distributions and different cost for the given feasible
route (P1 and P2 denote two passengers). No time slack exists in Figure 2a,
and the ride times of passengers are 16 and 20 units, respectively. However,
if we add 9 units of time slack at “P1 pickup” (Figure 2b), the ride time of
P1 decreases to 12 and that of P2 changes to 15. Instead, if we add 10 and 3
units of time slack at “P1 pickup” and “P2 pickup” (Figure 2c), the ride times
change to 15 and 12, respectively. The three time slack scheduling options
indicate that different time slacks lead to different ride times, which affect
the objective value (2.40, 3.30 and 3.30 in these three scheduling options).

Cordeau and Laporte [12] proposed a forward time slack strategy, where
all the pickup points are checked for time slacks. Nevertheless, we can get
a better objective value if we only add slacks on part of the requests. For
example, if a passenger shares a ride with parcels, he/she can always get a
better solution if the time slacks of parcels are zero. This is formalized in
the following theorem (the proof can be found in Appendix A):

Theorem 4.1. Consider two sub-routes (i1, . . . , i, . . . , j1) and (i2, . . . , j2)
(where j1 = i1 + σ, j2 = i2 + σ) of one route (0, . . . , i1, . . . , j1, . . . , i2, . . . , j2,
. . . , 2σ + 1), suppose the ride time of i1 and i2 are Li1 and Li2, respectively.

9

(i) Li2 does not depend on the time slack at i.

(ii) Li1 does not increase if time slacks at i and/or i2 are increased.

If it is allowed that passengers share a ride with other passengers, then
optimizing the time slacks is complex and time consuming. Nevertheless, the
objective function includes four parts, and the impact of the ride time part
is limited. We simplified the time slack strategy as follows: 1) if the model
forbids two passengers to share a ride, we only check the time slacks of pickup
points of passengers and requests that are not served between passengers; 2)
if passengers can share a ride with other passengers, all the pickup points
and part of drop off stops (stops between passengers) will be checked.

4.3. Solution evaluation

Let c(s) be the routing profit (value of the objective function (1)). The
solution is evaluated by c(s) plus the penalty of load violation q̄(s), duration
violation d̄(s), time window violation w̄(s), and ride time violation t̄(s) as
follows:

f(s) = c(s) + αq q̄(s) + αdd̄(s) + αww̄(s) + αtt̄(s) (3)

For the ALNSF , f(s) = c(s) holds, because all constraints must be satisfied
and q̄(s), d̄(s), w̄(s), and t̄(s) are equal to zero.

At the end of each iteration, the values of the parameters αq, αd, αw and
αt are modified by a factor 1 + δ, with 0 < δ ≤ 1. If the current solution is
feasible with respect to load constraints, the value of αq is divided by 1 + δ.
Otherwise, it is multiplied by 1 + δ. The same rule applies for αd, αw, and
αt.

In Algorithm 2, the solution evaluation scheme is given. Table 1 lists
all the relevant parameters used in Algorithm 2. Compared to [12], three
adjustments are made:

(1) If the constraints prohibiting insertion of more than η parcels during
one passenger service are violated, f(s) is set to M ;

(2) In the SARP, parcels have no ride time constraints and the related time
slacks are computed as:

Fj := min
j≤k≤$

{ ∑
j<p≤k

Wp + (lk −Bk)
+
}

(4)

10

10 20 26 40

6 6 6

4Waiting time

Departure time

Arrival time 10 16 26 32

16

0 8

Time slack 0 0 00

0

20

20 29 35 41

0Waiting time

Departure time

Arrival time 10 26 35 41

15

0 0

Time slack 10 3 00

0

12

19 25 31 40

0Waiting time

Departure time

Arrival time 10 25 31 37

12

0 3

Time slack 9 0 00

0

15

[10, 20] [20, 30] [25, 35] [40, 50]

P1 pickup

Time window

P2 pickup P1 drop off P2 drop off

Travel time

Profit: 3.30

Direct ride time of P1: 10
Direct ride time of P2: 10

6 6 6
[10, 20] [20, 30] [25, 35] [40, 50]

P1 pickup

Time window

P2 pickup P1 drop off P2 drop off

Travel time

6 6 6
[10, 20] [20, 30] [25, 35] [40, 50]

P1 pickup

Time window

P2 pickup P1 drop off P2 drop off

Travel time

Ride time P1

Ride time P2

Ride time P1

Ride time P2

Ride time P1

Ride time P2

Profit: 3.30

Profit: 2.40

(a) No time slack

10 20 26 40

6 6 6

4Waiting time

Departure time

Arrival time 10 16 26 32

16

0 8

Time slack 0 0 00

0

20

20 29 35 41

0Waiting time

Departure time

Arrival time 10 26 35 41

15

0 0

Time slack 10 3 00

0

12

19 25 31 40

0Waiting time

Departure time

Arrival time 10 25 31 37

12

0 3

Time slack 9 0 00

0

15

[10, 20] [20, 30] [25, 35] [40, 50]

P1 pickup

Time window

P2 pickup P1 drop off P2 drop off

Travel time

Profit: 2.40

Profit: 3.30

Direct ride time of P1: 10
Direct ride time of P2: 10

6 6 6
[10, 20] [20, 30] [25, 35] [40, 50]

P1 pickup

Time window

P2 pickup P1 drop off P2 drop off

Travel time

6 6 6
[10, 20] [20, 30] [25, 35] [40, 50]

P1 pickup

Time window

P2 pickup P1 drop off P2 drop off

Travel time

Ride time P1

Ride time P2

Ride time P1

Ride time P2

Ride time P1

Ride time P2

Profit: 3.30

(b) The first option for adding time slacks

10 20 26 40

6 6 6

4Waiting time

Departure time

Arrival time 10 16 26 32

16

0 8

Time slack 0 0 00

0

20

20 29 35 41

0Waiting time

Departure time

Arrival time 10 26 35 41

15

0 0

Time slack 10 3 00

0

12

19 25 31 40

0Waiting time

Departure time

Arrival time 10 25 31 37

12

0 3

Time slack 9 0 00

0

15

[10, 20] [20, 30] [25, 35] [40, 50]

P1 pickup

Time window

P2 pickup P1 drop off P2 drop off

Travel time

Profit: 2.40

Profit: 3.30

Direct ride time of P1: 10
Direct ride time of P2: 10

6 6 6
[10, 20] [20, 30] [25, 35] [40, 50]

P1 pickup

Time window

P2 pickup P1 drop off P2 drop off

Travel time

6 6 6
[10, 20] [20, 30] [25, 35] [40, 50]

P1 pickup

Time window

P2 pickup P1 drop off P2 drop off

Travel time

Ride time P1

Ride time P2

Ride time P1

Ride time P2

Ride time P1

Ride time P2

Profit: 3.30

(c) The second option for adding time slacks

Figure 2: The effect of time slacks

11

For passengers:

Fj := min
j≤k≤$

{ ∑
j<p≤k

Wp + (min{lk −Bk, Lj −Rj})+
}

(5)

where Lj − Rj = 2tj,j−σ − Rj for drop off points, otherwise Lj − Rj =
2tj,j−σ. A loop is needed to calculate Fj in Equation (4) and (5), if
there exist k that makes

∑
j<p≤k

Wp ≥ Fj, stop the loop and output Fj.

(3) A maximum total time slack TWT is defined; at first it equals the
total waiting time (

∑
0<i<$

Wi), then it decreases by the time slacks of

the checked node.

4.4. Adaptive weight adjustment procedure

The choice of the selection and perturbation heuristics is governed by a
roulette wheel mechanism. We have ten selection operators and seven per-
turbation operators. On the one hand, we diversify the search by combining
different operators. On the other hand, a good balance between the quality
of the solution and the running time can be reached by choosing a suitable
operator at every iteration.

We defined P t
d as the probabilities of choosing operator d at iteration t.

Starting from a predefined value, they are updated as P t+1
d := P t

d(1 − ρ) +
ρχi/ζi, where ρ is the roulette wheel parameter, χi is the score of operator i,
and ζi is the number of times it was used during the last 100 iterations. The
score of an operator is updated as follows. If the current iteration finds a new
best solution, the scores related to the used operators are increased by π1;
if it finds a solution better than the previous one, their scores are increased
by π2; if it finds a non-improving yet accepted solution, their scores are
increased by π3. Every 100 iterations, new weights are calculated using the
scores obtained, and all scores are reset to zero.

4.5. Requests selection

At each iteration, u requests will be selected and added to a perturbation
set C (set C initially includes the unserved requests). Ten selection operators
are used, the first five are adapted from Ropke and Pisinger [8], the ninth
operator is motivated by Cordeau and Laporte [12], while others are inspired
by Demir et al. [1] and Parragh et al. [16].

12

Algorithm 2: Eight-step evaluation scheme

Input: Route s
1 Set D0 := e0, TWT := 0;
2 for each i in s: compute Ai,Wi, Bi, Di, Ii (see Table 1)

if Ii > η then f(s) := M , goto Output
if q(s) or w(s) > 0 then for the ALNSF , f(s) := M and goto

Output
if d(s) or t(s)=0 then goto STEP 8

3 Compute F0

4 TWT :=
∑

0<p<$

Wp, set D0 := e0 + min{F0, TWT}

5 Update Ai,Wi, Bi, Di for each vertex vi in the route
6 Compute Li for each request assigned to the route
7 For each j that needs checking the time slacks

(a) if TWT = 0 then goto STEP 8, else TWT := TWT −Wj

(b) Compute time slacks Fj for requests: for passengers (Equation (4))
and for parcels (Equation (5)).

(c) Set Bj := Bj + min{Fj, TWT}; Dj := Bj + dj,
TWT := TWT −min{Fj, TWT}

(d) Update Ai,Wi, Bi, Di for each vertex vi that comes after vj in the
route, if Bi did not change, goto STEP 8

8 Compute changes in violations, calculate f(s) using Equation (3)
Output: f(s)

13

• Random (R1): This operator randomly selects u requests, thus di-
versifying the search.

• Close and Loose Package-First-Shaw (R2 and R3): The basic
Shaw removal heuristic used in this paper is proposed by Ropke and
Pisinger [8], the relatedness function of requests i and j is given by (6).

R(i, j) = dij + di+σ,j+σ + λ(|Bi −Bj|+ |Bi+σ −Bj+σ|) (6)

The first 5 steps in Algorithm 2 are used when calculating the value of
the Bi for request i. For given j, if passenger i1 and parcel i2 have the
same relationship value: R(i1, j) = R(i2, j), we prefer to remove the
parcel i2 rather than the passenger i1. Therefore, Equation 6 is used
when calculating the relationship for a parcel, and the relationship
value used for a passenger when implement operators R2 and R3 as
follows:

R(i, j) = p(dij + di+σ,j+σ + λ(|Bi −Bj|+ |Bi+σ −Bj+σ|))
0 < p < 1 (7)

The requests with small and large relationship values to the already
removed requests are selected for operators R2 and R3, respectively.

• Forbidden random (R4): This operator keeps a record of the re-
moval counts for the last 100 iterations, defined as Ni for a given re-
quest i. If Ni is bigger than a predefined number (150/σ), then request
i is forbidden for selection. We apply R1 to the non-forbidden requests.

• Forbidden Shaw removal (R5): This operator is similar to R4.
If Ni is bigger than a predefined number (150/σ), then request i is
forbidden for selection. We apply R3 to the non-forbidden requests.

• Sequence (R6): The operator first concatenates all the routes in a
sequence, then randomly selects 0.75u successive stops. Finally, the
operator repairs the routes (for each request i either |C∩{i, i+σ}| = 0
or |C ∩ {i, i+ σ}| = 2).

• 2-sequences (R7): The operator randomly chooses two routes, then
randomly selects a sequence of 0.5u requests from each route to put
into set C. If the route length is smaller than 0.5u, the whole route is
put into set C.

14

• Historical (R8): This operator keeps a record of the related distance
of the pickup and drop off points for every request i, defined as the
sum of the distances to the preceding and following requests: di =
di−1,i+di,i+1+di−1+σ,i+σ+di+σ,i+σ+1. At each iteration, the best position
cost dbesti is updated to be the minimum of all di values calculated until
this iteration. The u stops with the largest deviation (di − dbesti) are
put into set C.

• Tabu based (R9): This operator keeps a record of the times that
every request has been removed. Then, u requests with the smallest
frequencies of removal are put into set C.

• 1-Route (R10): A randomly selected route is put into set C.

4.6. Requests perturbation

After the procedure of requests selection, seven perturbation heuristics
have been implemented. Basically, the operators can be divided into two
types: the first type is one-by-one removal of requests belonging to C from the
current route and reinserting as many unserved requests as we can; the second
type is removing all the requests in C at once and reinserting one by one as
many unserved requests as possible. The first four operators are motivated
by Cordeau and Laporte [12], while others are inspired by Ropke and Pisinger
[8]. For the ALNSF , if no feasible routing is found when inserting a request,
this request is rejected. For the ALNSI , if f(s) > M , this request is rejected.

• 1-by-1 (I1): The selected requests are sequentially removed one by
one and reinserted into the best position.

• Balanced 1-by-1 (I2): For every node, we choose a route with the
best route objective value to insert. It tends to generate a relatively
balanced solution.

• Diversification 1-by-1 (I3): The operator is similar to I1 except that
there is a penalty to diversify the search. Penalty p(s) = λc(s)

√
mnρik

is added to the objective function f(s) when evaluating the cost of
inserting node i into route k, where λ = 0.015, m is the number of
vehicles, n is the number of requests, c(s) is the route cost, and ρik
is the number of times node i has been inserted into route k in the
previous 100 iterations. This type of scaling factor has been used in
the tabu search (see, e.g., Cordeau and Laporte [12]).

15

• Tabu 1-by-1 (I4): This operator implements a diversification strategy
similar to the tabu search. Suppose that request i is removed from some
route k, the request is then not allowed to be reinserted into route k.
The ban can only be canceled if insertion into route k leads to a better
routing profit compared to the best known routing profit of route k
with i inside. For the request that has never been served before, skip
the removal step and only do the insertion.

• Global all-at-once (I5): The operator repeatedly inserts unserved
requests in the best position of all the routes. The difference with I1 is
that all the requests are removed at once, then inserted again one by
one.

• Regret-3 all-at-once (I6):

The regret-3 value is the difference in the profit of inserting the request
in its best route and its second best route, plus the difference of insert-
ing in best and third best route. Let fi denote the regret-3 value of
request i, in each step the operator chooses to insert the request i that
maximizes:

i∗ := argmax
i

fi.

If some requests cannot be inserted in at least 3 routes, then operator
I5 is used.

• Local all-at-once (I7): This operator is similar to I5, the difference is
that I7 only specific route is checked, and I5 checks all routes. Suppose,
request i is removed from some route k, it tries to insert the request i
into the same route k again but in a better position.

In Section 5.3, we return to the issue of the efficiency of the selection and
perturbation operators.

4.7. Stopping criteria

Dynamic stopping criteria are defined: let t count the hundreds of itera-
tions, g(t) be the value determining the stopping criterion (if g(t) < 0.5 or
100t = 25000, stop the algorithm), the value of g(t) updates every 100 iter-
ations. e(t) stands for the best objective value until 10000 + 100t iterations.
The expressions used for updating g(t) after 10000 iterations are as follows:

g(0) = 1, g(t) = 0.99g(t− 1) + |e(t− 1)− e(t)|/max(e(t− 1), e(t)) (8)

16

5. Computational Experiments

This section presents results of the computational experiments to assess
the performance of the ALNS. The ALNS is implemented in Java and exe-
cuted on an Intel Xeon E5-4610 2.4 GHz 6 core CPU 32 GB RAM computer.
The parameters used in the ALNS are shown in Table 2. The parameter tun-
ing strategy is the one proposed by Ropke and Pisinger [8]. Every time only
one parameter is adjusted, while the rest are being fixed. The setting with
the best average behavior (in terms of average deviation from the best known
solutions) is chosen. This process iterates through all parameters once.

Table 2: Parameters used in the ALNS

Descriptions SARP Values DARP values
Number of selection stops in

the first 15000 iterations 5%-25% 5%-25%
Number of selection stops

after 15000 iterations 15%-45% 15%-35%
Roulette wheel parameter, ρ 0.70 0.70

Score of a global better solution, π1 5.00 15.00
Score of a better solution, π2 9.00 10.00
Score of a worse solution, π3 4.00 5.00

Shaw parameter, λ 0.70 0.70
Close removal parameter, p1 1.80 1.80
Loose removal parameter, p2 0.56 0.56

Penalty adjustment parameter, δ [0,0.25] [0,0.25]
P 0
dR

used for selection operators 0.10 0.10

P 0
dI

used for perturbation operators I1 0.25, others 0.125 I5 0.25, others 0.125

5.1. Test Instances

To analyze the behavior of the metaheuristics, we used three classes of
instances, and the main features of different instance classes are described
in Table 3. The first class (which includes 15 requests) is based on the San
Francisco taxi trail data (http://cabspotting.org), aimed at comparing the
performance of the ALNS with the solution given by an MIP solver. In total,
10 instances are generated (SF1–SF10). Each instance contains 15 requests
and 2 vehicles. The number of passengers is two times that of the parcels.
The capacity of each vehicle is 5. The weights of passengers and parcels are

17

set to 3 and 1, respectively. The time window width for passenger pickup
stops is 1 hour, and a window of 1.5 hours is used for passenger drop off
stops. Both the time window width for pickup and drop off stops of parcels
are 2 hours (9:00–11:00). The working time limit of drivers is 2 hours.

The second class consists of the DARP instances, proposed by Cordeau
and Laporte [12]. We define one third of the requests as parcels, the others
are passengers. The maximum travel time for a passenger is twice the direct
travel time. A direct passenger service can be disturbed at most twice for
serving other requests. The number of vehicles used in most of the instances
(all except R1a and R1b in Table 5) is one less than in the original settings.

The third class with 9 instances (SM1–SM9) is similar to the second class
(again, San Francisco taxi trail data), each instance contains 60–300 requests.
Both the time window width for pickup and drop off stops of parcels are 8
hours (9:00–17:00). The working time limit of drivers is 10 hours. Other
settings are the same as for the first class.

All the instances used can be found at the http://smartlogisticslab.nl/.
In the first and third classes of instances, distances are calculated in Man-
hattan metrics d(x; y) = |x1− y1|+ |x2− y2|, and travel times are calculated
as a ratio between the distance traveled and the average speed 5.36 m/s.
Euclidean metrics is used to compute the distance between the stops for the
second group of instances (the DARP instances). The parameters used in
the objective function are defined as follows: α = 3.50, β = 2.33, γ1 = 2.70,
γ2 = 0.90, γ3 = 0.60, and γ4 = 3.50.

The goal of this series of experiments is twofold: the ALNS should perform
well in both the solution quality and CPU times for the SARP on the one
hand, and should be applicable to the general DARP problem on the other
hand.

Table 3: Main features of different instances classes

Class # Inst. # Requests Pass. Distance Speed WTL

1 SF taxi trails 10 15 2/3 Manhattan 5.36 m/s 2 hours
2 DARP [12] 20 24–144 2/3 Euclidean 1 unit 480 units
3 SF taxi trails 9 60–300 2/3 Manhattan 5.36 m/s 10 hours

Pass.: the fraction of passengers in the number of requests
WTL: working time limit of drivers

18

5.2. Computational Results
The performance of the ALNS for the benchmark instances is reported

in this section. Every ALNS result is based on 10 runs and the best one
is presented. An average CPU time for one run out of 10 is measured in
minutes.

5.2.1. Computational Results for San Francisco instances

In this section, we focus on a set of 10 instances (SF1–SF10). Due to the
small instance size, we use 5000 iterations when running the ALNS. The rea-
son is that when we have small instances with few requests, the running time
is not an issue, and we did not set extra limitations besides the fixed number
of iterations. Table 4 shows the efficiency of the ALNS introduced in com-
parison to a MIP solver (GUROBI, time limit of 10 hours). The first column
denotes the instances. The columns “Gap” refer to the gaps relative to the
lower bound from GUROBI, for the objective value (upper bound) obtained
from the GUROBI, the ALNSI and the ALNSF , respectively. Furthermore,
the CPU times of the ALNSI and the ALNSF are reported.

We observe that the ALNSF provides similar solutions to the ALNSI ,
but the CPU times of the ALNSI are approximately eight times larger. The
performance of the ALNSF and the ALNSI is superior in both the solution
times and the quality of the obtained solutions in comparison to the results
obtained by GUROBI.

Table 4: Performance of the ALNS (5000 iterations) on San Francisco instances

Instance
Gap (%) CPU (min)

UB ALNSI ALNSF ALNSI ALNSF
SF1 24.94 37.75 25.80 0.93 0.10
SF2 14.44 14.44 14.44 1.01 0.10
SF3 32.91 16.09 16.09 0.85 0.07
SF4 25.46 26.41 25.99 0.72 0.07
SF5 32.83 21.59 21.59 0.95 0.10
SF6 37.52 31.89 41.46 0.86 0.10
SF7 35.23 24.48 24.48 0.63 0.10
SF8 97.64 61.48 61.47 0.63 0.10
SF9 47.63 28.96 28.96 0.33 0.10

SF10 49.07 39.95 44.33 0.67 0.07
Average 39.77 30.30 30.46 0.76 0.09

19

5.2.2. Computational Results for the DARP Instances

To assess the performance of the ALNS, we present computational results
on the Cordeau and Laporte DARP instances [12]. By assuming that all
requests are passengers and setting the maximum ride time equal to a fixed
value and the number of vehicles equal to the number used in [12], by further
requiring all requests to be served (every rejected request incurs a penalty of
M), and minimizing the total distance as the objective function, the SARP
is transformed to the DARP.

Table 5 summarizes the computational results. The first column denotes
the instances, the second and third columns indicate the number of requests
and cars. The fourth and fifth columns provide the percentage deviation of
the ALNSI and the ALNSF compared to the best results from [12] and [16].
The last two columns report the CPU time of the ALNSI and the ALNSF .
The average gap of the ALNSI is 2.24% for the ALNSI . We provide 2 better
results, compared with all the literature using the same instances, we report
two new benchmarks (R1a: 187.84, R1b: 164.38). The gap of the ALNSF is
22.73%. However, it is approximately two times faster than the ALNSI .

5.2.3. Computational Results for the SARP

By testing both ALNSI and ALNSF on instances R1a, R2a, R3a, R7a
and R8a, we find that the ALNSI provides similar results to those of the
ALNSF for instances R1a, R3a, and R7a. Furthermore, the ALNSI gives
slightly better result than the ALNSF on the other two instances (R2a and
R8a). Nevertheless, the ALNSF is approximately 9 times faster than the
ALNSI . It turned out to be impossible to get final results in a reasonable
amount of time for the ALNSI for some instances. Therefore, we mainly
used the ALNSF for the computations. Furthermore, we run a approach
called DARP-first-SARP-second, which means first running 25000 iterations
to get a DARP solution (treating all requests as passengers), then repairing
the solution by running 5000 iterations to get a SARP solution.

Table 6 presents results obtained by the ALNSF on the instances based
on Cordeau and Laporte [12]. The first column denotes the instances, the
second to fourth columns display the ALNSF result, the gap to the best
value in percentage, and the CPU times. The following three columns show
the corresponding results for the DARP-first-SARP-second approach. All the
best values per instance are identified across all the testing during developing
the ALNS heuristic, and presented in the last column. The average CPU time
is 22 min. The gap of the DARP-first-SARP-second approach to the best

20

Table 5: Results of the ALNS on the benchmark DARP instances

Instance #Requests #Cars
Gap (%) CPU (min)

ALNSI ALNSF ALNSI ALNSF
R1a 24 3 -1.15 1.35 1.63 0.49
R2a 48 5 0.55 9.59 9.12 12.11
R3a 72 7 2.01 18.14 17.67 12.11
R4a 96 9 4.95 25.21 56.14 18.07
R5a 120 11 5.38 26.79 65.46 37.37
R6a 144 13 0.92 29.53 153.57 49.84
R7a 36 4 0.00 6.05 4.01 1.12
R8a 72 6 1.45 21.27 44.32 20.93
R9a 108 8 3.66 57.32 148.41 39.78

R10a 144 10 2.53 29.62 242.52 128.30
R1b 24 3 -0.05 2.70 3.59 0.41
R2b 48 5 0.18 15.05 12.35 3.76
R3b 72 7 2.19 24.21 29.94 28.88
R4b 96 9 4.10 29.66 48.76 23.85
R5b 120 11 3.11 33.12 124.12 33.55
R6b 144 13 3.49 41.94 145.33 48.90
R7b 36 4 0.01 8.63 3.65 4.43
R8b 72 6 3.68 10.95 31.49 51.79
R9b 108 8 3.28 25.40 134.27 75.87

R10b 144 10 4.48 38.08 242.64 115.17
Average 2.24 22.73 75.95 35.34

21

SARP solution is 6.40% but with approximately two times of the CPU for
running the ALNS directly on the SARP (with a gap of 1.08%). These results
underline the efficiency of the ALNS introduced in this paper.

Table 6: Results for the ALNSF on the SARP instances

Instance Profit Gap(%) CPU (min) Profit Gap(%) CPU (min) Best profit

R1a 221.14 0.95 1.05 218.72 2.04 1.89 223.27
R2a 434.17 3.27 3.23 393.48 12.33 7.93 448.84
R3a 944.81 0.36 4.58 898.10 5.29 15.18 948.27
R4a 1145.65 0.73 6.39 1080.03 6.42 30.74 1154.17
R5a 1282.33 0.67 19.47 1199.87 7.05 43.19 1290.94
R6a 1737.64 1.16 30.88 1639.09 6.75 71.2 1757.81
R7a 391.42 0.01 1.36 370.83 5.27 3.46 391.46
R8a 901.32 0 7.82 821.13 8.90 25.69 901.32
R9a 1296.60 0 20.37 1208.61 6.79 51.50 1296.60

R10a 1642.40 3.27 89.02 1473.63 13.12 184.66 1696.08
R1b 243.66 0.38 0.99 241.55 1.24 3.48 244.59
R2b 500.4 0.51 3.26 485.51 3.47 11.06 502.96
R3b 974.37 0.55 8.07 934.21 4.64 30.01 979.68
R4b 1187.04 1.51 15.16 1136.68 5.67 36.8 1205.00
R5b 1335.36 1.45 50.78 1279.08 5.58 116.62 1354.70
R6b 1827.77 0.19 68.10 1739.62 5.00 159.93 1831.24
R7b 431.67 0.62 0.72 424.82 2.19 2.86 434.35
R8b 980.21 0.01 7.85 901.34 8.06 30.53 980.33
R9b 1373.91 0.65 19.83 1242.48 10.16 116.57 1382.91

R10b 1677.63 5.27 85.97 1628.71 8.03 124.7 1770.90
Average 1026.48 1.08 22.245 965.87 6.40 53.4 1039.77

5.3. ALNS configuration
We use the ALNSF in further experiments due to performance consider-

ations. We evaluate the ALNSF constructions in four aspects: effect of the
initial solution on the final solution, how the different removal and insertion
heuristics behave, the impact of decreasing the number of iterations, and the
evaluation of the time slack strategy.

5.3.1. The effect of the initial solution on the final solution

To test the effect of the initial solution to the ALNS, we ran several
instances 1000 times with random initial solutions. Overall, the ALNS per-

22

forms stably on different instances. We present typical results in Figure 3.
The figure shows the relation between the profit of initial (X-axis) and final
solutions (Y-axis). The profits of the final solutions are clustered within an
interval [424,434], which indicates that the quality of the initial solution does
not influence the final results.

250

300

350

400

450

250 300 350 400 450

Pr
of

it
of

 fi
na

l s
ol

ut
io

n

Profit of initial solution

Figure 3: Impact of initial solution on final solution for instance R7b

5.3.2. Behavior of different operators

An entropy-based diversity measurement is used for the assessment of
the behavior of different operators. Suppose, set S includes 100 solutions
of the last 100 iterations, and let σ be the number of requests. We define
coincidence matrix M as follows: Mii = 0, Mij =

∑
s∈S

T ijs , ∀i, j ∈ 1, 2, . . . , σ,

where T ijs = 1 iff stops i and j are visited consecutively by some vehicle in
solution s ∈ S. The diversity of S is defined as follows:

D = −
∑
i

∑
j

rij ln rij, where rij = 1 if Mij = 0, otherwise rij = Mij/100.

Figure 4 illustrates how the entropy changes for instance R7b. Two types
of behavior can be seen: converging (diversity values with more than 90%
of the links in the solutions are the same in last 100 iterations) and chaotic
(diversity values with more than 40% of the links in the solutions are different
in last 100 iterations). Generally, operators I1, I5, I6, I7 incur converging
behavior of the ALNS heuristic, others incur chaotic behavior. We expect
that maintaining a higher diversity at the beginning and a lower diversity
at the end will lead to better results, as shown in Figure 4. However, if the

23

0

20

40

60

80

100

120

140

100 2100 4100 6100 8100 10100 12100 14100

Iterations

I3 only

I7 only

All operators used

Figure 4: Diversity for different operators for instance R7b

diversity value is too low (such that the individuals are similar), the solution
gets stuck in the local optimum.

The quality and running time used by different selection operators are
also tested; all the results are based on 10 runs. The total running time of all
selection operators is around one second, Figure 5 lists the call counts (the
number of times the operator was added) of different selection operators.
The figure indicates that the behavior of removal operators is similar. Thus,
we mainly analyze the selection operators in the following.

0

2

4

6

8

10

12

14

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

C
al

l c
ou

nt
s,

%

Removal operators

Figure 5: The call counts of removal operators for instance R7b

Figure 6 presents call counts (the number of times the operator was called)
and running times (as a percentage of the total CPU times) used for differ-
ent perturbation operators. Most of the operators show a similar behavior,
except I6 (below 5%). The influence of individual operators on the solution
quality is presented in Table 7. All the results are worse than if 7 operators
are used. Among all the individual operators, I3 is the best (with a gap

24

9.18%) and I7 is the worst (with a gap 36.79%). If operator I1 is excluded,
the gap increases to 8.95%. Furthermore, for other operators, the result does
not change a lot (within a gap between 2.21. . . 5.84%). A conclusion is that
the contribution of operator I1 is higher than that of other operators. In
addition, the result changes within a range of 10% if any operator is deleted.

0
5

10
15
20
25
30

I1 I2 I3 I4 I5 I6 I7

C
al

l c
ou

nt
s,

%

Insertion operators

0
5

10
15
20
25
30

I1 I2 I3 I4 I5 I6 I7
R

un
ni

ng
 ti

m
e,

 %
Insertion operators

Figure 6: The call counts and running time of selection operators for instance R7b

Table 7: Impact of the perturbation operators on the solution quality for instance R2a (all
the results are measured as a percentage deviation from theALNSF with all 7 perturbation
operators)

I1 I2 I3 I4 I5 I6 I7

use only one operator 27.15 16.89 9.18 17.19 18.08 20.02 36.79
exclude one operator 8.95 5.84 2.60 2.98 3.34 3.17 2.21

5.3.3. The advantage of the stopping criteria

To check the impact of the stopping criteria, we ran several instances.
Overall, our stopping criteria can be met before the fixed number of iterations
is reached. We present the details in Figure 7. We can see for this instance,
the ALNS stopped at around 16000 iterations, as g(t) reached the threshold
of 0.5. Note that the entropy values could be used instead of g(t), leading to
an even earlier stopping.

The advantage of the current stopping criterion is that it depends on the
convergence rate, and avoids the extra running time if the convergence is
fast. However, for large instances with much more requests, it is better to
set a lower bound for the number of iterations, otherwise the results can be
unstable.

25

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

100 5100 10100 15100

Iterations

Scaled objective values

g(t)

Scaled entropy values

Figure 7: Comparisons of best objective value, g(t) and entropy value on instance R1a

5.3.4. The impact of decreasing the number of iterations

In Table 8, the deviations of the ALNSF being run for 5000, 10000 it-
erations, with respect to the ALNSF being run for 25000 iterations, are
summarized. Columns “Average” and “Best” refer to the average and best
profit, respectively. Comparing average values over ten runs, the deviation
from the average solution for 5000 and 10000 are 3.52% and 1.75%, respec-
tively. Furthermore, the deviation from the best known solution is 2.91%
in the former case compared with 2.03% in the latter case. This indicates
that when the number of iterations increases, the performance of the ALNSF
improves. Note that the CPU times grow only linearly with the number of
iterations.

Table 8: Results of 5000, 10000 iterations, measured as a percentage deviation from 25000
iterations

Instance
Average Best

5000 10000 5000 10000

R1a 1.33 0.05 0.28 0.02
R2a 5.52 3.17 5.99 5.05
R3a 3.57 1.63 2.95 1.57
R4a 3.69 2.03 2.45 1.98
R5a 3.50 1.88 2.88 1.53

Average 3.52 1.75 2.91 2.03

26

5.3.5. The evaluation of the time slack strategy

We randomly generate 1000 solutions (every solution is obtained by exe-
cuting 500 iterations the ALNSF) based on one instance (R7b). The objec-
tive value is computed using optimal time slack strategy and the Algorithm
2 with a simplified time slack strategy. For the optimal time slack strat-
egy, we optimize the time slack using the MIP solver (GUROBI) by fixing
all the routing variables in the constraints and letting the solver optimize
the time-related variables. The average gap of simplified time slack strat-
egy compared to optimal time slack strategy is 0.02% with 0.10% standard
deviation. Moreover, we set the load of passenger to 3 and capacity of taxi
to 5. Therefore, if we have two passengers in one taxi, the load is 6, which
exceeds the taxi capacity. Finally, the average gap compared to the GUROBI
solution is 0. From the results, we can see that the time slack optimization
has a limited impact. Therefore, it seems acceptable to use the time slack
strategy we proposed.

5.4. Medium real-life instances

In this section we test our ALNS on a set of 9 medium size instances
(SM1–SM9). Table 9 presents the results obtained by executing the ALNSF
10 times with 3000 iterations. The first column denotes the instances, the
second to third columns display the number of requests and cars. The follow-
ing column presents the CPU times of the ALNSF . Furthermore, columns
#Pass and #Pack refer to the number of served passengers and packages,
respectively. The objective values are given in the seventh column. Finally,
we again make a comparison between simplified and optimal time slack cal-
culation by fixing the routing variables and letting the MIP solver optimize
the timing ones in the last column. From the table, we see that the run-
ning time increases as the number of requests grows. The CPU times for
some instances (SM6–SM9) can excess one hour, but are still reasonable for
a problem that needs to be solved daily. Moreover, most of the requests can
be served. By comparing between simplified and optimal time slack calcula-
tion, it turns out that optimizing the time slacks only slightly improves the
profit.

6. Conclusion

In this paper, we proposed an ALNS-based heuristic for solving the SARP.
The proposed approach is flexible and can be adapted to handle the DARP

27

Table 9: The result of the ALNSF on medium size instances

Instance #Requests #Cars CPU (min) #Pass #Pack
Profit

ALNS GUROBI-SL

SM1 60 2 7.33 33 21 335.71 335.71
SM2 90 3 8.94 53 30 560.21 560.21
SM3 120 4 27.38 69 41 766.64 766.92
SM4 150 5 33.94 93 51 1059.98 1059.58
SM5 180 6 43.43 111 61 1163.18 1163.18
SM6 210 7 63.44 133 71 1498.41 1498.41
SM7 240 8 98.91 146 81 1543.81 1543.81
SM8 270 9 131.94 164 90 2066.10 2066.10
SM9 300 10 147.11 190 101 2064.97 2065.95

GUROBI-SL: optimal time slack calculation by fixing the routing variables and letting
the MIP solver optimize the timing

(or related vehicle routing problems). The ALNS was mainly tested on in-
stances generated from the Cordeau and Laporte [12] DARP instances. Our
results are within 2.24% from the best results from the literature when con-
sidering best values over 10 runs.

The related neighborhood search heuristic papers (the DARP with same
tested instances) all implement searching methods that accept infeasible so-
lutions, the CPU time is much higher than if only feasible ones are accepted.
The ALNS we designed for the SARP can get similar results for the following
two approaches: 1) only feasible solutions are accepted (ALNSF) during the
search 2) infeasible solutions are also accepted but penalized for violation
(ALNSI) during the search. Furthermore, the ALNSF is much faster than
the ALNSI , because the ALNSF do not need to check all the constraints
and stops evaluating a solution after the first violated constraint is found.
Nevertheless, we should not expect the algorithm to be the universally best
algorithm that can fit all the models.

Different operators for the DARP and for the SARP are required. The
main differences between the SARP and the DARP is described in Section
3. Moreover, the difference not only lies in the operators, but also in how to
handle the time slacks and the objective function. Even for the same opera-
tors, in the SARP passengers have higher priority for insertion and removal.
The operators named 1-by-1, Tabu 1-by-1, regret-3 all-at-once operators are
important for both DARP and SARP.

28

The results for the SARP are presented and can be used as a benchmark
in the future. An entropy-based diversity measurement is used to assess
the performance of the ALNS, the proposed measurement can be extended
to include an adaptive weight adjustment procedure and dynamic stopping
criteria in a new set up. A major insight that our work provides is that
the ALNS-based heuristic can solve the medium size SARP instances, which
indicates that it can be beneficial for the practical application of the SARP
system.

We believe that extending the application of the ALNS heuristics to the
online SARP or to a stochastic environment are valuable areas for future
research.

Appendix A Proof of Theorem 4.1

Proof. Let Bi2 be the initial service start time of request i2, Bi2 be the service
start time after add the time slack. For a given subroute (i, . . . , i+ψ, . . . , j),
if i and i + ψ have time slack Fi and Fi+ψ, respectively, then Bj update
according to:

Bj := Bj + max(0, Fi −
i+ψ∑
h=i+1

Wh) + max(0, Fi+ψ −
j∑

h=i+ψ+1

Wh) (9)

By using the Equation (9), if we add two forward time slacks F1 and F2

on i and i2, respectively, the formula of Li1 and Li2 are as follows:

Li1 = Bj1 + max(0, F1 −
j1∑

h=i+1

Wh)−Bi1 (10)

Li2 = Bj2 + max(0, F1 −
im∑

h=i1+1

Wh) + max(0, F2 −
j2∑

h=i2+1

Wh)−Bi2

= Bj2 + max(0, F1 −
im∑

h=i1+1

Wh) + max(0, F2 −
j2∑

h=i2+1

Wh)−

(Bi2 + max(0, F1 −
im∑

h=i1+1

Wh) + F2)

= Bj2 + max(0, F2 −
j2∑

h=i2+1

Wh)− (Bi2 + F2) (11)

29

If we only add time slack F2 on stop i2, let L
′
i1

, L
′
i2

be the ride time of
request i2 and i2, respectively:

L
′

i1
= Bj1 −Bi1 (12)

L
′

i2
= Bj2 + max(0, F2 −

j2∑
h=i2+1

Wh)− (Bi2 + F2) (13)

Thus Li1 ≥ L
′
i1

, Li2 = L
′
i2

.

[1] Demir E, Bektaş T, Laporte G. An adaptive large neighborhood search
heuristic for the pollution-routing problem. European Journal of Oper-
ational Research 2012;223(2):346–59.

[2] Toth P, Vigo D. The Vehicle Routing Problem; chap. VRP with Pickup
and Delivery. Discrete Mathematics and Applications; Society for In-
dustrial and Applied Mathematics; 2002, p. 225–42.

[3] Li H, Lim A. A metaheuristic for the pickup and delivery problem with
time windows. In: The 13th IEEE Conference on Tools with Artificial
Intelligence (ICTAI-2001). Dallas, USA; 2003, p. 160–70.

[4] Cordeau JF, Laporte G. The dial-a-ride problem (DARP): Variants,
modeling issues and algorithms. 4OR 2003;1(2):89–101.

[5] Cordeau JF, Laporte G. The dial-a-ride problem: models and algo-
rithms. Annals of Operations Research 2007;153(1):29–46.

[6] Schilde M, Doerner KF, Hartl RF. Metaheuristics for the dynamic
stochastic dial-a-ride problem with expected return transports. Com-
puters and Operations Research 2011;38(12):1719–30.

[7] Li B, Krushinsky D, Reijers HA, Van Woensel T. The share-a-ride prob-
lem: People and parcels sharing taxis. European Journal of Operational
Research 2014;238(1):31–40.

[8] Ropke S, Pisinger D. An adaptive large neighborhood search heuristic
for the pickup and delivery problem with time windows. Transportation
Science 2006;40(4):455–72.

30

[9] Lu Q, Dessouky M. A new insertion-based construction heuristic for
solving the pickup and delivery problem with time windows. European
Journal of Operational Research 2006;175(2):672–87.

[10] Diana M, Dessouky M. A new regret insertion heuristic for solving large-
scale dial-a-ride problems with time windows. Transportation Research
Part B 2004;38(6):539–57.

[11] Häme L. An adaptive insertion algorithm for the single-vehicle dial-a-
ride problem with narrow time windows. European Journal of Opera-
tional Research 2011;209(1):11–22.

[12] Cordeau JF, Laporte G. A tabu search heuristic for the static
multi-vehicle dial-a-ride problem. Transportation research Part B
2003;37(6):579–94.

[13] Savelsbergh MWP. The vehicle routing problem with time win-
dows: Minimizing route duration. INFORMS Journal on Computing
1992;4(2):146–54.

[14] Baugh JW, Kakivaya GJR, Stone JR. Intractability of the dial-a-ride
problem and a multiobjective solution using simulated annealing. Engi-
neering Optimization 1998;30(2):91–123.

[15] Hernández-Pérez H, Salazar-González J. Heuristics for the one-
commodity pickup-and delivery traveling salesman problem. Trans-
portation Science 2004;38(2):245–55.

[16] Parragh SN, Doerner KF, Hartl RF. Variable neighborhood search
for the dial-a-ride problem. Computers and Operations Research
2010;37(6):1129–38.

31

	Voorblad WP 475
	Beta_wp475
	Working papers Beta overzicht vanaf 2009

