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Abstract. We study a dispatch problem with uncontrolled batch ar-
rivals of LTL orders at an urban consolidation center. These arrivals
reflect the delivery of goods by independent carriers. The specific order
properties (e.g., destination, size, delivery window) may be highly vary-
ing in city logistics, and directly distributing an incoming batch may
yield high costs. Instead, the hub operator may decide to wait for incom-
ing batches that allow for more efficient distribution. A waiting policy
is required to decide which orders to ship and which orders to hold. We
model the dispatching problem as a Markov decision problem. Dynamic
Programming (DP) is applied to solve toy-sized instances. To solve realis-
tic instances, we propose an Approximate Dynamic Programming (ADP)
approach. Through numerical experiments, we show that the ADP ap-
proach closely approximates the optimal values of DP for small instances,
and outperforms two benchmark policies for larger instances.

Keywords: urban distribution, transportation planning, consolidation,
approximate dynamic programming

1 Introduction

In the field of urban freight logistics, the need for consolidation centers at the
edge of urban areas is becoming increasingly important [10]. Due to the ex-
ternal costs of freight transport – such as congestion, air pollution, and noise
hindrance – there is a desire for higher efficiency of goods transport within the
city center. Governments actively seek to reduce the negative influence of large
trucks in urban areas. Imminent regulations are, for example, restricted access
areas and road pricing for heavy vehicles. Such developments spur the need
for transshipments at the edge of urban areas. Transshipments allow both for
bundling goods – such that more efficient routes can be generated – and dis-
patching environment-friendly vehicles such as electric vehicles on the last mile.
However, the introduction of an additional transshipment in the supply chain
also poses new challenges. We adopt the perspective of the party in charge of
the consolidation center, to which we refer as the ‘hub operator’. We focus on
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the timing of dispatching urban freighters in an environment where the batch
arrivals of goods at the hub are not controlled by the hub operator.

In our problem settings, orders arrive at the consolidation center in batches
(e.g., a trailer load), and subsequently need to be distributed to the customers
in the city. A batch may contain orders with dispersed destinations, various de-
livery windows, distinct load sizes, etc. Directly distributing an arriving batch
may therefore render poor solutions. Instead, waiting for other batches to ar-
rive could yield order clusters for which better solutions are available. However,
various uncertainties may play a role, such as when a new batch arrives and
what the exact contents of such a batch are. Though faced with uncertainty,
the operator may have a certain degree of knowledge regarding orders that may
arrive in the future, such as forecasts or probability distributions. Based on the
available knowledge regarding current orders and expectations on orders yet to
arrive, the operator is able to make informed waiting decisions. This can be ac-
complished by deploying a waiting policy that makes dispatch decisions given
the information and beliefs of the operator. Three basic types of waiting policies
can be distinguished [2]. Time-based policies consider only the time until deliv-
ery as basis for dispatching decisions. Quantity-based policies base the decision
whether or not to depart on the achieved fill rate of the vehicle (e.g., when it
can make a tour utilizing at least 70% of its capacity). Time-and-quantity based
approaches take both factors into account. Time-based policies generally result
in better service to the customer in terms of lateness, while quantity-based poli-
cies perform better in terms of capacity utilization [3]. In practice, policies are
generally time-and-quantity based [2]. Furthermore, a distinction can be made
between myopic policies and policies that explicitly take into account informa-
tion regarding future demand, the latter vastly increasing complexity [5, 8]. The
use of information regarding future events in transportation is recognized as an
important aspect of optimization, yet its incorporation in solution methods is
still an ongoing development [9, 5, 12].

Our dispatch problem can be classified as a Delivery Dispatch Problem
(DDP). The concept of queuing with bulk service – where customers arrive in-
dependently and are served in batches – was introduced by Bailey [1]. Neuts [7]
expanded on the subject by explicitly studying control policies for the timing of
vehicle dispatch. Traditional solutions to the DDP rely on analytical approaches
such as queuing models. Route properties are considered to be a given input [6],
such that routing decisions do not play a role. A more generic approach based
on a batch Markovian arrival process is presented in [2], allowing to define ar-
rival properties that do not necessarily follow well-defined distributions. Wang
and Odoni [14] study a problem with batch arrivals of passengers at a train sta-
tion, who are subsequently transported to their final destinations. They present
a queuing approach aimed at the design of such transportation systems. To es-
timate the routing costs, they apply the approximation of Daganzo [4]. Using
this approach, they find an average performance gap of 2% with the solutions of
well-known routing heuristics. A key distinction between our DDP and the prob-
lem studied by Wang and Odoni is that they do not consider delivery windows;
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their objective is to minimize service time for the passengers. Transportation
requests are planned directly; the opportunity to defer dispatch decisions to fu-
ture decision moments is not included in their approach. When considering more
complex variants of the DDP, the stochastic and dynamic nature of the problem
gives rise to Markov decision problems [6]. Although a Markov decision model
is a useful framework to describe finite-horizon decision models with stochastic
elements, practical implementations generally suffer from intractably large state
spaces and expected values that cannot be calculated exactly [8]. The DDP is
therefore too hard to solve exactly in most instances [6].

To model the stochastic and dynamic nature of our order arrival process,
we formulate our DDP as a Markov decision process. Dynamic programming
(DP) can be used to solve such models to optimality, but as stated in the
previous paragraph, the sheer size of such problems prevents us from apply-
ing DP on larger instances. Mathematical programming has traditionally been
applied to handle high-dimensional problems in transportation. However, this
method generally does not cope well with stochastic information revealed over
time [9]. Topaloglu and Powell [13] present a generic framework for solving dy-
namic resource-allocation problems. In this type of problems, the arrival of tasks
is probabilistic, and coupling tasks to resources yields a reward. The method-
ology they apply is known as approximate dynamic programming (ADP). This
simulation-based approach uses intelligent sampling to approximate the opti-
mal solutions of DP [8]. ADP allows to retain the complexities embedded in
the dispatch problem, while circumventing the computational effort required to
solve the Markov model with stochastic dynamic programming. Various success-
ful ADP applications can be found in transportation literature [12]. Provided
that the value functions of the defined problem can be accurately approximated,
ADP is a powerful approach to solve realistic transportation problems. Following
frameworks such as [9, 13, 8], we develop an ADP approach to solve our dispatch
problem. We aim to contribute to existing literature with (i) the formulation of
a Markov model for DDPs with time windows, and (ii) an ADP approach to
provide high-quality solutions for realistic-sized DDPs.

2 Problem Formulation

This section introduces the planning problem. We describe the problem in a
generic way, making it applicable to a variety of instances. We assume that the
characteristics of arriving orders are stochastic and have a known associated
probability distribution. Certain variables that are treated as stochastic in our
description may be known in practice. In that case, we can replace the stochastic
variable by the actual information regarding future orders, creating a restricted
instance of our problem. We consider a finite planning horizon, during which
batches of orders can arrive at the consolidation center. Dispatching decisions
are made at fixed decision moments within the planning horizon, with constant
time intervals separating the decision moments. We model the arrival rates of
order batches, the number of orders in a batch, order sizes, order destinations,
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and dispatch times as stochastic variables. When a batch of orders arrives at the
center, the exact properties of the orders are revealed.

The decision problem that we address is the choice which orders to dispatch
at the current decision moment. To make an informed decision, we require in-
sight in the effects of postponing the dispatch of orders, e.g., distributing them
from the center to their destination in the city. Postponed orders may be com-
bined with future orders against lower costs than when dispatched at the current
decision moment. We therefore consider optimization over a planning horizon;
all orders arriving after the current decision moment are probabilistic. We assess
all possible realizations of future order arrivals as scenarios, and plan the future
arrivals as if they were actual orders. For both the actual and future orders be-
longing to a given scenario, we compute the costs of dispatching. The costs of
dispatching probabilistic orders are required to quantify the expected costs. By
assessing the realizations of probabilistic orders, we can compute the expected
costs of the various dispatch decisions for the orders currently in inventory.

Consider an urban area with a fixed set of recipients (i.e., order destinations),
which are delivered via a consolidation center at the edge of the area. Our rep-
resentation of the urban distribution network is as follows. Let G = {V,A}
be a directed and complete graph with V being the set of vertices and A be-
ing the set of arcs. The element {0} ∈ V represents the consolidation center
in the network. The remaining vertices signify the subset of order destinations
V ′ = {1, 2, . . . , |V ′|}, with V ′ = V \ {0}. A distance matrix gives the distance
between any pair of vertices in the graph.

We consider a planning horizon that contains decision moments with fixed
intermediate time intervals. For instance, we may have a one-day horizon with
hourly decision moments. Let T = {0, 1, . . . , T} be the set containing all de-
cision moments, and t ∈ T describe any decision moment within the planning
horizon. Furthermore, we consider a homogeneous fleet (i.e., a set of identical ve-
hicles), though our method is able to cope with heterogeneous fleets as well. We
distinguish between a primary fleet Qpr and a secondary fleet Qse. We assume
that the secondary fleet has an infinite size, and is either an actual transport
alternative (e.g., renting an additional vehicle in case of shortage) or a dummy
fleet with infinite costs. A dummy fleet serves as bound on capacity, without
having to explicitly calculate the capacity constraints for each decision. We only
assign vehicles in Qse if no more vehicles in Qpr are available. We assume that
dispatching a secondary vehicle is always more expensive than dispatching a pri-
mary vehicle. To ease the presentation, we assume that every dispatched vehicle
has a fixed route duration of τroute ≥ 1 (this assumption can be easily relaxed).
When dispatching at t, the vehicle will be available again at t + τroute. For
decision-making purposes, we keep track of the availability of primary vehicles
now and in the future. Let r ∈ [0, τroute − 1] be the number of time intervals
before a dispatched vehicle returns. Because all vehicle are available again at
t+ τroute, we only keep track of availability up to t+ τroute − 1. Let qt,r denote
the number of primary vehicles available for dispatch at t + r. It follows that
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qt,0 vehicles are available for dispatch at t. We record primary fleet availability
in the vector Qt = (qt,0, qt,1, . . . , qt,t+τroute−1).

Every order is characterized by four properties: destination, load size, ear-
liest dispatch time, and latest dispatch time. The order destination (i.e., the
customer location) is represented by a vertex v ∈ V ′. Let L = { 1k ,

2
k , . . . , 1} be

the discretized set of viable load sizes, with integer k ≥ 1, and 1 representing
a full load for an urban vehicle. The size of an order is given by l ∈ L. The
hard dispatch window of an order is given by earliest dispatch time e ∈ E and
latest dispatch time d ∈ D. Both indices are relative to the decision moment
t; at the decision moment t + 1 all indices of orders in inventory are reduced
by 1. Note that order types with e > 0 can be used to describe future or-
ders. We define a maximum length of the dispatch window τwindow, such that
d ∈ [e, e+ τwindow]. Every unique combination of the four properties represents
an order type. Let It,v,l,e,d ∈ Z+ be the number of a given order type in inven-
tory at t. We denote the information regarding all orders in inventory at t as
It = (It,v,l,e,d)v∈V′,l∈L,e∈E,d∈D. The state of the system at t, St ∈ S, combines
primary fleet availability with available orders, and is represented by

St = (Qt, It)∀v∈V′,l∈L,e∈E,d∈D ,∀t ∈ T . (1)

For t ≥ 1, let Ot = {0, 1, . . . , omaxt } be the set containing the number of
possible order arrivals between decision moments t − 1 and t. Let ot ∈ Ot be a
realization of the number of orders arriving between t−1 and t. Furthermore, we
set lmax ∈ Z+ as the maximum number of orders that can be held in inventory,
i.e., the maximum inventory remaining after a decision.

For every decision moment t in the planning horizon, we decide which orders
in inventory to dispatch. Orders that are not dispatched remain in inventory,
and are available at the next decision moment. Let the integer variable xt,v,l,e,d
describe the number of a specific order type to be dispatched at t. A feasible
action at decision moment t is given by

xt(St) = (xt,v,l,e,d)∀v∈V′,l∈L,e∈E,d∈D , (2)

where

∑
v∈V′,l∈L,e∈E,d∈D

(It,v,l,e,d − xt,v,l,e,d) ≤ lmax , (3)

xt,v,l,e,d ≤ It,v,l,e,d ,∀v ∈ V ′,∀l ∈ L,∀e ∈ E ,∀d ∈ D , (4)

xt,v,l,e,0 = It,v,l,e,0 ,∀v ∈ V ′,∀l ∈ L,∀e ∈ E , (5)

xt,v,l,e,d = 0 , e > 0 ,∀v ∈ V ′,∀l ∈ L,∀d ∈ D , (6)

xt,v,l,e,d ∈ Z+ ,∀v ∈ V ′,∀l ∈ L,∀e ∈ E ,∀d ∈ D . (7)

Constraint (3) ensures that after dispatching, no more than the maximum
inventory remains at the consolidation center. According to (4), it is not possible
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to dispatch more orders of a certain type than available at the decision moment t.
Constraint (5) states that all orders that have a latest dispatch time equal to the
maximum delay must be dispatched. (6) prevents orders with an earliest dispatch
time in the future from being dispatched. (7) states that only nonnegative integer
amounts of orders can be dispatched. The set of feasible actions in a given state
is described by Xt(St).

3 Markov Model

We model the operator’s decision problem as a Markov model. This model con-
siders all possible realizations of orders arrivals during the planning horizon.
With this knowledge, we can make the optimal dispatch decision for the cur-
rent decision moment. In realistic instances, the state space, action space, and
outcome space for such a model will be intractably large. Solving the Markov
model in an exact manner is therefore not possible within a reasonable time. In
Section 5, we solve some toy-sized instances of the Markov model using DP. The
ADP approach as outlined in Section 4 is applied to larger instances.

Every action xt(St) has associated direct costs C(St, xt). The direct costs
are the sum of fixed dispatching costs per vehicle, variable transportation costs,
and handling costs. As the focus of this paper is on the dispatching decisions,
we do not explicitly consider routing. Instead, we use the classic procedure of
[4] to estimate the transportation costs for a dispatched set of orders. This
procedure is known to provide good estimates of total route distances [11], given
constraints on vehicle capacity, number of destinations, and shape of the service
area. These constraints are likely to be fulfilled in an urban distribution setting.
The approximation is based on the average distances between the depot and the
customers, the number of customer locations visited, the size of the service area,
and the capacity of the vehicles. We consider fixed handling costs per visited
customer; note that this provides an incentive to simultaneously deliver multiple
orders to a customer.

To model the uncertainties with respect to the properties of arriving orders,
we introduce six stochastic variables. These are (i) the number of orders arriving
Ot, (ii) the destination V , (iii) the order size L, (iv) the earliest dispatch time E,
(V) the length of the dispatch window Dwindow, and (vi) the latest dispatch time
D = E +Dwindow. The corresponding probability distributions are discrete and
finite. To capture all probability distributions into a single variable, we define the
exogenous information variable Ĩt,v,l,e,d ∈ Z+, t ≥ 1, which indicates the number
of arrivals of a specific order type. Furthermore, we introduce a generic variable
Wt that describes all exogenous information, i.e., all orders arriving between t−1
and t:

Wt = [Ĩt,v,l,e,d]∀v∈V′,∀l∈L,∀e∈E,∀d∈D , t ≥ 1 . (8)

There exists a finite number of realizations of Wt. Let Ωt be the set of possible
batch arrivals between t − 1 and t, and ωt ∈ Ωt be a realization of the random
variables occurring with P (Wt = ωt).
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We proceed to describe the transition from a state St to the next state St+1.
The transition is affected by the action xt and the new arrivals Wt+1. We first
describe the effects of xt. Orders not dispatched at t remain in inventory, hence
must be included in St+1. As indices e and d are adjusted over time, we introduce
two new variables to properly process the conversion. Let e′ = max{0, e−1} and
d′ = d−1. Since e < 0 does not affect our decision making, capping e′ at 0 reduces
the number of possible order types. Let q̄t ∈ {0, . . . , |Qpr|} be the number of
primary vehicles dispatched at t; combined with Qt this information suffices to
compute Qt+1. We represent new arrivals with the information variable Wt+1.
This gives us the transition function

St+1 = SM (St, xt,Wt+1) , (9)

where

It+1,v,l,e′,d′ = It,v,l,e,d − xt,v,l,e,d + Ĩt+1,v,l,e′,d′ , (10)

∀t ∈ T ,∀v ∈ V ′,∀l ∈ L,∀e ∈ E ,∀d ∈ D ,

qt+1,r =

{
qt,r+1 − q̄t if r < τroute − 1 ,

|Qpr| if r = τroute − 1 ,
∀r ∈ [0, τroute − 1] . (11)

Constraint (10) states that for every order type, we have the amount of the
order type in state St, minus the amount of the order type that was dispatched,
plus the amount of the order type that arrived between t and t+ 1. Constraint
(11) ensures that Qt+1 is consistently updated. Having described the transition
function, we now introduce the optimality equation that must be solved:

Vt(St) = min
xt∈Xt(St)

C(St, xt) +
∑

ωt+1∈Ωt+1

P (Wt+1 = ωt+1)Vt+1(St+1|St, xt, ωt+1)

 .

(12)
We proceed to describe the state space. Between every two consecutive deci-

sion moments t−1 and t, we can have ot ∈ {0, . . . , |Ot|−1} new orders arriving.
Every arriving order can have any of the unique order types, given the con-
straints on the dispatch window. Before the new arrivals occur, we can have up
to lmax orders in inventory. Hence, we can have at most lmax + |Ot| − 1 orders
at a given decision moment. A state can be any feasible combination of order
types available at t, combined with any vector Qt.

Next, we describe the action space. At every decision moment, we decide
which orders to dispatch. Every combination of orders to dispatch represents a
unique action. Orders that are not dispatched remain in inventory, and may be
dispatched at the next decision moment. As we do not consider routing options,
a unique selection of orders to dispatch equals exactly one action.

The transition from one state to another is determined by the current state,
the used action, and the realization of the random variables. The remaining
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inventory before new orders arrive is deterministic. The probability of ot orders
arriving is given by P (Ot = ot). The probability of an arriving order being of a
certain order type is given by the multivariate distribution P (V,L,E,D). V , L
and E are independent random variables, while D is the sum of the realizations
of E and Dwindow.

The outcome space is dependent on the state St, the action xt, and the real-
ization of new arrivals ωt+1. Orders not shipped at decision moment t are with
certainty included in St+1. As route duration is deterministic, so is the change
in fleet availability. Therefore, only the order arrivals account for stochasticity.
To account for the multiple permutations corresponding to ot order arrivals, we
must multiply the probability of ot orders arriving with a multinomial coefficient
[15]. We obtain the following probability function for new arrivals:

P (Wt = ωt) = P (Ot = ot)
ot!∏

Ĩt,v,l,e,d∈ωt

Ĩt,v,l,e,d!∏
v∈V,l∈L,e∈E,d∈D

P (V = v, L = l, E = e,D = d)Ĩt,v,l,e,d , t ≥ 1 .

(13)

4 Solution approach

Realistic problems become extremely large in terms of state space, action space,
and outcome space, making them intractable for the DP method. We address
this problem with an approximate dynamic programming approach. With ADP,
we retain the full level of detail in the state description, without having to
enumerate the full state space. By means of Monte Carlo simulation, we are able
to approximate the exact values of the DP method [8].

In our ADP implementation, we use the concept of the post-decision state [8].
The post-decision state Sxt is the state immediately after action xt, but before
the arrival of new information ωt+1. Given our action xt, we have a determin-
istic transition from St to the so-called post-decision state Sxt . We express this
transition in the function

Sxt = SM,x(St) , (14)

where

It,v,l,e,d = It,v,l,e,d − xt,v,l,e,d , (15)

∀t ∈ T ,∀v ∈ V ′,∀l ∈ L,∀e ∈ E ,∀d ∈ D ,

qt,r = qt,r − q̄t ,∀r ∈ [0, τroute − 1] . (16)

The post-decision state has a corresponding value function
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Vt(S
x
t ) = E{Vt+1(St+1)|Sxt } . (17)

Adopting the concept of the post-decision state allows us to represent our
problem as a deterministic minimization problem. Although this reduces the
computational effort, Equation (17) still requires to evaluate all states in the
outcome space. In ADP, we therefore replace this value function with a single
value function approximation V̄ n−1t (Sxt ). n is an iteration counter, representing
that we use an estimate from iteration n − 1 at iteration n. At every deci-
sion moment, we take the best decision given our value function approximation.
Incoming arrivals are generated according to Equation (13). Utilizing the post-
decision state and value function approximation for future costs, we find the best
action by solving the following deterministic minimization problem for the n-th
iteration:

x̃nt = arg min
xt∈Xt(St)

(
Ct(St, xt) + V̄ n−1t (Sxt )

)
. (18)

Equation (18) provides the action that minimizes the value v̂nt , with the
function to compute v̂nt being

v̂nt = min
xt∈Xt(St)

(Ct(St, xt) + V̄ n−1t (Sxt )) . (19)

Once we obtain our estimate v̂nt , we can update V̄ n−1t−1 (Sxt−1). For this, we use
the following function:

V̄ nt−1(Sxt−1)← UV (V̄ n−1t−1 (Sxt−1), Sxt−1, v̂
n
t ) . (20)

Table 1 provides an outline of our ADP algorithm.
We briefly discuss two options for the function UV to update V̄ nt (Sxt−1):

lookup and value function approximation (VFA). With the lookup approach, we
store an estimate V̄ nt (Sxt ) for every post-decision state, which is updated based on
our observation at the next decision moment. We can speed up this procedure by
first completing a full iteration, and then update all post-decision values at once
(a procedure known as double pass, see [8]). Though the lookup ADP resolves
several computational challenges of dynamic programming, we still need to visit
a state to learn about its value. Hence, in order to properly learn the value
of being in a specific state, we need to visit a large number of states. Instead,
we want to learn about the value of many states with a single observation. To
achieve this, we make use of VFA with the so-called basis function approach, see
[8]. Let F be a set of features, with f ∈ F being some variable that partially
explains the costs of being in a state. Relevant features for our dispatch problem
are, e.g., the total volume of orders in inventory, the number of orders with
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Table 1. ADP algorithm with post-decision states

Step 0 Initialize
Step 0a: Initialize V̄ 0

t (St), ∀t ∈ T , ∀St ∈ S
Step 0b: Set iteration counter to n = 1, and set

the maximum number of iterations to N .
Step 0c: Select an initial state S0.

Step 1 For t = 0 to T do:
Step 1a: Find the best action x̃n

t by solving Equation (18).
Step 1b: If t > 0, then update V̄ n−1

t (St) using Equation (20).
Step 1c: Obtain the post-decision state Sx

t via Equation (14).
Step 1d: Obtain a sample realization Wt+1, calculate St+1

with Equation (9)
Step 2 Set n := n + 1.

If n ≤ N , then go to Step 1.
Step 3 Return V̄ N

t (Sx
t ),∀t ∈ T .

d = 0, and the number of distinct destinations. Let φf (Sxt ) be a basis function
of feature f – for example, a cross-product or a polynomial of f – that returns a
certain value given Sxt . Let θnf be a weight corresponding to feature f . Our value
function approximation becomes

V̄ nt (Sxt ) =
∑
f∈F

θnf φf (Sxt ),∀t ∈ T . (21)

Following [8], the weights θnf are updated using recursive least squares for
nonstationary data. Using this procedure, we are able to learn about the value
of many states by sampling just a single state. Using VFA, it is therefore not
necessary to visit all states in the state space to learn about their value, allowing
to handle large state spaces. The key difficulty with VFA is to define basis
functions that closely approximate the exact values of states. Good insight in
the structure of the problem is required to select features that allow to accurately
approximate the true values.

After learning the appropriate weights by completing the procedure in Table
1, VFA can be applied for practical decision making. By calculating the values
for the post-decision states corresponding to our initial state, we are able to
obtain the best action given the estimate. Only the features of the states, the
basis functions, and the corresponding weights are necessary for decision making.

5 Numerical experiments

First, we solve a toy-sized instance with dynamic programming. We show how
both the lookup approach and the VFA approach approximate the exact DP-
values. Next, we consider larger problems. As an exact benchmark is missing
for larger instances, we cannot show convergence results for these. Instead, we
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assess the performance of ADP. We take the results from the ADP procedure –
i.e., the feature weights obtained from the VFA approach – to make decisions.
We then compare ADP-based simulation results to the results of two benchmark
policies. The first benchmark policy (‘Postpone’) we deploy in this paper is
given in Table 2, and essentially aims to postpone as many orders as possible,
until a suitable consolidation opportunity arises. The second benchmark policy
(‘DirectShipment’) always ships orders, as long as primary vehicle capacity is
available. ‘DirectShipment’ sorts and assigns orders just as ‘Postpone’ describes,
and dispatches in the same way when secondary vehicles are required.

Table 2. Benchmark policy – Postpone

Step 0 Sort orders.
Step 0a: Sort available orders based on lowest d.
Step 0b: Sort available orders with same d

based on smallest size.
Step 1 While orders with d = 0

are unassigned do: Assign order with d = 0 to vehicle.
Step 2 While remaining inventory

exceeds lmax do: Assign first order on list to vehicle.
Step 3 While capacity from already

dispatched vehicles remains do: Assign first order on list to vehicle.

We first describe the properties of our toy problem. We consider a fleet of
two primary vehicles; secondary vehicles are twice as expensive as primary ve-
hicles. We consider three distinct customer locations, a random order size from
{0.2, 0.4, 0.6, 0.8, 1}, a maximum inventory of two orders, and a maximum of two
arrivals per decision moment. We fix the tour length at τroute = 1. We set e = 0
for all orders, and randomly select d from {0, 1}. All probability distributions
are uniform. We define a planning horizon with five decision moments. To pro-
vide some insight in the dimensionality of our dispatch problem: this toy-sized
instance already has a state space of about 140,000 states.

The features we use for our VFA are (i) a constant, (ii) the number of vehicles
available at the decision moment, (iii) the number of distinct order destinations,
(iv) the total volume of orders in inventory, and (v) the square of the volume of
orders in inventory. In Figure 1 and Figure 2, we show for two initial states (one
without initial inventory, the other with four orders at the decision moment)
how both the lookup approach and the VFA approach converge to the optimal
values found with DP. In the first number of iterations, the estimates fluctuate
due to the inability to accurately compute expected costs. However, by learning
the values of visited states, ADP starts recognizing good actions.

From here on, we focus only on ADP with VFA using basis functions. The
values we learn with VFA – by completing the algorithm in Table 1 – result
in a set of weights for every decision moment. When in a given state, these
weights allow us to estimate the values of all post-decision states that can be
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reached. Hence, ADP results in a policy, which we can use to solve a deterministic
decision problem. We apply the learned policy in a Monte Carlo simulation
on a variety of initial states, comparing the performance of the learned policy
to both DP and the benchmark policies. For all simulations, we use the same
realizations of order arrivals, and perform 10,000 simulation replications over
the planning horizon. We do this for ten initial states, selected to represent
a variety of properties. Table 3 shows the comparison between DP, ADP, and
the two benchmark policies. The percentages indicate the average difference in
costs between the optimal solution and the simulation results. By applying our
ADP policy, we incur costs that are on average 0.60% higher than the optimal
solution. ADP thereby outperforms the policy ‘Postpone’ by 3.14%, and the
policy ‘DirectShipment’ by 11.56%. With ADP, we postpone 24% less orders than
‘Postpone’ does. For the initial states where ‘DirectShipment’ actually postpones
orders – for some initial states it never will – ADP postpones 203% more.

Table 3. Comparison between ADP and benchmark policies for small instances

Average costs Average deviation Lowest deviation Highest deviation
from optimal from optimal from optimal

DP 876 0.00% 0.00% 0.00%
ADP 881 0.60% 0.45% 0.99%
Postpone 908 3.76% 1.98% 9.41%
DirectShipment 1033 12.23% 8.52% 18.66%

Finally, we performs tests on five larger instances, with 10 customers, 2-5
vehicles, 10 order sizes, 5-10 arrivals per time unit, a maximum inventory of
5-10, a maximum dispatch window of 2, and a time horizon of 10. To illustrate
how quickly the size of the state space grows, we give a small numerical example.
With the mentioned settings, we have 10 · 10 · 3 = 300 order types. Suppose we
have 10 orders – all of different types – at a given decision moment. We then
already have 300!

290!10! states only for this particular combination of order arrivals.
This multinomial coefficient should be computed for all possible combinations
of order arrivals; it follows that the size of the state space is � 1018. Clearly, an
exact benchmark for such instances cannot be provided.

Table 4 shows the results of our experiments on our larger instances. On
average, ADP outperforms the policy ‘Postpone’ with 10.11% and the policy
‘DirectShipment’ with 19.71%. Particularly in cases with scarce vehicle capac-
ity, ADP performs notably better. Under both benchmark policies, secondary
vehicles are dispatched more frequently. Also, the benefits of ADP are greater
when considering higher numbers of arrivals; the benchmark heuristics have no
rules to cope with the larger complexity in dispatching decisions.
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Table 4. Comparison between ADP and benchmark policies for larger instances

Average costs Average deviation Lowest deviation Highest deviation
from ADP from ADP from ADP

ADP 3116 0.00% 0.00% 0.00%
Postpone 3443 10.11% 5.01% 12.93%
DirectShipment 3658 19.71% 10.33% 27.41%

6 Conclusions

In this paper, we proposed an ADP approach to make dispatch decisions at urban
consolidation centers. We optimized decisions for a certain planning horizon,
taking into account stochastic order arrivals during this horizon. We have shown
that ADP is able to closely approximate the optimal values obtained by DP
for toy-sized instances of our problem. For larger instances, ADP clearly and
consistently outperforms both benchmark policies.

The ADP approach as described in this paper resolves the intractability of the
state space and outcome space. However, we have not yet addressed the size of
the action space, which can become problematically large as well. A possible ap-
proach to tackle this problem – without affecting the quality of decision-making
– is to express the decision problem as an integer linear program that can be
solved with limited computational effort. This requires the basis functions in
VFA to be defined in such a way that they are linear with the decision problem.

Our numerical experiments have shown that even for small instances, simple
waiting policies are inadequate to capture the complexity of waiting decisions.
We expect that the ability of ADP to capture such complexities will be even more
pertinent when increasing the size and complexity of instances. Further research
will focus on the evaluation of realistically-sized instances and comparison with
more sophisticated benchmark policies. The basis functions as proposed in this
paper may not work well on every instance. Insights in appropriate VFAs for
a variety of problem structures will yield a valuable contribution to existing
literature. Both the ADP approach and its benchmarks need to be refined in
order to provide an in-depth analysis of the applicability of ADP in realistic-
sized dispatch problems.
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