
 
 
 

 

 

 

 
 
 

Dynamic Multi-period Freight Consolidation 
 
 

Arturo Pérez Rivera, Martijn Mes 
 
 

Beta Working Paper series 473 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

BETA publicatie WP 473  (working 
paper) 

ISBN  
ISSN 
NUR 

 
804 

Eindhoven April 2015 



Dynamic Multi-period Freight Consolidation
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Abstract. Logistic Service Providers (LSPs) offering hinterland trans-
portation face the trade-off between efficiently using the capacity of long-
haul vehicles and minimizing the first and last-mile costs. To achieve the
optimal trade-off, freights have to be consolidated considering the varia-
tion in the arrival of freight and their characteristics, the applicable trans-
portation restrictions, and the interdependence of decisions over time.
We propose the use of a Markov model and an Approximate Dynamic
Programming (ADP) algorithm to consolidate the right freights in such
transportation settings. Our model incorporates probabilistic knowledge
of the arrival of freights and their characteristics, as well as generic defini-
tions of transportation restrictions and costs. Using small test instances,
we show that our ADP solution provides accurate approximations to the
optimal solution of the Markov model. Using a larger problem instance,
we show that our modeling approach has significant benefits when com-
pared to common-practice heuristic approaches.

Keywords: Intermodal transportation, transportation planning, con-
solidation, time horizon, approximate dynamic programming

1 Introduction

Over the last decade, the hinterland transportation industry has experienced
a change towards network oriented services. Many Logistic Service Providers
(LSPs) now offer multiple services such as pick-up, storage, long-haul and final
delivery of freight. With this change, new challenges arise for LSPs who organize
their processes (and possibly carriers) in such a way that the efficiency of their
entire transportation network is improved. We investigate one of such challenges
encountered by a LSP in The Netherlands. On a daily basis, this Dutch LSP
transports containers from the East of the country to different terminals in the
port of Rotterdam. This LSP has reserved capacity on a barge to transport its
containers. The costs of the long-haul are fixed, but the last-mile costs come
from the time required for sailing, waiting, and handling of containers at 12
container terminals spread over a distance of 40km in the port of Rotterdam.
The challenge is then to consolidate containers in such a way that each day,
only a few close-by terminals are visited and the reserved barge capacity is used
efficiently, over time.
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In operations research terms, we study the planning problem that arises when
a company wants to transport freights (e.g., containers) from a single origin to
different destinations, periodically (e.g., daily). The destinations of these freights
are always far away and closer among themselves than to the origin. For this
reason, the long-haul is the same in every trip, independent of which freights were
consolidated at the origin (e.g., a barge sailing over the same river). However,
the last-mile route varies according to the destinations of the freights that were
consolidated at the beginning of the long-haul. In addition, there is also an
alternative mode (e.g., truck) that can be used to transport freights directly
from their origin to their destination. The objective of the company is to reduce
its total costs over time and to use the vehicle’s capacity efficiently.

Companies with the aforementioned characteristics usually have fixed long-
haul costs. Consequently, costs savings are only possible in the last-mile and
in the use of the alternative transportation mode. The first source of costs is
influenced by factors such as unloading time, waiting time, service reliability, etc.
As a result, combinations of destinations might have different last-mile costs even
when the transportation distance between them is the same. The second source
of costs depends on the use of the alternative mode. This situation occurs when
there are more urgent freights than the long-haul vehicle’s capacity. Properly
balancing the consolidation and postponement of freights is therefore a challenge
for the company but also a necessity for its efficient operation.

For several reasons, consolidating freights in a way that minimize costs over
time is not a straightforward task. First of all, the number of freights that arrive
and their characteristics, vary from day to day. This uncertainty makes it difficult
to know which freights to postpone for future consolidation. Second, each freight
that arrives has a fixed time-window for transportation. Furthermore, not all
freights which arrive on the same day have the same destination or time-window.
Third, the objective of carrying as many freights as possible in the long-haul
vehicle during each trip can be conflicting with the objective of reducing last-
mile costs in the long run. To handle these planning challenges and to reduce
costs over time, we propose the use of a Markov model and an Approximate
Dynamic Programming (ADP) algorithm.

The remaining of this paper is organized as follows. In Section 2, we briefly in-
troduce the relevant scientific literature on dynamic multi-period freight consoli-
dation and outline our contribution to it. In Section 3, we present the mathemat-
ical notation of the problem characteristics and the formulation of the Markov
model. Also in this section, we present our ADP approach. In Section 4, we carry
out a series of numerical experiments. We close with conclusions and future re-
search directions in Section 5.

2 Literature Review

In this section, we briefly analyze the scientific literature on freight consolidation
in intermodal transportation networks. More specifically, we look at literature
about problems where transportation modes are chosen dynamically for different
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types of freights. We shortly examine the advantages, limitations, and extension
opportunities of the models and the solution methods proposed in this type
of papers. For a comprehensive literature review on strategical, tactical, and
operational planning problems in intermodal transportation networks we refer
to SteadieSeifi et al. [12] and Crainic and Kim [5].

The problem in this paper falls into the category of Dynamic Service Net-
work Design (DSND) problems. Most DSND models assume deterministic de-
mand [12]. In addition, most models consider the context of a single carrier and
cyclically scheduled services where there are hardly any time-dependencies, even
when there are multi-period horizons [5]. Although there are exceptions to these
shortcomings, models seem to focus on one exception at a time and leave out the
rest. For example, models which include multiple modes of transportation, such
as [9], usually do not incorporate time issues. On the other hand, the few models
which include time dependencies, such as [3], are developed for a single mode of
transportation. The few models that include uncertainty in the demand, such as
[6], are usually developed for the road transportation mode.

Most DSND solution approaches are based on graph theory, mathematical
programming techniques, and heuristics [12, 14]. Solutions based on graph theory
can not deal with time-dependencies for large instances and assume determin-
istic demand most of the time. To avoid these shortcomings and handle the
complexities of large size problems, mathematical programming techniques such
as cycle-based variables [2], branch-and-price [1], or column generation [9] have
been proposed. Also to avoid such complexity issues, metaheuristic extensions
such as Tabu Search [4, 13] have been vastly proposed [12]. A disadvantage of
most of these heuristics and mathematical programming techniques is that they
are less suitable for stochastic settings. Further design such as stochastic scenar-
ios [6] or probabilistic constraints is required to incorporate stochastic elements
on these solution approaches. Nevertheless, the need and the benefits of intro-
ducing stochastic elements into DSND formulations have been widely recognized
in practice [8].

As mentioned by Wieberneit [14], realistic instances of DSND problems are
difficult to solve with the exact approaches presented in the literature. Although
these exact approaches have been studied for some years now [7], research about
the use of approximations and decompositions, especially for stochastic multi-
period problems, has been scarce [8, 12, 14]. Considering these challenges and
opportunities, we believe our contribution to the scientific literature of DSND
problems and intermodal transportation planning is two-fold. First, we develop a
Markov model that handles complex time dependencies, incorporates stochastic
demand (and its characteristics), for a multi-period horizon, and has a generic
definition of costs depending on the destinations of freights. Second, we develop
an Approximate Dynamic Programming (ADP) solution algorithm that makes
the aforementioned model computationally applicable to realistic-size problems.
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3 Problem Description and Formulation

We consider a dynamic multi-period long-haul freight consolidation problem in
which decisions are made on consecutive periods t over a finite horizon T =
{0, 1, 2, ..., Tmax − 1}. For simplicity, in the remaining of the paper we refer to
a period as a day. The main decision at each day is which of the known, and
released-for-transport, freights to transport using the long-haul vehicle. Each
freight must be delivered to a given destination d from a group of destinations
D within a given time-window. The time-window of a freight begins at a release-
day r ∈ R = {0, 1, 2, ..., Rmax} and ends at a due-day r + k, where k ∈ K =
{0, 1, 2, ...,Kmax} defines the length of the time-window. The arrival-day t of a
freight is the moment when all its information is known to the planner. Note
that r influences how long the freights are known before they can be transported,
and thus influences the degree of uncertainty in the decisions. We consider that
the destinations D, release-days R, and time-window lengths K are known finite
sets for the entire planning horizon T .

New freights become available as time progresses. These freights and their
characteristics are unknown before they arrive, but the planner has some prob-
abilistic knowledge about them. First, we define F as the discrete and finite
random variable describing the variation in the total number of freights arriving
per day. Second, we define D as the random variable describing the variation in
the destination of each freight, with possible values of D ∈ D. Finally, R and
K are two random variables with possible values of R ∈ R and K ∈ K, which
describe the variation of the time-windows of each freight. We consider that
between two consecutive days, a number of freights f arrive with probability
pFf , independent of the arrival day. Each freight has destination d with prob-

ability pDd , release-day r with probability pRr , and time-window length k with
probability pKk , independent of the day and of other freights.

The last-mile costs depend on the subset of destinations visited. We denote a
subset of destinations with D′ ⊆ D, and denote its associated cost with CD′ . At
each day, there is only one long-haul vehicle with a maximum transport capacity
of Q freights. There is also an alternative transport option for each destination
d at a cost of Bd per freight. This alternative option has unlimited transport
capacity, but can only be used for freights whose due-day is immediate (i.e.,
r = k = 0).

3.1 Markov Model (Dynamic Programming)

In this section, we transform the problem characteristics described before into
stages, states, decision variables, transitions, and the optimality equations, or
Dynamic Programming (DP) recursion for the Markov model. The stages of the
model correspond to the days of the planning horizon. Thus, we denote discrete
and consecutive stages by t. At each stage t, there is a known group of freights
with different characteristics. We define Ft,d,r,k as the number of known freights
at stage t whose destination is d, whose release-day is r stages after t, and whose
time-window length is k (i.e., its due-day is r + k stages after t). The state of
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the system at stage t is denoted by S t and is defined as the vector of all freight
variables Ft,d,r,k, as seen in (1).

S t = [Ft,d,r,k]∀d∈D,r∈R,k∈K , ∀t ∈ T (1)

The main decision made at a stage is which freights to consolidate in the
long-haul vehicle of that stage. At each stage t, only freights which have been
released (i.e., freights with r = 0) can be transported. Moreover, note that only
one trip is carried out per stage and that its maximum transport capacity is Q
freights. We use the integer variable xt,d,k as the number of freights that are
transported in the long-haul vehicle at stage t, which have destination d and
are due k stages after t. We denote the vector of decision variables at stage t
as x t. Since only freights that have been released at the current stage can be
transported, the possible values of these decision variables are state dependent.
We define the feasible space of the vector of decision variables x t, given a state
S t, as follows:

x t = [xt,d,k]∀d∈D,k∈K , ∀t ∈ T (2a)

s.t.∑
d∈D

∑
k∈K

xt,d,k ≤ Q, (2b)

0 ≤ xt,d,k ≤ Ft,d,0,k, |Ft,d,0,k ∈ S t (2c)

∀d ∈ D, k ∈ K

As mentioned earlier, four discrete and independent random variables de-
scribe the arrival of freights, and their characteristics, over time: {F,D,R,K}.
We combine all these random variables into a single arrival information variable
F̃t,d,r,k which represents the freights that arrived from outside the system be-
tween stages t−1 and t, whose destination is d, whose release-day is r, and whose
time-window length is k. We denote the vector of arrival information variables
at stage t as W t, and define it in (3).

W t =
[
F̃t,d,r,k

]
∀d∈D,r∈R,k∈K

, ∀t ∈ T (3)

The consolidation decision x t and arrival information W t have an influence
on the transition of the state at stage t − 1 to the state at stage t. Besides
these two factors, we note that release-day r and due-day r + k are indexed
relative to stage t and therefore also have an influence on the transition of the
freight variables Ft,d,r,k. To represent all of these transition factors and relations,
we introduce the transition function SM , as seen in (4a). In this function, we
define freight variables Ft,d,r,k at stage t with destination d according to their
release-days and time-window length in three ways. First, freights which have
been released at stage t (i.e., r = 0) and have a time-window length of k are the
result of: (i) freights from the previous stage t− 1 which were already released,
had time-window length k + 1, and were not transported (i.e., Ft−1,d,0,k+1 −
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xt−1,d,k+1), (ii) freights from the previous stage t − 1 with next-stage release-
day (i.e., r = 1) and time-window length k (i.e., Ft−1,d,1,k), and (iii) the new

(random) arriving freights with the same characteristics (i.e., F̃t,d,0,k) as seen in
(4b). Second, freights which have not been released at stage t (i.e., r ≥ 1) are
the result of: (i) freights from the previous stage t − 1 with a release-day r + 1
and that have the same time-window length k, and (ii) the new freights with the

same characteristics (i.e., F̃t,d,r,k), as seen in (4c). Third, freights which have the
maximum due-day (i.e., k = Kmax) are the result only of the new freights with

the same characteristics (i.e., F̃t,d,r,|K|), as seen in (4d).

S t = SM (S t−1,x t−1,W t) , ∀t ∈ T |t > 0 (4a)

s.t.

Ft,d,0,k = Ft−1,d,0,k+1 − xt−1,d,k+1 + Ft−1,d,1,k + F̃t,d,0,k, , |k < Kmax (4b)

Ft,d,r,k = Ft−1,d,r+1,k + F̃t,d,r,k, |r ≥ 1 (4c)

Ft,d,r,Kmax = F̃t,d,r,Kmax , (4d)

∀d ∈ D, r ∈ R, r + 1 ∈ R, k ∈ K, k + 1 ∈ K

Now that stages, states, decision variables, and transitions are defined, we
are left only with the optimality equations or DP recursion. Before defining this
recursion, note that last-mile costs CD′ depend on the subset of destinations
D′ ⊆ D from the freights consolidated in the long-haul vehicle. Note also that
there is an alternative transportation cost Bd per urgent freight (i.e., r = k = 0)
to destination d that is not consolidated in the long-haul vehicle. For determining
the total costs, we introduce two auxiliary variables: (i) yt,d ∈ {0, 1}, which gets
a value of 1 if any freight with destination d is consolidated in the long-haul
vehicle at stage t and 0 otherwise, as seen in (5b), and (ii) zt,d ∈ Z which counts
how many urgent freights to destination d were not transported in the long-haul
vehicle, as seen in (5c). Thus, the costs at stage t are defined as a function of
the vector of decision variables x t and the state S t as seen in (5a).

C (S t,x t) =
∑
D′⊆D

CD′ ·
∏
d′∈D′

yt,d′ ·
∏

d′′∈D\D′

(1− yt,d′′)

+
∑
d∈D

(Bd · zt,d)

(5a)

s.t.

yt,d =

{
1, if

∑
k∈K xt,d,k > 0

0, otherwise
, ∀d ∈ D (5b)

zt,d = Ft,d,0,0 − xt,d,0, ∀d ∈ D (5c)

The objective of the model is to minimize the costs in (5a), under the un-
certainty in the arrival of freights and their characteristics, over a finite horizon.
Therefore, we need an optimal decision for each of the possible states for each
stage in the horizon, or in other words a policy. We define a policy π as a func-
tion that maps each possible state S t to a decision vector x πt . Thus, the formal
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objective of the Markov model is to find the best policy π ∈ Π which minimizes
the expected costs over the planning horizon, given an initial state S0, as seen
in (6):

min
π∈Π

E

{∑
t∈T

C (S t,x
π
t )|S0

}
(6)

Following Bellman’s principle of optimality, the best policy π for the entire
planning horizon can be found solving a set of stochastic recursive equations
which consider current-stage and expected next-stage costs. The recursion be-
tween stages t and t+1 can be written using the arrival information vector W t+1

and the transition function SM . Remind that W t+1 is the result of the discrete
and finite random variables describing the arrival process of freights, and thus
has also a discrete and finite number of realizations. We denote the set of all pos-
sible realizations of the arrival information vector with Ω, i.e., W t ∈ Ω, ∀t ∈ T .
For each realization ω ∈ Ω, there is an associated probability pΩω . With all of
this in mind, the Bellman’s optimality equations are defined as seen in (7). We
consider that at the end of the horizon T there are no next-stage costs, i.e.,
VTmax (STmax) = 0.

Vt (S t) = min
x t

(C (S t,x t) + E {Vt+1 (S t+1)}),∀t ∈ T

= min
x t

(
C (S t,x t) + E

{
Vt+1

(
SM (S t,x t,W t+1)

)})
= min

x t

(
C (S t,x t) +

∑
ω∈Ω

(
pΩω · Vt+1

(
SM (S t,x t, ω)

))) (7)

The probability pΩω depends on the probabilities of the four discrete and inde-
pendent random variables describing the arrival process: {F,D,R,K}. Remind
that a number of freights f arrive with probability pFf and that each freight

arriving has destination d with probability pDd , release-day r with probability
pRr , and a time-window length k with probability pKk . Since the arrival process
is independent of the stage, a realization ω is the vector of all freight variables
F̃ωd,r,k without an index t, as seen in (8).

ω =
[
F̃ωd,r,k

]
∀d∈D,r∈R,k∈K

(8)

The total number of freights arriving in realization ω is f , as seen in (9b),
with probability pFf . Since the characteristics of freights are independent of each

other, the probability that F̃ωd,r,k freights will have destination d, release-day r
and time-window length k is the product of the probability of each characteristic
raised to the power of that number of freights, as seen in the last part of (9a).
However, the probability of a realization ω is not just the product of the proba-
bility of the number of freights and the probability of the characteristics of each
freight variable. In our model, the order in which freights arrive at a given stage
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t does not matter, but “repetition” in freight characteristics is allowed. From
a combinatorial perspective [11], there are β ways of assigning the total num-

ber of arriving freights f to each freight variable F̃ωd,r,k (i.e., each combination
of characteristics), as seen in (9c). Thus, we need to multiply the aforemen-
tioned probabilities with the multinomial coefficient β. Using this information,
the probability pΩω can be computed as follows:

pΩω = β · pFf ·
∏

d∈D,r∈R,k∈K

([
pDd · pRr · pKk

]F̃ωd,r,r+k) (9a)

s.t.

f =
∑

d∈D,r∈R,k∈K

F̃ωd,r,k (9b)

β =
f !∏

d∈D,r∈R,k∈K

(
F̃ωd,r,k!

) (9c)

Finally, with all the aforementioned definitions of stages, states, decision
variables, transitions, and Bellman’s equations (i.e., DP recursion), the dynamic
multi-period freight consolidation problem can be solved to optimality for all
possible initial states. The way to do so is by solving the DP recursion in (7),
starting at t = Tmax − 1 where there are no next-stage costs, and then step-
ping backward in the horizon, considering all states at each stage, until t = 0.
However, as with most Markov models, our model suffers from the three curses
of dimensionality mentioned by Powell [10] and possibly a fourth one. First, the
set of all possible realizations ω of the arrival information contains all possi-
ble permutations of the maximum number of freights that can arrive, for each
possible combination of characteristics. Second, the state space of all possible
states S t contains, for each possible realization of the arrival information, all
possible permutation of accumulated freights (e.g., if at most two freights arrive
with due-day of today or tomorrow, it is possible to have a state where there
are four freights today). Third, the decision space of all possible decisions x t
contains all permutations of each freight variable Ft,d,0,k. The fourth possible
curse of dimensionality may arise due to the necessity of defining costs CD′ for
each subset of destinations D′ ⊆ D. For these reasons, our Markov model is
directly applicable only in small, toy-sized, problems. Nevertheless, it provides
the foundation for solving larger problems. In the following section we explain
how to overcome these impediments for realistic-size problems using this Markov
model as a basis.

3.2 Approximate Dynamic Programming Solution Algorithm

Approximate Dynamic Programming (ADP) is a modeling framework, based
on a Markov model, that offers several strategies for tackling the curses of di-
mensionality in large, multi-period, stochastic optimization problems [10]. The
output of ADP is the same as in the Markov model, i.e., a policy or function



Dynamic Multi-period Freight Consolidation 9

π that maps each possible state S t to a decision vector x πt , for each stage t
in the planning horizon. This policy is derived from an approximation of the
optimal values of the Bellman’s equations. To do this approximation, a series of
constructs and algorithmic manipulations of the base Markov model are needed.
In this section we present the constructs and algorithmic manipulations used in
our ADP algorithm, as shown in Algorithm 1.

Algorithm 1 Approximate Dynamic Programming Solution Algorithm

Require: F,D,R,K,D, Tmax, Rmax,Kmax, [CD′ ]∀D′⊆D , Bd, Q,S0, N
Ensure: Sets T ,R,K, Ω are defined
1: Initialize V̄ 0

t , ∀t ∈ T
2: n← 1
3: while n ≤ N do
4: Sn

0 ← S0

5: for t = 0 to Tmax − 1 do
6: v̂nt ← minxnt

(
C (Sn

t , x
n
t ) + V̄ n−1

t

(
SM,x (Sn

t , x
n
t )
))

7: if t > 0 then
8: V̄ n

t−1(Sn,x∗
t−1 )← UV (V̄ n−1

t−1 (Sn,x∗
t−1 ),Sn,x∗

t−1 , v̂
n
t )

9: end if
10: xn∗

t ← arg minxnt

(
C (Sn

t , x
n
t ) + V̄ n−1

t

(
SM,x (Sn

t , x
n
t )
))

11: Sn,x∗
t ← SM,x (Sn

t , x
n∗
t )

12: W n
t ← RandomFrom (Ω)

13: Sn
t+1 ← SM (Sn

t , x
n∗
t ,W n

t )
14: end for
15: end while
16: return

[
V̄ N
t

]
∀t∈T

The ADP solution can be applied to realistic-size instances because two of the
dimensionality issues mentioned in the previous section are completely avoided.
The first dimensionality issue corresponds to the set Ω containing all possi-
ble realizations ω of the arrival information. This issue is avoided through the
construct of a post-decision state Sn,xt and an approximated next-stage cost
V̄ nt (Sn,xt ), which we explain in the next paragraphs. The second dimensionality
issue corresponds to the state space which contains all possible permutations
of accumulated freights for each possible realization of the arrival information.
This issue is avoided through the so-called “forward dynamic programming” al-
gorithmic strategy, which solves the Bellman’s equations by stepping forward in
time, and repeats this process for N iterations. We elaborate on this strategy
later in this section.

A post-decision state Sn,xt is the state directly after decision xnt given state
Snt but before the arrival information W n

t is known. In our model, the post-
decision state contains all post-decision freight variables Fn,xt,d,r,k, as seen in (10).
To define the values of the post-decision state vector, we use the transition
function SM,x, as seen in (11). This function works in the same way of the
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DP transition function defined in (4a), with the difference that the new arrival

information W n
t =

[
F̃nt,d,r,k

]
∀d∈D,r∈R,k∈K

is not included.

Sn,xt =
[
Fn,xt,d,r,k

]
∀d∈D,r∈R,k∈K

, ∀t ∈ T (10)

Sn,xt = SM,x (Snt ,x
n
t ) , ∀t ∈ T (11)

is defined as

Fn,xt+1,d,0,k = Fnt,d,0,k+1 − xnt,d,k+1 + Fnt,d,1,k,

Fn,xt+1,d,r,k = Fnt,d,r+1,k | r ≥ 1,

∀d ∈ D, r ∈ R, r + 1 ∈ R, k ∈ K, k + 1 ∈ K

In the forward dynamic programming algorithmic strategy, the Bellman’s
equations are solved only for one state at each stage. Just as in the Markov
model, the feasible decisions xnt for state Snt in these equations are defined
by (2a). However, some modifications are necessary to apply this algorithmic
strategy. Besides the construct of the post-decision state, the construct of an
approximated next-stage cost V̄ nt (Sn,xt ) is necessary. This construct replaces the
standard expectation in Bellman’s equations, as seen in (12).

V̄ nt (Sn,xt ) = E {Vt+1 (S t+1) |Sxt } (12)

Using the post-decision state and the approximated next-stage cost, the orig-
inal Bellman’s equations from (7) are converted to the ADP forward optimality
equations, as seen in (13). Note that for each feasible decision xnt , there is an
associated post-decision state Sn,xt obtained using (11). The ADP forward opti-
mality equations are solved first at stage t = 0 and S0, and then for subsequent
stages and states until the end of the horizon. To advance “forward” in time,
from stage t to t + 1, a Monte Carlo simulation of the random information Ω,
defined in (8), is done. In this simulation, a sample W n

t from Ω is obtained.
With this information, transition in the algorithm is done using the same DP
transition function defined in (4a), as seen in Algorithm 1 lines 12 and 13.

v̂nt = min
xnt

(
C (Snt ,x

n
t ) + V̄ n−1t (Sn,xt )

)
= min

xnt

(
C (Snt ,x

n
t ) + V̄ n−1t

(
SM,x (Snt ,x

n
t )
)) (13)

Immediately after the forward optimality equations are solved, the approxi-
mated next-stage cost V̄ nt (Sn,xt ) is updated retrospectively, as seen in (14). The
rationale behind this update is that, at stage t, the algorithm has seen new arrival
information (via the Monte Carlo simulation) and has taken a decision in the
new state Snt which incurs a cost. This means that the approximated next-stage
cost that was calculated at the previous stage t − 1, i.e., V̄ n−1t−1 (Sn,xt−1), has now
been observed at stage t. To take advantage of this observation and improve the
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approximation, the algorithm updates this approximated next-stage cost using
the old approximation, i.e.,V̄ n−1t−1 (Sn,xt−1), the new approximation, i.e., the value
v̂nt corresponding to the optimal decision that solves (13), and the decision xnt
that resulted in the value v̂nt . We use UV to denote the process that takes all
of the aforementioned parameters and “tunes” the approximating function, as
seen in (14). Note that in Algorithm 1 line 8, the parameters used for the update
have the superscript ∗ indicating the optimal decision made at stage t − 1 and
its corresponding post-decision state.

V̄ nt−1(Sn,xt−1)← UV (V̄ n−1t−1 (Sn,xt−1),Sn,xt−1, v̂
n
t ), ∀t ∈ T (14)

Two of the largest challenges of ADP are: (i) to find an accurate approxi-
mation function V̄ nt (Sn,xt ) of the value of a post-decision state Sn,xt , and (ii) to
define an appropriate updating process UV for this function. For our problem,
we use the concept of post-decision state “features”. A feature of a post-decision
state is a quantitative characteristic that explains, to some extent, what the
value of that post-decision state is. In our problem, features such as the number
of urgent freights, the number of released freights that are not urgent, and the
number of freights which have not been released for transport, can explain part
of the value of a post-decision state. We define a set of features A for which the
value of each feature a ∈ A is obtained using a function φa(Sn,xt ). We assume
the approximated next-stage value of a post-decision state can be expressed by a
weighted linear combination of the features, using the weights θa for each feature
a ∈ A, as seen in (15).

V̄ nt (Sn,xt ) =
∑
a∈A

(φa(Sn,xt ) · θa) (15)

The use of features and weights for the approximating the value function
V̄ nt (Sn,xt ) is comparable to the use of regression models for fitting data to a
(linear) function. In that sense, the independent variables of the regression would
be the post-decision features and the dependent variable would be the post-
decision value. However, in contrast to regression models, the data in our ADP
is generated iteratively inside an algorithm and not all at once. Therefore, the
updating process UV for the approximating function in (15) cannot be based
on solving systems of equations as in traditional regression models. Instead, we
use a recursive least squares method for nonstationary data to “fine-tune” the
weight θa for each feature a ∈ A. This method is based in regression models,
and explained in detail in [10].

4 Numerical Experiments

Through numerical experiments we want first, to show the accuracy of the
approximation method, and second, to compare the benefits of our proposed
Markov model with a heuristic commonly used in practice. To do these exper-
iments, we use two test instances: (i) a small instance with three destinations,
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and (ii) a large instance with seven destinations. The probability distributions of
the four random variables describing the arrival process can be seen in Table 1.
Note that for the Large Instance, the number of possible states is approximated

by the combinatorial expression
∑Fmax·(Rmax+Kmax+1)
i=1

(|D|·|R|·|K|+i−1)!
i!·(|D|·|R|·|K|)! .

Table 1. Random variables in the numerical experiments

Input Parameter Small Instance Large Instance

Freights arriving per day (F ) {1, 2} {1, 2, 3, 4}
→Probability (pFf ) {0.8, 0.2} {0.25, 0.25, 0.25, 0.25}
Destinations (D) {1, 2, 3} {1, 2, 3, 4, 5, 6, 7}
→Probability (pDd ) {0.1, 0.8, 0.1} {0.1, 0.2, 0.1, 0.1, 0.3, 0.1, 0.1}
Release-days (R) {0} {0, 1, 2}
→Probability (pRr ) {1} {0.3, 0.3, 0.4}
Time-window lengths (K) {0, 1, 2} {0, 1, 2}
→Probability (pKk ) {0.2, 0.3, 0.5} {0.2, 0.3, 0.5}
# Possible arrival realizations |Ω| 54 766479
# Possible states 2884 ≈ 8.18 · 1018

In the first experiment, we test the accuracy of the approximation method
using the Small Instance. To do this, we compare the value of several initial
states S0 of the Markov model in Section 3.1 against the value for the same
states obtained with the ADP algorithm in Section 3.2. The remaining input
parameters of the Small Instance are defined as follows. The planning horizon
is Tmax = 5 and the long-haul vehicle capacity is Q = 3. The long-haul vehicle
cost CD′ for a subset of destinations D′ ⊆ D is defined between 250 and 1000,
such that larger subsets have higher costs than smaller ones. The alternative
cost Bd is defined between 500 and 1000 per destination d ∈ D. The parameters
of the ADP algorithm are set as follows. The number of iterations is N = 2000.
The features A are related to three characteristics of a post-decision state: (i)
the number of freights with each combination of freight characteristics, (ii) the
total number of urgent freights (i.e., r = k = 0), and (iii) the total number of
released and non-urgent freights (i.e., r = 0 and k > 0). The features related to
these characteristics include also counting the number of destinations that fulfill
such characteristics (e.g., destinations having urgent freights). We also include
a constant feature a′ such that φa′(S

n,x
t ) = 1 for all post-decision states and

stages. Feature weights are initialized with 1, i.e. θa = 1 for all features and
all stages at iteration n = 1. The updating process UV (i.e., the recursive least
squares method for nonstationary data) requires a discount factor λ which is
defined as λ = 1 − 0.5

n . The results of this comparison can be seen in Figure 1.
The state number counts the number of urgent freights contained in each state,
i.e. State 3 has 3 urgent freights.
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Fig. 1. Convergence and Approximation Accuracy of the ADP Algorithm

In the sample of states above, we can already observe several characteristics
of the output from the ADP algorithm with the aforementioned settings. In the
left part of Figure 1 we see that the values fluctuate during the first iterations
for some states more than for others, but eventually converge for all states. In
the right part of Figure 1, we see that the difference between the optimal values
and the estimates produced by ADP are small. These experiments show that
the ADP algorithm accurately predicts the value of initial states in the Markov
model. However, these ADP values are an intermediate result since they are used
to define a policy that should dictate decisions for all possible states during the
horizon. Thus, to properly compare performance, the entire policy of the ADP
should be compared to that of the Markov model.

In the second experiment, we compare the policy resulting from our ADP
algorithm with (i) the policy of the Markov model (for the Small Instance only),
and (ii) a heuristic commonly used in practice (for the Small and Large Instance).
This experiment shows the benefits of incorporating stochastic information in
the dynamic multi-period freight consolidation problem compared to using a
heuristic. This benchmark heuristic consolidates the freights that yield the lowest
direct costs (i.e., no future costs considered), and then if there is capacity left,
fills the long-haul vehicle with released freights that go to the same destinations
of the freights already consolidated (i.e., no extra costs). In the Large Instance,
the planning horizon is Tmax = 5 and the long-haul vehicle capacity is Q = 10.
The long-haul vehicle cost CD′ for a subset of destinations D′ ⊆ D is defined
between 250 and 2050, such that larger subsets have higher costs than smaller
ones. The alternative cost Bd is defined between 300 and 800 per destination
d ∈ D. The ADP settings are the same as for the Small Instance. The experiment
is done in a simulation of 2000 runs, using common random numbers for the
comparison of the arrival information in the planning horizon. The results about
the performance of the different policies are seen in Figure 2. Once again, the
state number counts the number of urgent freights contained in each initial state.
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Fig. 2. Performance of the ADP Algorithm in the Small and Large Instance

From Figure 2 we conclude that the ADP policy performs at least as good
as the benchmark heuristic, and always better than the heuristic in initial states
with a large number of urgent freights. Furthermore, in the left part of Figure 2
we see that the performance of the ADP policy is approximately the same as
the one from the Markov model, meaning that the ADP estimates result in a
near-optimal policy.

5 Conclusions

We developed a Markov model and an Approximate Dynamic Programming
(ADP) solution for the dynamic multi-period freight consolidation problem. The
approach is designed to achieve the optimal balance between freights that are
consolidated in a long-haul vehicle and freights that are postponed for further
trips or alternative transportation modes. The optimal balance is achieved taking
into account the probabilistic knowledge in the arrival of freights and their char-
acteristics, the applicable transportation restrictions, and the interdependence
of decisions over time.

Through a limited number of numerical experiments, proofs-of-concept of
the accuracy of the ADP method and of the benefits of the Markov model were
shown. These experiments showed that, even in small instances, there are some
states where it pays off to have a look-ahead policy, and some others where
a common heuristic is sufficient to achieve the optimal balance between direct
shipment and postponement for future consolidation. This leads to the idea that
further research is needed to identify in which problem settings looking ahead in
the future (i.e., using the ADP approach) yield the largest benefits. Specifically,
more experiments on large problem instances and different benchmark policies
are crucial to analyze the value of look-ahead policies.
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